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Abstract. Various planar dielectric grating diffraction theories are reviewed for the case of a 
general sinusoidal permittivity planar grating with slanted fringes and plane wave incidence 
at an arbitrary angle. Exact form~Jlations without approximations (rigorous coupled-wave 
analysis and rigorous modal analysis) are developed first. Then, using a series of 
fundamental assumptions, rigorous theory is shown to reduce to the various approximate 
theories in the appropriate limits. The implications of these fundamental assumptions are 
discussed. 

PACS: 42.10, 42.20, 42.30 

Since 1930 there have been over 400 scientific papers 
on the subject of grating diffraction. Many of these 
papers have been applicable to planar dielectric grat- 
ings. These periodic structures have been applied in 
numerous areas such as acousto-optics, holography, 
integrated optics, and spectral analysis. The diffraction 
of electromagnetic waves by spatially periodic media 
may be analyzed by numerous methods and with a 
wide variety of possible assumptions. The purpose of 
this paper is to review both rigorous and approximate 
planar grating diffraction theories and to show ex- 
plicitly the relationships between the various 
theories. 
The most common methods of analyzing planar dielec- 
tric grating diffraction are the coupled-wave approach 
[1-8] and the modal approach [9-18]. These theories 
have recently been treated in two extensive reviews 
[19, 20]. Both coupled-wave and modal approaches 
can produce exact formulations without approxi- 
mations. In their full rigorous forms these formulations 
are completely equivalent [21]. They represent merely 
alternative methods of representing the electromag- 
netic fields inside the grating (Sect. 2). 
Starting with the rigorous theories and using a series of 
fundamental assumptions, these general theories are 
shown to reduce to the various approximate theories 
[two-wave modal theory, two-wave second-order 
coupled-wave theory, multiwave coupled-wave theory, 

two-wave first-order coupled-wave theory (Kogelnik 
theory), Raman-Nath theory, and amplitude transmit- 
tance theory] in the appropriate limits. This is shown 
in Sect. 8. 

1. Planar Dielectric Grating Diffraction 

The general planar grating diffraction problem is 
depicted in Fig. 1. An electromagnetic wave is ob- 
liquely incident upon a slanted-fringe planar grating 
bounded by two different homogeneous media. In 
general, there will be simultaneously both forward- 
diffracted and backward-diffracted waves as shown in 
the figure. This geometry is applicable 1) to holograph- 
ic gratings in air or other media (e t=/~i i iz~=eo)  , 2)to 
acousto-optic gratings within a medium (e~ = e o =era), 
and 3) to grating couplers such as used in integrated 
optics (e I # e o + e m # El). The quantities ei, %, and ein are 
the average relative permittivities (dielectric constants) 
in regions 1, 2, and 3, respectively. 
In this paper, for simplicity, the case of a lossless 
dielectric grating with sinusoidal permittivity is treat- 
ed. The incident plane wave polarization is perpendic- 
ular to the plane of incidence (H mode). This is proba- 
bly the case of widest general interest. However, these 
assumptions are not essential to the theories described. 
The relative permittivity (dielectric constant) in the 
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grating region is given by 

~(x, z)= So + ~1 cos(R. ~) 
= eo + e 1 cos [K(x sin ~b + z cos qS)], (1) 

where e~ is the amplitude of the sinusoidal relative 
permittivity, ~b is the grating slant angle, and K = 2re/A, 
where A is the grating period. The cosinusoidal form 
used in (1) is common in the volume holographic 
grating literature. In the acousto-optics literature, a 
sinusoidal form for (1) is more common. Using the 
sinusoidal form would alter the resulting equations in 
the following sections as well as their amplitude so- 
lutions. However, the diffracted intensities are identi- 
cal in either case. 
The general approach to the planar-grating diffraction 
problem involves finding a solution of the wave equa- 
tion in each of the three regions and then matching the 
tangential electric and magnetic fields at the two 
interfaces (z = 0 and z = d). In region 1, the normalized 
amplitude of the incident plane wave is 

Ein c = e x p ( - - j / ~  1 �9 r)  

= exp [ - j k  t (x sin 0' + z cos 0')], (2) 

Fig. 1, Geometrical configuration of planar 
grating diffraction 

where 0' is the angle of incidence on region 1, 
k 1 = 2n(h)l/2/2, and ,t is the free space wavelength. The 
wave equation for the H mode polarization is the 
scalar wave equation (Helmholtz equation) 

V2E+kZe(x,z)E=O, (3) 

where k = 2n/2. For H mode polarization, the electric 
field only has a component in the y direction. The 
fields and the grating are unchanging in the y direction. 
For any arbitrary direction the grating as bounded by 
regions 1 and 3 is periodic only in the x component of 
the direction, If region 2 was infinite in all directions 
(not bounded) the resulting grating would be periodic 
in any direction that was not perpendicular to the 
grating vector K. The Floquet theorem [22, 233 re- 
stricts the possible fields that can exist in a periodic 
structure at steady state. As a result of the Floquet 
theorem the diffracted wavevectors inside the grating 
may be represented for the infinite periodic medium 
case by 

a~=~:- ig ,  (4) 
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where ~i is the wavevector of the i-th space harmonic in 
the grating, i is any integer, and/~2 is the wavevector of 
the zero-order (i= 0) space harmonic having a magni- 
tude of k2=2TC(~o)X/2/2. For the bounded grating that 
is periodic only in the x-component of direction, the 
Floquet theorem only requires 

~ .  ~ =(1, 2 -  iK). ~, (5) 

where ~ denotes a unit vector. This expression is just the 
x-component of (4). Only the form as represented by 
(5) is necessary for the present problem. However, for 
subtle reasons that will become clear in the next 
section, the Floquet requiremen~ as expressed by (4) 
will be used. This is certainly acceptable since it 
contains the necessary (5) within it. 

