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Abstract. In this paper we review theoretical and experimental studies on optically pumped 
496 gin CHaF DFB lasers of different configurations, including grazing-incidence arrange- 
ment and phase matching by a gap in the periodic structure. These configurations combine 
the simple tuning mechanism of grazing-incidence systems with the high frequency 
selectivity of DFB. Our theoretical considerations based on coupled-wave theory are 
concerned with the dispersion relations and resonance conditions of standard and phase- 
matched DFB and grazing-incidence gas lasers. We have succeeded in calculating the 
relevant TM coupling coefficients for lasers with rectangular periodic waveguides. For laser 
cavities with various continuous gratings we have measured the resonant heights and 
tuning angles of the laser oscillations of first- and second-order DFB. We have found good 
agreement with theoretical resonance conditions. In order to improve the mode selectivity 
and to attain single longitudinal mode operation, which is a requirement for semiconductor 
lasers in many applications, we have introduced variable gaps in the center of the gratings. 
These provide phase matching and gap modes. We have compared the measured gap modes 
with our theory and found agreement in specific cases, where the phase-matched cavity 
implies single-mode laser operation. Our results on standard and phase-matched DFB 
cavities promise an improvement of the performance of phase-matched semiconductor 
lasers with respect to small bandwidth and optimized output power. 

PACS: 42.60B, 42.60D, 42.80F, 42.80L 

1. Introduction 

1.1. Grazing-Incidence Dye Lasers 

Gratings at grazing-incidence in pulsed dye lasers were 
first introdieed by Shoshan et al. [-1], Littman [-2, 3], 
and Metcalf [3]. The goals of this new cavity design 
was simplicity and narrow-band operation without 
intracavity beam expander [4]. Grazing-incidence was 
chosen in order to illuminate the full width of the 
diffraction grating which is required for narrow-band 
operation. Figure 1 shows a schematic view of the 
cavity design. The cavity is formed by a grating and a 
tuning mirror. The output mirror is either partially [3] 
or totally [-1] reflecting. In the latter case, the zero- 
order reflection from the grating is used for output 
coupling. Later, the grazing-incidence cavity was 

modified by Saikan [5] who introduced a resonant 
mirror instead of the full reflector, and by Dinev et al. 
[-6, 7] with the aid of a double grazing-incidence 
arrangement. Recently, the grazing-incidence arrange- 
ment was further improved by Lin and Littman [-8], 
Littman [9], and McNicholl and Metcalf [10]. They 
proposed a synchronous cavity mode and feedback 
wavelength scanning in grazing-incidence lasers. 

1.2. Distributed and Helical Feedback Lasers 

Distributed Feedback (DFB) was first incorporated in 
dye lasers [11, 12]. In DFB lasers the conventional 
resonator mirrors are replaced by a periodic structure, 
which provides a frequency selective feedback related 
to the Bragg effect. Later, Nakamura et al. [13] 
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realized DFB in a semiconductor laser. Laser diodes 
with periodic DFB structures as well as with dis- 
tributed Bragg reflectors (DBR) have been extensively 
studied [14] because of their frequency selectivity. An 
important feature of DFB and DBR semiconductor 
lasers is the compatibility with the planar fabrication 
process. First operation of a DFB gas laser was finally 
achieved in 1979 and subsequently studied in detail 
[15-18]. This DFB gas laser is an optically pumped 
496 gm CH3F laser [19] equipped with a periodically 
modulated waveguide cavity. 

The first theory on DFB lasers presented by 
Kogelnik and Shank [20] is based on the coupled- 
mode theory of an active medium of finite length with 
weakly modulated periodic index and/or gain. In the 
past years the theory on DFB lasers has been consider- 
ably improved by Gnepf and Kneubfihl [21-23], who 
also included strong index, gain and combined 
periodic modulations. 

Recently, Preiswerk et al. [24-26] performed an 
extensive group theoretical and experimental study on 
distributed and helical feedback in lasers. Thus, they 
succeeded in the operation of the first helical feedback 
(HFB) laser, an optically pumped 496 gm CH3 F laser 
with a helical waveguide. 

With the intention to remove the mode degeneracy 
of conventional DFB lasers by introducing a gap in the 
periodic structure, Shubert [27] developed a theory for 
DFB lasers with nonuniform gain and coupling. A 
similar study was made by Haus and Shank [28] by 
introduction of an antisymmetric taper of the coupling 
coefficient. In the USSR calculations on fields and 
transmission properties of helical and linear periodic 
corrugated metal waveguides were carried out by 
Kovalev et al. [29], Denisov and Reznikov [30], and 
Bratman et al. [31] on the basis of the perturbation 
theory developed by Katsenelenbaum [32]. These 
authors also proposed corrugated metal waveguides 
with a gap in the middle of the corrugation. Kim and 
Fonstad [33] presented theoretical and experimental 
considerations on narrowband optical thin-film filters 
with integrated gap. Later, Sekartedjo et al. [34] 
reported on a DBR semiconductor laser with phase 
adjustement by a gap in the corrugation. Recently, a 
new design of a DBR laser has been proposed in order 
to favor the gap mode by a high- and a low-reflecting 
end of the cavity [35]. In addition, an optimized 
distributed feedback laser in the 1.5 gm wavelength 
region was devised by McCall and Platzman [36]. 

