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Abstract. High-and low-frequency limits of the harmonic electromagnetic fields and of the 
self impedances for parallel conductors are presented. The distribution of current density in 
the wire and in the eccentric external return is determined analytically with two opposite 
assumptions for the magnetic field strength on the conductor surface. 
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For a simulation of switching processes and other 
electrical transients on power transmission lines, it is 
desirable to know the frequency dependence of the line 
parameters. The problem of this dependence is ap- 
proached by electromagnetic fields theory. The fre- 
quency of the sinusoidally varying field is assumed to 
be so slow that the wavelength of the oscilations of the 
alternating currents in the conductors is very much 
larger than the dimensions of the conductor cross- 
section. Thus, the electromagnetic field need only be 
investigated in the cross-section as a two-dimensional 
boundary value problem. 
The electromagnetic theory of wave propagation along 
parallel conductors is very old. Much important work 
has been done in developing and extending this theory. 
The case of the wire with external coaxial return was 
described by Schelkunoff [1], but for the problems 
with an eccentric external return, a bifilar lead and a 
multiconductor line we have only approximate so- 
lutions, obtained with relatively drastic assumptions 
[2-5]. The aim of the paper is to show two limits of the 
above problem. Note that for the current density 
problem in the conductors, the tangential component 
of the magnetic field strength on the conductor surface 
must be found as the boundary condition. The first 
boundary condition is obtained in the paper with the 
assumption that direct current (dc) is flowing in the 
conductors. Hence, the quickest way to determine the 
magnetic field strength of the conductors is to use the 
principle of linear superposition. It is the so-called low- 
frequency behaviour, and we get the dc approximation 
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Fig. 1. Configuration of wire with external eccentric return and 
surfaces of eccentric cable as equipotential surfaces of two charged 
filaments 

of the problem. In the second estimation we assume as 
the boundary condition that the current density cor- 
responds to the tangential component of the magnetic 
field strength for a system of lossless conductors. It is 
the so-called high-frequency behaviour, and we get the 
LL (loss-less) approximation of the problem. 

Current Density in the Conductors 

Consider a wire with an external eccentric return, as in 
Fig. 1. We assume that the permeability of the con- 
ductors is # =/ t  o (permeability of free space) and their 
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conductivity is o-. We also assume that the current 
density vector has only an axial component, J=Jz lz .  
The current in the wire is I, and in the external return 
is - I .  When using cylindical coordinates (r, ~o, z) and 
considering a sinusoidal variation of the currents in the 
conductors with time, the equation for the current 
density in the wire can be written from Maxwell's 
equations in the form [3] 

672jz 1 8J~ 1 672jz =joo#ajz = k 2 j z  ' (1) 
Or 2 + 7-~7-r + r ~ &o ~ 

where co =2rtfis frequency in rad/s. For the tangential 
component of the magnetic field strength H e on the 
conductor surface we have from Maxwell's equation 

1 aa~(r, q~) (2) 
He(r' q))-- 1s 2 8r 

For the low-frequency behaviour we assume that the 
tangential component of the magnetic field strength on 
the wire surface is the same as for the conductors with 
direct current 

H~o(r , q0)[~ =~ = I/(2rca). (3) 

Thus, the current density inside the wire is 

Ik I0(kr ) 
J=(r, q))= 2~z~ It(ka ~ ' (4) 

where k = ( j ( o # o - )  t / z ,  and Io, I t are the modified Bessel 
functions of the first kind and order zero and one, 
respectively. 
The tangential component of the static magnetic field 
on the inner surface of the pipe, in the pipe cylindrical 
coordinates (Q, 0, z), is 

Ho(O,O),~=b= 2--~[l + ~=l(-d/b)"cos(nO)] (5) 

and on the outer surface of the pipe, obtained with the 
help of a linear superposition, is 

I oo 
Ho(O, 0)10 = b+, -  2r~(b-+ t) ,=~1 [ -  d/(b + t)]" cos(n0). (6) 

In practice the condition t @ b can be accepted for the 
pipe, and (1) may be written in cartesian coordinates 