2. Rigorous Coupled-Wave and Modal Theories 

It is possible to formulate the planar grating diffraction 
problem depicted in Fig. 1 in an exact manner. This 
may be done with the coupled-wave approach or the 
modal approach. The modal approach is sometimes 
referred to as the Floquet, Floquet-Bloch, eigenmode, 
characteristic-mode, or coupled-mode approach. The 
coupled-wave approach is confusingly also sometimes 
called coupled-mode approach. Both the coupled- 
wave and modal approaches are altenrative methods 
of representing the fields inside the grating medium. 
In the coupled-wave representation, the fields inside 
the grating are expanded in terms of the space har- 
monics of the fields in the periodic structure. These 
space harmonics inside the grating correspond to 
diffracted orders outside of the grating. Thus, the 
partial fields inside the modulated medium are vi- 
sualized as diffracted waves that progress through the 
planar slab and couple energy back and forth between 
each other as they progress. This picture agrees rather 
well with simple physical intuition about the process of 
diffraction by a volume grating. In the coupled-wave 
approach the total field is thus expressed as 

+ c o  

E(x,z)= ~ S~(z)exp(-j~i.-i), (6) 
i = - - c o  

where i is the space harmonic index. Equation (6) has 
the general appearance of a plane wave expansion of 
diffracted waves with amplitudes S v This would be true 
if the S~'s were constants. However, since the Sis are 
not constants but are functions of z, each i does not 
correspond to a single plane wave. In general there are 
an infinite number of plane waves associated with each 
i. Si varies only in the direction perpendicular to the 
boundary. The sum of all of the i-th partial fields as 
represented by E(x, z) in (6) satisfies the wave equation. 
However, individually the partial fields do not satisfy 
the wave equation. 

In the modal representation, the fields inside the 
grating are expanded in terms of the allowable modes 
of the periodic medium. The fields are visualized as 
waveguide modes in the grating region. In the modal 
approach, the total electric field is expressed as a 
weighted summation over all possible modes, 

+ c o  

E(x,z)= ~ Cm ~m (i;) exp (--jk2m �9 r), (7) 
m = - - c o  

where m is the mode index. The function ~m(?) is 
periodic with a period equal to the grating period. 
That is ~l~m(~)=~m(~-~-Z] ). The summation includes 
both forward and backward propagating modes. The 
backward propagating modes are due to diffraction in 
the grating volume (when the grating fringes are 
slanted) and due to reflections at the z=d  boundary. 
Each individual m-th mode satisfies the wave equation 
and may be either evanescent or propagating. These 
modes in the grating are precisely analogous to modes 
in a waveguide. Each waveguide mode satisfies the 
wave equation by itself and it may be either cutoff or 
propagating. Each mode (m) consists of an infinite 
number of space harmonics (i) and each mode propa- 
gates through the medium without change. The space 
harmonics may be viewed as arising from the Fourier 
expansion of the periodic function ~bm(? ). 
The coupled-wave representation or expansion in 
terms of space harmonics, (6), and the modal repre- 
sentation or expansion in terms of modes, (7), are 
merely alternative representations of the same physical 
problem. Both approaches are complete and both are 
rigorous formulations (without approximations). 
These two approaches are thus completely equivalent 
and this will be demonstrated in Sect. 5. 

3. Rigorous Coupled-Wave Equations 

The rigorous coupled-wave equations are developed 
by starting with the field expansion in terms of space 
harmonics, (6). There are mutliple versions of the 
rigorous coupled-wave equations for the physical situ- 
ation depicted in Fig. 1 depending on the form of the 
modulation chosen (sinusoidal or cosinusoidal per- 
mittivity), the form of the Floquet condition chosen, (4) 
or (5), and the polarization chosen (H mode or E 
mode). The basic case treated in this paper is cosi- 
nusoidal permittivity and H mode polarization. Both 
forms of the Floquet condition are analyzed in this 
section. 
The Floquet condition for an infinite periodic medium, 
(4), will be treated first since this gives rise to the very 
useful, common form of the rigorous coupled-wave 
equations. In fact, only the component of the wavevec- 
tors along the boundary in the direction of periodicity 
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(x) needs to satisfy the Floquet condition. This is given 
by (5) and will be treated below. The Floquet condition 
for an infinite grating, (4), contains the required x 
dependence. The z dependence in (4) will be shown to 
be very useful in obtaining a directly solvable form of 
the coupled-wave equations. Substituting (4) into (6) 
yields 

+ m  

E(x, z) = ~ Si(z) exp [-j(/~2 - i/~). ~] 
i= --co 

+oo 

= ~ Si(z)exp{-j[(k2sinO-iKsin4))x 
i= --oo 

+ (k 2 cos0 - iK cos 4)z]}, (8) 

where 0 is the angle of refraction of the incident beam 
from region 1. Thus 0 is related to 0' through 

k 1 sin0' = k z sin0. (9) 

Substituting (1) and (8) into (3) and performing the 
indicated differentiations gives 

+~ ~e2Si(z ) 
[ ~z 2 j2(k2cosO-iKcosO) OSi(z) 

i= - m ~Z  

- [(k 2 sin0 - ig sin q~) 2 + (k 2 cos0 - iK cos ~b) 2] Si(z) 
k 2 g l  k2gl Z l )I -~ k 2 g O S i ( Z )  -~ T s i -  I(Z) "~- 

�9 exp { - j [ ( k  2 s i n 0 -  iK sin q~) x + (k 2 cos 0 

- iK cos qb)z] } : 0 .  (10) 

This equation must be satisfied for all values of the 
variables. Thus the coefficient of each exponential 
must individually be zero for nontrivial solutions. 
Using this and the definitions of k, k z, and K, (10) 
reduces to the rigorous coupled-wave equations: 

1 dzsi(z) .2 [(eo)U2cos0 icos ] dS~(z) 
J dz 

+ 2i(m-i)~ ~itz)+ e@z[Si+l(z)+Si-l(z)]=Oz . (11) 

This is an infinite set of second-order coupled 
difference-differential equations. By inspection, it is 
seen that the wave corresponding to each value of i 
(space harmonic inside the grating or diffracted order 
outside of the grating) is coupled to its adjacent (i + 1 
and i -  1) space harmonics. There is no direct coupling 
between nonadjacent orders. 
In the rigorous coupled-wave equations the quantity m 
has been defined as 

2A(go) 1/2 
m= cos(0-  q~). (12) 

The quantity m may have any value in general. For the 
case when m is an integer, (12) becomes the Bragg 

condition. However, it is important to realize that the 
Bragg condition is not specifically an input into this 
theory. The approach applies to an arbitrary angle of 
incidence and wavelength. Only if the angle of in- 
cidence and wavelength are such that m is an integer 
does Bragg incidence occur. The rigorous coupled- 
wave equations given by (11) are in a from that is 
directly solvable using a state variables approach from 
linear systems theory. This method of solution will be 
used in the next section. 
The Floquet condition as given by (5) may also be used 
in space harmonic field expansion, (6), to obtain an 
alternative set of rigorous coupled-wave equations. 
Substituting (5) into (6) yields 