1.3. Grazing-Incidence Gas Lasers 

The first optically pumped DFB gas laser was tuned by 
a variation of the groove spacing. This was realized by 
a temperature variation of the corrugated waveguide 

[15-17]. In order to simplify the tuning mechanism of 
this type of lasers, we have developed a grazing- 
incidence gas laser as modification of the DFB gas 
laser [37-43]. In order to incorporate the grazing- 
incidence arrangement in gas lasers working at far- 
infrared (FIR) wavelengths, several modifications of 
the grazing-incidence dye laser scheme had to be 
worked out. First of all, a waveguide configuration had 
to be introduced in order to eliminate diffraction 
losses. Furthermore, efficient feedback was only at- 
tained by a small separation of the order of a few FIR 
wavelengths between grating and tuning mirror. This 
implies Fresnel instead of Fraunhofer diffraction. 
Because of the well-known difficulties with the Fresnel 
diffraction formalism, we have replaced it by a theory 
including waveguiding and DFB. 

The theory of standard and phase-matched DFB 
and grazing-incidence gas lasers is presented in 
Sects. 2-4. In Sect. 2 we discuss the coupled-wave 
theory of DFB, the characteristics of wedged wave- 
guides and the evaluation of coupling coefficients of 
corrugated metallic waveguides of rectangular cross 
section. These three items are the prerequisite for an 
understanding of the basic properties of DFB and 
grazing-incidence gas lasers. Their dispersion relations 
and resonance conditions are elucidated in Sect. 3 with 
the assumption, that the laser cavities include only 
continuous gratings which do not provide phase 
matching. The resonance condition for lasers with 
phase matching by a gap in the center of the grating is 
the topic of Sect. 4. 

Design and operation of the first standard and 
phase-matched grazing-incidence DFB gas laser are 
described in Sect. 5, while Sect. 6 presents the res- 
onances measured with three different continuous 
gratings which exhibit first- as well as second-order 
DFB. Section 7 is devoted to the first-order DFB 
resonances in the bandgap, which have been observed 
when a variable gap was introduced in the center of the 
cavity gratings. Finally, we summarize in Sect. 8 our 
conclusions drawn from theory and experiments with 
the standard and phase-matched DFB and grazing- 
incidence gas lasers. 

2. Perturbation Theory 

2.1. General DFB Theory 

Theories for DFB lasers are concerned with the cal- 
culation of dispersion relations, resonance frequen- 
cies, threshold gains, and DFB mode couplings. 
These properties can be derived from the basic wave 
equation of the amplitude E(z) of the oscillating electric 
field 

E(z, t) = E(z) exp(+ loot) (1) 
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as a function of the position z in the DFB structure 
[203 

d2E(z) + K2(z) E(z) = d2E(z) 
dz 2 dz ~ + V(z) E(z) = 0. (2) 

The wavenumber K(z) and the "potential" V(z) are 
periodic 

K(z) = K(z + L) = K(z + re~rio), flo = 7r/L. (3) 

L denotes the period of the DFB structure, and flo the 
Bragg wavenumber. For a periodic structure without 
loss or gain, K(z) as well as V(z) are real. Consequently, 
(2) corresponds to the Schrrdinger equation of an 
electron in a one-dimensional periodic potential. On 
the other hand, K(z) and V(z) are complex for an active 
DFB structure. In this case K(z) is usually approx- 
imated by 

K(z) = c-  icon(z) + i~(z) = K(z + L), (4) 

where the periodic gain ~(z) and the periodic effective 
refractive index n(z) are assumed to be independent of 
the angular frequency co. 

With the complex wavenumber (4) Eq. (2) repres- 
ents a Hill differential equation [4446]. While the 
solutions of Hill equations with real periodic potentials 
V(z) are well established, little is known about the 
solutions of Hill equations with complex periodic 
potentials. Recently, Gnepf and Kneubfihl [21, 22] 
presented a comprehensive theory on DFB lasers 
based on the complex Hill equation, which includes 
weak as well as strong periodic index, gain and 
combined modulations. 

2.2. Coupled-Wave Theory 

Coupled-wave theory was first applied to DFB lasers 
by Kogelnik and Shank [20]. Subsequently, this 
theory has been refined and extended by several 
authors, e.g. by Marcuse [47, 48], Kogelnik et al. [49], 
Wang [50-53], Yariv [54, 55], and Gover [55]. 