632Jz 1 672Jz =jcogaJ~ (7) 
~ 2  -'~ b 2 602 

The solution of (7) that satisfies the boundary con- 
ditions (5) and (6) is 

If the frequency of the current is so high that the 
current is practically a surface current, we assume that 
the tangential component of the magnetic field 
strength on the conductor surface is the same as in a 
lossless system with a TEM wave. The axial com- 
ponent of the electric field strength is assumed to be 
only a disturbance of the TEM field [61. Our problem 
is to find the electromagnetic field between the con- 
ductors. Since the TEM field obeys the laws of a static 
field in the two-dimensional transverse plane, the 
problem can be solved as the electrostatic problem of 
two charged filaments�9 We assume that the surface of 
the wire and the inner surface of the pipe are equipo- 
tential surfaces of these charged filaments + 2 and - 2, 
as shown in Fig. 1. In the figure 2 is a uniform linear 
density of charge [c/m], and 

h I = ( b  2 - a 2 - dZ)/(2d), c = (h 2 - a 2 )  1/2 . (9) 

The electrostatic potential of the filaments is 

V(x, y) = 2@ ln(rl/r2) , (10) 

where r I = [(x + c) 2 + y 2 ]  I / 2  and r 2 ----- [ ( X  - -  C) 2 "-~ y2] 1/2 
The normal component of the electric field strength in 
cylindrical coordinates of the wire is 

Er(r , ~o) = - 8V(r, q))/& (11) 

and the tangential component of the magnetic field 
strength between the conductors, as the component of 
TEM field, is proportional to Er(r,~o) [6]. As the 
additional condition for H~(r, ~o), we notice that 

2re 

a ~ H~o(r, cp)l,=adCp=I. (12) 
0 

From (10)-(12) we get 

H~(r, (P)[r =. 

_ I2na {1+2 ,~= 1 [-a/(hl+c)]"c~176 (13) 

The current density in the wire, as the solution of (1) 
that satisfies the boundary condition (2) and (13), is 

Ik ~Io(kr) 
J~(r,q))= 2-~a [ ~  +4 ,=1 ~ [-a/(hl+c)]" 

�9 I,(kr) cos(n~o) ~ (14) 

I n _ x(ka) + In+ t(ka)J' 
where I, is modified Bessel function of the first kind 
and order n. 

Ik o Jexp [ko( e -  b)] + exp [ ,  ko( O-  b -  20] 
4(e,  o) = ~ b  t ~ - ~ x ~  

+ ko ~ (_  d/b) ~ cos(n0) exp [k,(~ - b)] - exp [ - k.(o - b -  t)].} 
, = 1 kn 1 + exp(k,t) ' 

(a) 

where k, = [(n/b) 2 +joe#o] 1/2. 
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For the inner surface of the pipe we get 

Ho(O, 0)l~:~ 

_ I2xb {1+2,=1 ~' E-b/(h2+c)]'~c~ , (15) 

where h 2 = (b 2 - a 2 -4- d2)/(2d). 
For the outer surface of the pipe/m the LL approxima- 
tion we assume that 

Ho(O, O)lo =b+ t= 0. (16) 

The solution of (7) that satisfies the boundary con- 
ditions (15) and (16) is 

approximation is given by 

ko [exp(2kot)+ 1 
Zdc = 2~bcr L ~  1 

+ko L (d/b) 2" 1 exp(k. t ) -  1] 
, = 1 k.  exp (k.t) +-1 (21) 

and, if co~0, the resistance and the inductance of the 
thin pipe become 

R o = 1/(2~bta), L 0 = #t[2/3 + d2/(b 2 - dZ)]/(4~zb).(22) 

Ik o {exp Eko(0 - b)] + exp [ - ko( 0 - b - 2t)] 
J~(Q, 0) = ~ - 1 - exp(2kot ) 

+ 2k o ~ [ - b/(h 2 + c)]" cos (nO) exp Ek,(0- b)] + exp [ - k,(~ - b - 20] 
, = t k, 1 - exp (2k.t) (17) 

Self  Impedances of  the Conductors 

The self impedance of the conductor is defined with the 
help of Poynting's theorem as the ratio of electromag- 
netic power flow into the conductor per unit length 
and the square of the current modulus [7]. For the 
wire of radius a, for instance, we have 