+oo 

E(x,z)= ~ Si(z)exp[-j(kzx-iK~,)x] 
i= -- co 

+o~ 

= ~ Si(z)exp[-j(k2sinO-iKsin4))x]. (13) 
i= --co 

The field expansion given by (13) is the same as that in 
(8) except that the z dependent part of the exponential 
has been included in the Si(z) functions in (13). 
Substituting (1) and (13) into (3), performing the 
indicated differentiations, and setting the coefficients of 
each exponential equal to zero as before, produces 

80 1 d2Si(z)_2{[!eo)e~sin0 i s A ~ ) ] Z } s i ( z )  
2re 2 dz 2 

2nzcosqg~. , , 
el -J  71 ] ai+~tz)=O" (14) + U exp 

This set of coupled-wave equations contains no first 
derivative terms in contrast to the coupled-wave equa- 
tions given in (11). In addition, (t4) is a nonconstant 
coefficient differential equation due to the presence ofz 
in the coefficients of the S i_ ~(z) and Si+ l(z) terms. The 
equations in the form of (14) represent a linear shift- 
variant system and direct solution would be difficult. 
For the case of an unslanted grating (~b = n/2, fringes 
perpendicular to the surface), the equations become 
constant coefficient differential equations. For this 
limiting case, the equations become identical to the 
coupled-wave equations of Kong [Ref. 6, Eqs. (6a) and 
(6b)] if only two waves are retained (i=0, 1). 

4. Solution of the Rigorous Coupled-Wave Equations 

The rigorous coupled-wave equations as given by (11) 
represent a set of second-order linear differential equa- 
tions with constant coefficients. Using the methods of 
linear systems analysis [24] this differential equation 
description of this continuous system may be trans- 
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formed into a state space description and a solution 
obtained directly. By defining the state variables as 
&, ,(z) = S,(z), (15) 

dSi(z) (16) 
S2"I(Z)-- dz 

the infinite set of second-order differential equations 
(11) are transformed into two infinite sets of first- 
order differential equations: 

dS 1, i(z) _ Sa ' i(z) ' (17) 
dz 

dSz,i(z) 27~291 4~2i(i-  m) 
dz - 2 z SI'i-I(Z)-~- A2 Sl'i(z) 

2rc2e, 
22 S~,i+l(z) 

+" /(eoU~cosO icosq~o , ,  
j,~7c[- ~ 5 ] ~2'i(z)" (lS) 

Equations (17) and (18) are the state equations corre- 
sponding to the rigorous coupled-wave equations (11). 
Since these are homogeneous equations, they corres- 
pond to unforced state equations, State equations that 
are linear differential equations with constant coef- 
ficients such as these, may be solved for closed-form 
expressions for the state variables, In this case, only the 
homogeneous solution is necessary as there are no 
driving terms in these equations. The homogeneous 
solutions are 

+oo 

Sl,i(Z)= 2 CmWl, irneXp('~'mZ) (19) 
m = - ~  

for l = 1, 2. The coefficients C m are unknown constants 
to be determined from the boundary conditions. The 
quantity w~,im is an element of an eigenvector and 2 m is 
an eigenvalue. These quantities are determined as 
described below. The solution for the wave amplitudes 
(the "output equation" in linear systems terminology) 
is Si(z) = Sl,i(z). 
The constituent state equations (17) and (18) may be 
written in matrix form as 

t 

S 1 , - 2  I 

8 1 , - 1  
~ 

S1,0 

S l ,1  

~'1,2 

32, - 2 

82,o 

~'2,2 

0 0 

0 0 

�9 0 0 

0 0 

0 0 

b _  2 a 

a b_ 1 
... 0 a 

0 0 

0 0 

0 

0 

0 

0 

0 

0 
a 

bo 
a 

0 

0 0 1 0 

0 0 0 1 

0 0 ... 0 0 

0 0 0 0 

0 0 0 0 

0 0 c_ 2 0 
0 0 0 c_~ 

a 0 . .  0 0 

bt a 0 0 

a b 2 0 0 

1 

0 

0 

0 

0 

Co 
0 

0 

where a=-27~281/,~ 2, bi=4=2i( i -m) /A 2, and ci=j4rc 
[(eo)l/2cosO/2-icos(a/Al. This equation may be re- 
presented concisely as S =A S  where S and S are the 
column vectors in (20) and A is the coefficient matrix. 
The needed eigenvalues and eigenvectors are deter- 
mined from this coefficient matrix. Although A is an 
infinite matrix, results may be obtained in practice to 
an arbitrary level of accuracy with a truncated matrix. 
Each of the four submatrices is truncated to n x n. As 
the integer n increases, the calculated results rapidly 
converge to the exact results. The quantity n cor- 
responds to the total number of space harmonics 
retained in the analysis�9 This in turn means that the 
analysis includes n diffracted waves in region 1 and n 
diffracted waves in region 3. To put the four sub- 
matrices into standard form, the integers i and m are 
replaced with the new integers p and q that run from 1 
to n. For example, if an odd number of waves are 
retained symmetrically about i = 0  (the undiffracted 
transmitted wave) in the analysis, then p = i+  (n + 1)/2 
and q = m + ( n + l ) / 2 .  The 2n solutions may then be 
expressed 

2 
S,,p(Z)= Z ~, C,',,lw,,v;,',qexp(2r,qZ) (211 

r = l  q= l  

for / = 1 , 2  and p = l  to n. The eigenvalues 2,.q are 
determined by solving the determinantal equation 

IA-2,,qlI = 0 ,  (22) 

where I is the unit matrix. The eigenvector correspond- 
ing to a particular eigenvalue 2,,~ is determined by 
substituting 2n expressions (l = 1, 2 and p = 1 to n) for 
Sl, p of the form Sz,p=Bl, p;,,qexp(2r,~) into the state 
equation (20), performing the indicated differentia- 
tions, and then solving for each element of the eigen- 
vector as Wl,~,;r,q=Bl,p;,,JBl,1,;r,q using Cramer's rule 
and thus expressing each element as a ratio of 
determinants. The eigenvalues and eigenvectors for a 

0 0 IS1 - 2  

0 0 $11_I  i 

0 0 ... ! $1, o 

1 0 $1,1 

0 1 $1,2 

: (20) 
0 0 72,-2 

0 0 3 2 , -  1 

0 0 ... $2,o 

C 1 0 $2,1 

O c 2 " $2, 2 
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matrix are typically calculated numerically using a 
computer library program [25]. 

5. Equivalence of Coupled-Wave 
and Modal Representations 

The total field inside the grating may be expressed in 
coupled-wave form, (6), or in modal form, (7), depend- 
ing whether the field is expanded in terms of space 
harmonics or in terms of modes, respectively. These 
two forms are alternative representations that are 
completely equivalent. This equivalence has been dis- 
cussed previously [14, 19, 21]. It can be shown ma- 
thematically in a simple manner as follows. 

Substituting Si(z)= ~ Cmwl,imexp(.,~mZ ) into the 
r n =  - -  co 

coupled-wave expansion (8) gives 

+ c O  + c O  

E(X,Z)= Z Z C m W l , i m  
i = - - c O  111=--o0 

�9 exp { - j [ ( k  2 s i n 0 -  iK sin q~)x 

~- (k 2 cosO-- iK cosq~ +j2m) z]}. (23) 

Changing the order of the summation this may be 
rewritten as 

+ o o  + o o  

E(x,z)= ~ C m ~ wl,lmeXp[-j(k2m-iK)'r-'-], 
m = - cO ~ = - ~ (24) 

whe re  k2m = kz sin 02 + (k z cos 0 + j Z m ) s  i d e n t i f y i n g  the 
complex Fourier series and its representation of a 
periodic function 

+ c o  

w l, im exp (jig. F) = (bin(F) = ~bm(~ + Z]) (25) 
i =  --CO 

gives the modal expansion 

E(x, z) = Z Cm~m(F) exp(-j/Tzm'?) (26) 
m :  - - ~  

which is identical to (7). Thus the coupled-wave and 
modal representations are seen to be equivalent. 

6. Phase Matching and Boundary Conditions 

Each i-th field in region 1 and 3 must be phase 
matched to the i-th space harmonic field inside the 
grating. In addition, the magnitude of the fields in 
regions 1 and 3 must be such that the electromagnetic 
boundary conditions are satisfied at the two grating 
boundaries (z = 0 and z= d). 
The total electric field in region 1 is the sum of the 
incident and the backward-traveling waves. The nor- 
malized total electric field in region 1 may be expressed 
a s  

E l = e x p ( - j k ~ - ~ ) +  f R iexp( - jk t i .F  ), (27) 
i = - - cO 

where R i is the normalized amplitude of the i-th 
reflected wave in region 1 with wavevector kti- 
Likewise the normalized total electric field in region 3 
is 

E3= f T/exp[- jk3i . (~-d~)] ,  (28) 
i = --CO 

where T i is the normalized amplitude of the i-th 
transmitted wave in region 3 with wavevector k3i. 
These fields in regions 1 a~nd 3 are phased matched to 
the field in the grating, (8). Thus the x components of 
the wavevectors of the i-th wave (regions i and 3) and 
the x component of the wavevector of the i-th space 
harmonic field (region 2) must be the same. That is 

k t sin 0'i = k 2 sinO- iK sinq) = k 3 sin 0'[. (29) 

In the homogeneous regions (1 and 3) the backward- 
and forward-diffracted waves have wavevectors with 
magnitudes 

[kli[ =[ki[ a n d  [k31[ = [k3[ , (30) 

where k 3 =2zC(eni)l/2/2. Knowing the total amplitudes 
and the x components of the diffracted wavevectors, 
the z components are then determined to be 

= Ek~ - (k 2 sin 0 - iK sin (b) 2] 1/2 (31) 

and 

k3i'~= Ilk312-(k3i'~)211/2 
-- [k~ - (k z sinO- iK sin q)) 2] 1/2 (32) 

These quantities are either positive real (propagating 
wave) or negative imaginary (evanescent wave). 
Using the phase matching conditions (29), (31), and 
(32), the total fields in regions 1 and 3, (27) and (28), 
may be rewritten 

E 1 = exp { - jEk 1(sin O;x + cos 0'z)] } 

+ f Riexp[-j{(k2sinO-iKsin4))x 
i = --oo 

- Ek~ - (k z sin 0 -  ig sin qS) 2] i/z z}] (33) 

and 

E3= L Tiexp{-j{(k2sinO-iKsind?)x 
i =  - - c o  

+ [k i -  (k 2 s i n 0 - i K  sin@)2]t/2(z - d)}}. (34) 

Electromagnetic boundary conditions require that the 
tangential electric and tangential magnetic fields be 
continuous across the two boundaries (z = 0 and z = d). 
For the H mode polarization described in this paper, 
the electric field only has a component in the y 
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direction and so it is the tangential electric field 
directly. The magnetic field intensity, however, must 
be obtained through the Maxwell equation Vx/T= 
-OB/&. The tangential component of H is in the x di- 
rection and is thus given by H~ = ( - j / o ) # ) ~ ? E j & .  For 
each value of i, the four quantities to be matched and 
the resulting boundary condition are: 

1) tangential E at z = O :  

40 + R~ = S~(0), (35) 

2) tangential H at z = O :  

j [k~  - (k 2 sin 0 - i g  sin ~b) 2] 1/2(R i - 6io) = dSi(O) dz ' (36) 

3) tangential E at z = d :  

T~ = Si(d ) exp [ - j ( k  2 cos 0 - i K  cos ~b)d], (37) 

4) tangential H at z = d: 

- j [ k ~  - (k a sin 0 -  i K  sin qS) 231/2 ~ 

[~tS,(d) - iK  cos 4) s,(d)] = [-)-;-z - J ( G  cos0 

�9 e xp [ - j ( k  e c o s 0 -  iK  cos ~)d],  (38) 

where ~5~o is the Kronecker delta function. 