Zs=  r/~y!(E x H*) 'dA 

2r 

_[II  2a ! Ez(r, cp)lr=,H*(r , ~0)lr =,&0, Eft/m], (18) 

where Ez(r, cp)=J~(r,~o)/a, and l:he asterisk denotes 
complex conjugation. 
The self-impedance consists of the resistance 
R =  Re{Zs}, representing the amount of energy dissi- 
pated in heat, and the reactance X = Im{Zs}, due to the 
magnetic flux in the conductor itself. The reactance 
may be written as a product of frequency and self- 
inductance L, thus the self-inductance of the conductor 
is L=Im{Zs}/co. 
The self-impedance of the wire in the dc approxima- 
tion, obtained from (3), (4), and (18), is 

k Io(ka ) 
Zdc-  2~aa Ii(ka ) " (19) 

We notice that, if co~0, the resistance and the in- 
ductance of the wire become 

R o = 1/Qca2a), L o = #/(8z~). (20) 

Substitution of (5), (6), and (8) into Poynting's theorem 
shows that the self-impedance of the thin pipe in the dc 

The LL approximation of the self impedance for the 
wire follows from (13) and (14) 

k ~Io(ka ) 
ZLL = 2--Gga  

I,(ka) / 
+4,=1 ~ [a/(hl + c)]2" I , -  l(ka)+I,+dka)J (23) 

and for the pipe follows from (15)-(17) 

k o /exp(2k0t)+l  
ZLL -- ~ [ ~  1 

+ 2ko L Eb/(hz +c)j2,~, exp(2k"t)+ l}  
n= 1 exp(2k, t ) -  1 " 

(24) 

As an illustration of the derived expressions for the 
self-impedance of the wire with external eccentric 
return, Fig.2 for the wire and Fig. 3 for the pipe are 
presented. In these figures we introduce so-called skin- 
depth 

6 = E2/(co/w)] 1/2. (25) 

Figures 2 and 3 illustrate the frequency dependence of 
the relative resistance R/R o and the relative inductance 
L/L o for the case, when the eccentricity of the cable is 
"large". If the eccentricity of the cable is smaller, then 
the difference between the curves is also smaller. 

Conclusions 

Applying the method of the dc approximation and the 
lossless approximation for magnetic field strength on 
the conductor surface, it is possible to derive two limits 
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~Fig. 2. Ratio of resistance to R o and ratio of inductance to L o for wire 
of eccentric cable 
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Fig. 3. Ratio of resistance to R o and ratio of inductance to L o for pipe 
of eccentric cable 

for the self-impedance of the transmission line con- 
ductors. The de-solution is correct if the product coa is 
small and the LL solution is correct if the product coo- 
is large. If coo- is of intermediate value, we can in- 
terpolate the curve for the self impedance. 
The method may be extended for propagation con- 
stant and for multiconductor line as, for instance, 
three-phase cable (including the shield, if it is present). 
The results obtained by this method may be utilized 
for comparing various methods with different 
assumptions. 

References 

1. S.A.Schelkunoff: Bell Syst. Techn. J. 13, 532-578 (1934) 
2. R.W.P.King: Transmission-Line Theory (Dover, New York 1965) 
3. J.A.Tegopoulos, E.E.Kriezis: IEEE Trans. PAS-90, 1278-1294 

(:97:) 
4. T.A.Lenahan:  Bell Syst. Techn. J. 56, 597-625 (1977) 
5. R.Schinzinger, A.Ametani:  IEEE Trans. PAS-97, 1680-1687 

(1978) 
6. R.E.Collin: Field Theory of Guided Waves (McGraw-Hill, New 

York 1960) 
7. L.M.Magid:  Electromagnetic Fields, Energy and Waves (Wiley, 

New York 1972) p. 588 

Responsible for Advertisements: E. L/ickermann, G. Probst, Kurffirstendamm 237, D-1000 Ber[in 15, Telephone: (0 30) 8821031, Telex 01-85411 
Springer-Verlag Berlin- Helde]berg- New York. Printers : BrLihlsche U niversit~tsdr uckerei, Giessen, Printed in Germany,) by Springer-Verlag GmbH & Co. KG Berlin �9 Heidelberg 1982 

Beihefterhinweis: Dieser Ausgabe ist ein Prospekt des Springer-Verlages beigeheftet. 