7. Diffraction Efficiency 

The quantity commonly measured in grating diffrac- 
tion is the diffraction efficiency. It is defined as the 
diffracted intensity of a particular order divided by the 
input intensity. In the above formulation, the incident 
plane wave amplitude was normalized to unity. Thus 
the diffraction efficiencies in regions 1 and 3 are 

DEli --- Re {(~:1 ~' z)/(kl o" z)} R i R *  

--- Re{{1 - [sin 0 ' -  i2s in fb / (q) l /2A]2}  i/2/ 

cosO'} RiR~' (39) 

and 

DE3i = Re {(k31" ~)/(kl o" ~)} T/T• 

= Re { { ( ~ ; i i J e i )  - -  [sin 0 ' -  i2 sin ~b/(@ 1/2A] 2} 1/2/ 

cos 0'} T~T*. (40) 

The real part of the ratio of the propagation constants 
occurs when the time-average power-flow density is 
obtained by taking the real part of the complex 
Poynting vector. For an unslanted grating (~b=rc/2) 
with the same medium on both sides (e I = era) , the real 
part of the ratio of the propagation constants is just 
the usual ratio of the cosine of the diffraction angle for 
the i-th diffracted wave to the cosine of the incidence 
angle. 

If n values of i are retained in the analysis, then there 
will be n forward-diffracted waves (n values of T~) 
and n backward-diffracted waves (n values of Ri). 
Correspondingly, there will be 2n unknown values of 
C m. This is because the coefficient matrix in (20) is a 
2n x 2n matrix and therefore has 2n eigenvalues and 
thus there are 2n unknown values of C m. Also this may 
be viewed as being due to the n coupled-wave equa- 
tions, each being a second-order differential equation, 
and thus there are 2n roots or eigenvalues and 2n 
unknown constants C m to be determined from the 
boundary conditions. Therefore, the total number of 
unknowns is 4n. Substituting Si(z), as given by (15) and 
(19), into the equations for the boundary conditions 
(35)-(38) produces n linear equations containing the 4n 
unknowns. An efficient procedure to solve these equa- 
tions is to eliminate Ri and T~ from these equations and 
to solve the resulting 2n equations for the 2n values of 
C m using a technique such as Gauss elimination. Then 
the n values of R i and n values of T~ may be determined 
from (35) and (37) respectively. Finally, the diffraction 
efficiencies DEti and DEa~ are calculated using (39) 
and (40). For phase gratings the input power is con- 
served and thus the sum of all of the efficiencies for the 
propagating waves is unity. That is, 

(DEll + DEal) = 1. (41) 
i 

Equation (41) may be used to verify the convergence of 
the numerical calculations. 

8. Approximate Theories 

The vast majority of the papers on grating diffraction 
theory have dealt with approximate theories. There are 
a large number of possible approximations and as- 
sumptions that can be made. These generally lead to 
enormous simplifications in the analyses�9 In some 
cases, these simplifications allow analytic solutions to 
be obtained�9 A.number of famous analytic expressions 
occur for special limiting cases. 
In this section, a large number of planar grating 
diffraction theories are classified in terms of the funda- 
mental assumptions : 1) neglect of higher-order waves, 
2) neglect of second derivatives of the field amplitudes, 
3) neglect of boundary effects, 4) neglect of dephasing 
from the Bragg condition, and 5) the small grating 
modulation approximation. In addition to these as- 
sumptions, a number of other approximations such as 
normal incidence, unslanted gratings, and large grating 
period compared to a wavelength, may also be made. 
However, in this section, only the fundamental as- 
sumptions enumerated above are treated. Thus all of 
the approximate theories are presented in their general 
form allowing for arbitrary angle of incidence (0'), 
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arbitrary grating slant angle (q~), and arbitrary grating 
period (A). The various further reductions can then be 
easily formulated, if desired, from these general forms 
of the approximate theories. 
In region 1 of Fig. 1, backward-traveling waves exist. 
In general, these waves are produced both by diffrac- 
tion from within the grating volume and by boundary 
effects (diffraction and reflection from the periodic 
boundaries at z = 0 and z = d). These physical processes 
produce a spectrum of plane waves traveling back into 
region 1 (z<0). For the general planar grating of 
Fig. 1, neglecting the second derivatives of the field 
amplitudes in the wave equation reduces the number 
of waves in the analysis from 2n to n. The bulk 
diffracted orders are retained and the boundary- 
produced waves are eliminated. Thus for a planar 
grating, the neglect of second derivatives and the 
neglect of boundary effects are absolutely linked to- 
gether. When these assumptions are made, the result- 
ing first-order coupled-wave analyses have the ampli-. 
tudes of the diffracted waves calculated inside the 
modulated region. Then the amplitudes T~ of the 
forward-diffracted output waves are obtained (approx- 
imately) by arguing that they are equal to Si(d), the 
space harmonic field amplitude at a distance d from 
the input surface z = 0. Likewise for those values of i 
that represent backward-diffracted waves, the ampli- 
tudes R i are estimated to be Si(0). However, in the 
physical problem being analyzed, there are no boun- 
daries at z = 0  and z=d. These planes just represent 
reference locations. There are no reflected or diffracted 
waves resulting from these planes and thus there are no 
physical boundaries at these locations! Thus, t he  
assumptions of neglecting the second derivatives of 
field amplitudes and neglecting boundary effects have 
transformed the problem into a filled-space problem (a 
grating filling all space) with imaginary boundaries at 
z = 0 and z -- d that are used only to obtain an approxi- 
mate mathematical formulation of the problem. The 
first-order theory approaches are not capable of solv- 
ing the problem of the general planar slab grating 
bounded by two media different from the grating 
medium. These two linked assumptions therefore, un- 
mistakably imply the filled-space problem. After the 
filled-space problem is solved, then it is assumed that 
the grating terminates at z = 0  and z=d and, as a 
result, that Tz~ S~(d) for the forward-diffracted waves 
and Ri~  Si(0) for the backward-diffracted waves. This 
is obviously only an approximation to the actual 
situation. 
Another consequence of neglecting second derivatives 
is the exclusion of some propagating waves. In first- 
order theory, only half of the waves can be retained in 
the analysis. That is, only one set of i values (as 
opposed to two sets) is included. For a genral slanted 

grating, some of these waves may be forward-diffracted 
and some of them may be backward-diffracted. From 
(8), if k 2 c o s 0 -  iK cosq5 is positive, the wave is forward- 
diffracted and if negative, it is backward-diffracted. 
For forward-diffracted waves, the boundary condition 
used must be Si(0)= 0. For backward-diffracted waves, 
the appropriate boundary condition is Si(d)--O. The 
second set of waves (set of i values) are phase matched 
to these waves. This second set of waves is, of course, 
neglected in any first order analysis. For the example 
depicted in Fig. 2, the backward-diffracted waves for 
-l_<i_< +4  would all be neglected in first-order 
theory. The diffraction efficiencies of these backward- 
difflacted waves are arbitrarily set equal to zero. For 
the case of a slanted-fringe grating, the power in the 
neglected phase-matched waves has been shown to be 
very significant in some cases [8]. Thus the errors 
introduced by using first order theory can be particu- 
larly significant for slant angles away from q5 = 0 and 

=~/2. 
Still another consequence of neglecting second de- 
rivatives is the exclusion of evanescent waves from the 
analysis. In first order theory, the filled-space nature of 
the grating being analyzed, causes one complete set of 
diffracted orders (i) to exist inside the grating, since all 
of the Si(z)'s exist there. These calculated values of Si(z) 
may have wavevectors with components either in the 
+ or - z directions. However, many of the wavevec- 
tors of the Si(z)'s cannot be phased matched to plane 
waves outside of the grating (regions 1 and 3). This 
may be seen from Fig. 2. For this example, the values 
- 1 < - i N  +4  correspond to propagating plane waves 
in regions 1 and 3. The values i < - 2  and i>  +5 
correspond to evanescent waves in region 1 and 3. 
However, in first order analysis (without second de- 
rivatives) all values of i are treated as representing 
propagating waves. This is obviously not true. 
Nevertheless, diffraction efficiencies can be calculated 
for these evanescent waves as though they were propa- 
gating. These predicted efficiencies are clearly incorrect 
since they should be zero. If the grating period is much 
larger than a wavelength (A >> 2), then there will be a 
large number of propagating waves and the effect of 
excluding evanescent waves would be reduced. 
Therefore, it is concluded that all first-order theories 
inherently contaip: 1)the approximate method for 
calculating diffracted amplitudes described above, 
2) neglect of phase-matched waves, and 3) neglect of 
evanescent waves. 
A depiction of various planar grating diffraction theo- 
ries and their interrelationships in terms of fundamen- 
tal assumptions is shown in Fig. 3. Most of the litera- 
ture on planar grating diffraction theory can be con- 
nected with a particular block in this diagram. The 
importance of the various assumptions cannot always 
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be isolated. For example, retaining only two waves 
(i = 0, 1) and the small modulation approximation can 
be linked for the case of a sufficiently "thick" grating. 

8.t. Two-Wave Modal Theory 

If only the zero and first order waves (i=0, 1) are 
retained and all higher-order waves are neglected, a 
two-wave regime is being assumed. There are actually 
a total of four waves in this analysis since there are two 
more waves phased matched to these. Modal theory 
solutions in the two-wave regime were first obtained 
by Bergstein and Kermisch [13] with more recent 
results being contributed by Lederer and Langbein 
[26], and Russell [191. In this approch, the standard 
modal expansion (7) is used to represent the fields in 
the grating. However, in the two-wave case only the 
first two Fourier components (i=0, 1) of the periodic 
function ~bm(7 ) are retained in the analysis, (25). 
Comparison of two-wave modal theory with exact 
rigorous theory [8] has shown that this can be valid 
near Bragg incidence in reflection gratings (backward- 
diffracted waves dominate). Comparison data are 
shown in [Ref. 8, Fig. 9]. 

8.2. Two-Wave Second-Order Coupled-Wave Theory 

Two-wave second-order coupled-wave theory and 
two-wave modal theory represent exactly the same 
approximation. Both representations include second 
derivatives of field amplitudes and boundary effects. 
Both theories retain only the transmitted wave (i=0) 
and the fundamental diffracted wave (i= 1) and their 
phased matched waves and neglect higher-order 
waves. This approximate theory has been used by Kong 
[6]. Additional approximations in this theory have 
been made by Kessler and Kowarschik [27-29], and by 
Jaaskelainen et al. [30]. The two governing equations 
may be obtained directly from the rigorous coupled- 
wave equations (11) by keeping only terms in So and Sa 
and neglecting all other field amplitudes. The resulting 
two equations from (11) are: 

1 d2So(z) 2(/;0) 1/2c0s0 dSo(z) ~1 
2n 2 dz 2 - J  ~z2 dz + ~ S l ( z ) = 0 ,  (42) 

1 d2Sl(z) .2[( 0) /2cos0 cosq ]dSl(z) 
dz 2 -J l A-I 

2(m- 1) e I (43) 
+ A2 

Kong [6] has presented analytical solutions for the 
two-wave second-order coupled-wave theory ex- 
pressed in the form of two transmission and two 
reflection coefficients for the unslanted-fringe planar 
slab grating. 

8.3. Multiwave Coupled-Wave Theory 

Multiwave first-order coupled-wave theory may also 
be developed directly from the rigorous coupled-wave 
equations. (11). In this approach higher-order waves 
are retained (hence "multiwave"). The second de- 
rivatives of the field amplitudes (and thus boundary 
effects) are neglected. The resulting multiwave 
coupled-wave equations from (11) are: 

.2 I(e0)t/2 cos0 icos(a]dS~(z) 2 i (m- i )  
-5 j Uz + A 2 S,(z) 

e l 
+ ~ [Si + 1 (z) + S~_t (z)] = 0. (44) 

For the case of an unslanted transmission grating 
(4 = n/2) and normal incidence (0 = 0, m = 0), the mul- 
tiwave coupled-wave equations first appeared in a 
1936 paper by Raman and Nath [-31] for a sinusoidal 
(rather than cosinusoidal) grating. This paper was the 
fourth in a series of five papers by Raman and Nath 
[31-35] on the diffraction of light by sound waves. The 
first three papers [-32-34] from the basis of the 
"Raman-Nath theory" described below. This sim- 
plified multiwave coupled-wave equation was referred 
to by Nath [36] as being due to Nath 1-37]. In this 1936 
paper, Nath [37] obtained a very slowly converging 
series solution for the multi-wave coupled-wave 
difference-differential equations. An alternative series 
solution was later presented by Berry [38]. This series 
solution is in terms of Bessel functions and is also very 
slowly converging. Numerical solutions of the mul- 
tiwave coupled-wave equations (also for acousto-optic 
interaction studies) have been obtained by Klein and 
Cook [3]. 
The multiwave coupled-wave equations have been 
generalized to include loss and gratings of arbitrary 
nonsinusoidal profile by Magnusson and Gaylord [7]. 
In that paper, numerical solutions were obtained for 
unslanted transmission gratings using a Runge-Kutta 
algorithm to solve the first-order system of coupled- 
wave equations. Diffraction efficiency results for si- 
nusoidal, square-wave, and sawtooth phase gratings at 
first, second, and third Bragg incidence are presented 
there. 
Comparison of diffraction efficiency results from mul- 
tiwave first-order coupled-wave theory with exact ri- 
gorous theory has shown that this theory without 
second derivatives gives good results in transmission 
gratings (forward-diffraction waves dominate) when 
the grating modulation is small. Comparison data are 
shown in [Ref. 8, Figs. 7 and 8]. 

8.4. 71vo-Wave First-Order Coupled-Wave Theory 

If higher-order waves (i# 0, 1) and second derivatives 
of field amplitudes (and thus boundary effects) are both 
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neglected, the rigorous coupled-wave equations(l l) 
reduce to two-wave first-order coupled-wave theory. 
For general slanted gratings at arbitrary incidence the 
two governing equations are: 

7C81 
c o s 0 ~  + j  2(%~22 Sl(z ) =0,  (45) 

cos 0 -  ~- / dSt(z) ~,t(m- 1) 
A(eo) l/z) dz +J Az(%) x/2 Sl(z) 

~81 
+j  2(eo~/2 So(z ) = 0. (46) 

Two-wave first-order coupled-wave theory was ap- 
plied to acousto-optics by Phariseau [2]. It was first 
applied to holography by Kogelnik [4]. His thorough 
1969 paper [4] is now very widely referenced. As a 
result, this theory is commonly called "Kogelnik 
theory" and this is noted in Fig. 3. The substantial 
recognition received by Kogelnik's paper [4] is due in 
part to the comprehensive coverage of 1) phase, ab- 
sorption, and mixed gratings; 2)on-Bragg and off- 
Bragg incidence; 3) pure transmission (r = ~/2), pure 
reflection (r = 0), and general slanted fringe gratings; 
and 4) both H-mode and E-mode poIarization. 
From (8), if kzcosO-Kcos r is positive, the single 
diffracted wave in this analysis is forward-diffracted 
and the grating is called a transmission grating. If 
k 2 cos 0 -  K cos q$ is negative, the single diffracted wave 
is backward-diffracted and the grating is called a 
reflection grating. For the forward-diffracted case, the 
boundary condition used is St(0 ) = 0. In the backward- 
diffracted case, the boundary condition used is 
St(d)=0. Due to the first-order nature of this theory, 
some phase matched waves will be neglected. In the 
transmission grating case, for example, the two 
backward-traveling waves (that are phase matched to 
the zero-order transmitted wave and the fundamental 
diffracted wave) are neglected. 
For the special case of a phase grating with unslanted 
fringes (r = re/2) and incidence at the first Bragg angle 
(m= 1), the first-order diffracted amplitude from (45) 
and (46) is given by [2, 4] 

�9 / ~ z  
S l(z) = - j  sm l- ~ . . . .  , (47) 

\2@0) t ,t cos 0 ) 

where z is the distance into the grating at which the 
amplitude is determined. This well-known expression 
predicts a diffraction efficiency [DE=S~(d)S*(d) for 
this case] that is sTnusoidal in modulation and has a 
maximum value of 100 %. Although the two-wave first- 
order coupled-wave theory neglects higher-order dif- 
fracted waves and second derivatives of field ampli- 
tudes (and thus also boundary effects), it nevertheless 
contains many of the basic features of the diffraction 

process in an extended grating. This theory has been 
sucessfully extended to numerous other cases including 
finite beams [39, 40], finite and nonplanar gratings 
[41-43], and attenuated gratings [29, 44-46]. When 
grating diffraction is described by the two-wave result, 
(47), it is often referred to as "Bragg regime" diffrac- 
tion. Incidence at the Bragg angle is essential in "Bragg 
regime" diffraction whereas in "Raman Nath regime" 
diffraction described below it is not. Criteria for 
<'Bragg regime" behavior are given in [47]. 
For the basic case of a uniform grating and plane wave, 
a comparison of diffraction efficiency results from two- 
wave first-order coupled-wave theory with exact ri- 
gorous theory is presented in [8] for a series of grating 
slant angles. When transmission grating behavior do- 
minates, the error in two-wave coupled-wave theory, is 
due primarily to the neglect of higher-order waves in 
the theory. Conversely, when reflection grating be- 
havior dominates, the error is primarily due to the 
neglect of second derivatives and boundary effects. 

8.5. Raman-Nath Theory 

The theory of Raman and Nath [32-35] may also be 
obtained directly from the rigorous coupled-wave 
equations. If second derivatives of the field amplitudes 
and dephasing from the Bragg condition are both 
neglected, the rigorous coupled-wave equations (11) 
reduce to the Raman-Nath diffraction equations: 

.2 [(80)1/2C0S0 icosr 

81 
+ ~[&+, (z )+S,_  l(Z)] =0,  (48) 

where a general angle of incidence and grating slant 
angle have been retained. The Si term in (11) has been 
neglected. For the i-th diffracted order, this term is 
zero for the m-th Bragg incidence, (12), when i=m. For 
an arbitrary angle of incidence, each diffracted order 
will be dephased by varying amounts from their 
corresponding Bragg conditions. This in turn reduces 
the synchronism between the input wave and that 
diffracted order. The result is less coupling from the 
input to that order. The Raman-Nath theory therefore, 
treats all diffracted orders as though the Bragg con- 
ditions for all them were simultaneously satisfield. 
For the important case of an unslanted fringe trans- 
mission grating (r (48) takes the form of a 
recurrence relation satisfied by Bessel functions�9 The 
solution is 

i 7~81Z 

for boundary conditions S0(0 ) = 1 and Si(0 ) =0 (i=~O) 
where Ji is an integer-order Bessel function of the 
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first kind. Equation (49) is the famous Bessel func- 
tion expression of Raman and Nath. It predicts 
maximum diffraction efficiencies of DE_+ 1 = 33.8 %, 
DE_+z=23.6% , DE_+3=18.8%, and so forth. When 
grating diffraction behavior may be approximated by 
(49), it is referred to as "Raman-Nath regime" diffrac- 
tion. This result, (49), has been extensively used to 
predict the light intensities diffracted by sound waves 
[38, 48]. Criteria for "Raman-Nath regime" diffraction 
are given in [49]. Raman-Nath theory has been 
extended to describe nonsinusoidal phase gratings 
[50-52]. 

8.6. Amplitude Transmittance Theory 

For gratings, the amplitude transmittance approach is 
closely related to Raman-Nath diffraction theory. The 
amplitude transmittance approach is widely used in 
optics [-53-54] and may be applied to slabs, lenses, 
apertures, and general two-dimensional objects as well 
as gratings. The amplitude transmittance is defined as 
the ratio of the field amplitude over the output plane to 
the field amplitude incident on the input plane. The 
amplitude transmittance function in general is complex. 
It may be applied to gratings with unslanted fringes. 
Both amplitude gratings [53-57] and phase gratings 
[,-51-56] have been treated in the literature using the 
amplitude transmittance approach. 
For a phase grating with periodicity in the x direction, 
the amplitude transmittance function is 

{ 2rc['5(x)]l/2z~ 
z (x ' z )=expl -J  2cos0 ) '  (50) 

where z is the grating thickness and n(x)= [s(x)] 1/2 is 
the periodic refractive index. Since the transmittance 
function is also periodic in x, it may be expanded in a 
complex Fourier series. Further, because the exponen- 
tials in this series are in the form of an expansion of the 
diffracted plane waves, then the Fourier coefficients are 
the diffracted wave amplitudes. The Fourier series 
expansion may thus be written 

"c(x, z) = ~ Si(z) exp(jigx), (51) 
i 

where S~ represents the amplitude of the i-th diffracted 
order. By definition, the coefficients of the Fourier 
series may be calculated from 

1A (-j2~[~(x)]~/2Zlexp(-jiKx)dx (52) Si(z) = ~ [ exp 
\ xcosv / 

Thus the diffracted amplitudes may be determined 
directly knowing 5(x) by integrating (52). Results for 
sinusoidal, square-wave, sawtooth, triangular, and 
rectangular refractive-index profiles are given in 
[51]. 

For the unslanted-fringe (co)sinusoidal-permittivity 
transmission grating, the corresponding index of re- 
fraction is 

n(x) =- [5(x)] 1/2 = (% + el cosKx)l/2 (53) 

which may be expanded in a Fourier cosine series as 

[e(x)] 1/2 = [5(x)]U2 + ~ [e(x)]]/2 cos(hKx) (54) 
h = l  

with Fourier harmonic amplitudes given by 

2 A 
[e(x)]]/2 = S j (5 o + 51 cosKx) 1/2 cos(hgx)dx. (55) 

/ J ' 0  

The average value of the refractive index may be 
expressed concisely as 

no(X ) ~--- [ e ( X ) ]  1 / 2  -~- (2/re) (~ o + 51) 1/2 E(r z/X), (56) 

where E(~, ~/2) is the complete elliptic integral of the 
second kind and ~-251/(e o +51). Clearly, the case of a 
sinusoidal permittivity (or dielectric constant) being 
treated throughout this paper is not the same as a 
sinusoidal refractive-index grating. The index of re- 
fraction corresponding to sinusoidal permittivity has 
higher spatial frequency harmonics (h > 1) in addition 
to a fundamental sinusoidal component (h=l)  as 
represented by (54). However, for the case of suf- 
ficiently small modulation, a sinusoidal permittivity 
produces nearly a sinusoidal index of refraction. In the 
limit of small modulation (51 approaches zero), (55) 
and (56) yield 

[5(x)]0 ~/2 ~- 5o, (57) 

[5(x)]  I/2 -~ 51/2(5o) 1/2 , (58) 

[5(x)]~/2, [5(x)]~/2,... - 0 .  (59) 

This analysis is important in that it now allows the 
Raman-Nath theory and amplitude transmittance 
theory to be interrelated. The result is that although 
(52) was obtained using the amplitude transmittance 
approach, it is also a solution of the Raman-Nath 
difference-differential equation (48) for unslanted grat- 
ings in the limit of small modulation. This may be 
shown by direct substitution of S i as given by (52) into 
the Raman-Nath diffraction equation (48). Thus, for a 
cosinusoidal refractive-index profile, the integral in (52) 
when evaluated gives the Bessel function result (49). 
This may be accomplished using the identity 

+ c o  

exp(-jbcosc~)~ ~ (-j)iji(b)exp(jia) (60) 
i =  --co 

and the orthogonality relationship 

• i exp(j lKx) exp( - j  iKx)dx = (~u, (61) 
Ao 
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where fill is the Kronecker delta. Therefore, as depicted 
in Fig. 3, it has been shown that Raman-Nath theory 
and amplitude transmittance theory are equivalent in 
the limit of small grating modulation. This is true in 
general for unslanted gratings regardless of the grating 
profile (squarewave, sawtooth, etc). 

9. Discussion and Conclusions 

Theories describing the diffraction of a plane elec- 
tromagnetic wave incident with arbitrary wavelength 
and angle of incidence upon a slanted fringe planar 
sinusoidal permittivity grating have been reviewed. 
For simplicity the analysis has been restricted to H- 
mode polarization (electric field perpendicular to plane 
of incidence). Exact formulations without approxi- 
mations (rigorous coupled-wave analysis and rigorous 
modal analysis) have been develeped and shown to be 
mathematically equivalent. Rigorous coupled-wave 
equations have been developed in alternative forms, 
(1t) and (t4), ai~d their usefulness discussed. The 
solution of the rigorous coupled-wave equations (11) in 
terms of state variables has been presented in detail 
along with the phase matching and boundary con- 
ditions necessary to determine the diffracted ampli- 
tudes outside of the grating. 
These rigorous theories have been shown to reduce to 
the approximate theories: 1) two-wave modal theory, 
2) two-wave second-order coupled-wave theory, 
3) multiwave first-order coupled-wave theory, 4) two- 
wave first-order coupled-wave theory (Kogelnik 
theory), 5)Raman-Nath theory, and 6)amplitude 
transmittance theory in the appropriate limits. The 
assumptions associated with each of these approxi- 
mate theories have been explicitly presented. 
The rigorous theories presented in this paper (and thus 
their approximate versions) are based on the Floquet 
theorem. As such, they require a truly periodic grating 
(an infinite number of periods). These theories may be 
applied in the angular limit as the slanted fringes of a 
general grating approach being parallel to the surface 
(~b approaches zero). However, for exact parallelism 
with the surface (~b =0), the grating is no longer strictly 
periodic and a continuum of solutions is possible 
depending on the number of periods, the starting 
conditions, and the ending conditions of the grating. 
This pure reflection grating case can be analyzed 
without approximation using a rigorous chain-matrix 
method of analysis. This is discussed in [58J. 
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