For TEM waves in dielectric bulk media [20] or 
guided TE waves in slab-type dielectric waveguides 
[47, 56] the electric field E(z, t) can be represented as a 
summation over all the discrete modes which may 
propagate in the unperturbed waveguide. In coupled- 
wave theory the considerations are often restricted to a 
combination of two counterpropagating guided modes 
characterized by the propagation constants fl +_. There- 
fore, we assume that for TE waves, the amplitude E(z) 
of the electric field determined by the wave equation (2) 
can be split into two counterpropagating waves ac- 
cording to Shubert [27] 

E(z)=c +(z)exp(- i f l+z)+c_(z)exp(- i f l_z) ,  (5) 

where c+ are the amplitudes of the guided modes 
propagating in + z direction. In addition, we assume 
weak periodic index and gain modulations 

n(z) = n + n 1 cos(2/3oZ), 
(6) 

~(z) = ~ + ~1 cos(2/~oZ), 

where I~1, kind ~ k n  

l r  2;rc/~freespae e . (7) 

Conditions (7) imply the following approximation 
[20] for the characteristic wavenumber K(z) of wave 
equation (2) 

K2(z) ~- kn(kn + 2i~) 

+ 2kn(knl + i~i) cos (2/~0z) �9 (8) 

In this study we neglect gain modulation: ~ = 0. In 
a first approximation the substitution of(5 and 8) in the 
wave equations yields the coupled-wave equations 

( dA+/dz~ = ( - i ( A  +ic% 
dA_/dz /  \ ix_ 

with 

A+ =c+ e - i a z ,  

A _  = c _  e + i a z  . 

- i x +  ) ( A ~ )  (9) 
i(A + i~)J 

(lO) 

The parameter A is the detuning factor relative to the 
Bragg wavenumber to 

A =(fl+ - f l _  - 2/~o)/2. (11) 

The coupling coefficients x_+ represent a measure for 
the strength of the Bragg scattering (Sect. 2.4). 

An adequate general solution of (9) consists of a 
linear combination of two counterpropagating 
eigenwaves 

(A+_) =a+(]+)exp (_ iTz )+a_(S ; ) exp ( iTz )  (12) 

with the constant amplitudes a_+, and the components 

s_ v_ = -x+_/(A +i~+7).  (13) 

The propagation constant 7 is determined by the 
dispersion relation 

7 z = (A + i00 2 - -  x + x _ .  (14) 

For positive gain e, we define the sign of the 
propagation constant 7 such that Im{y} > 0. 

Solution (12) fulfils the condition that for vanishing 
coupling coefficients x_+ the (A+,A_) represent the 
unperturbed waves, i.e. a linear combination of two 
counterpropagating unperturbed waves with gain or 
loss ~. Furthermore, the components s_+ show no 
singularities for any A or x+_. 
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2.3. l/Vaveguide Characterist ics  

The cavities of our lasers consist of slightly wedged 
hollow metallic waveguides of rectangular cross sec- 
tion. The propagation of electromagnetic modes in a 
hollow metallic waveguide is determined by the disper- 
sion relation [57] 

/ 3 2 = k 2  2 (15) - -  k c ,  " n  , 

where/3", is the propagation constant, and kc,", the 
characteristic cutoff wavenumber of the mode labeled 
by m and n. For a wedged waveguide kc, m, depends on 
the position z on the waveguide axis 

kS m, = [rm/(2a + z . sin e ) ]  2 -~- (rcm/2b) 2 , (16) 

where 2b denotes the total width and 2a the total 
height at z=  0 of the waveguide. ~b is the angle of 
inclination or the tuning angle. Thus, the propagation 
constant/3,., Of a certain mode mn also depends on z. 

In order to determine a resonance condition for a 
wedged waveguide, the z dependence of the propa- 
gation constant must be eliminated. This is realized 
by an integration over a whole round trip which repre- 
sents an averaging process of the propagation con- 
stant [-58]. Assuming that/3+(z) denotes a wave in for- 
ward direction and f l_(z) a wave in the backward direc- 
tion we write 

1 R 
(/3 + - / 3 _ )  = ~ ! [fl + (z) - fl_ (z)] dz (17) 

with 

/3+(z)>0, (t8) 
/3_(z)<0, 

R being the length of the waveguide. In the following 
we shall replace (/3 + - /3 _) by the average defined as the 
right side of (17). For small tuning angles �9 we have 
justified this procedure experimentally (Sects. 6 and 7). 

As previously mentioned, we assume a constant 
gain e, i.e. pure index modulation. We can split the gain 

into the proper gain (Z gain due to the active laser 
medium and the loss los~ due to the waveguide losses O~mn 
which depend on the mode mn 

gain loss 

c~=c~ + cx". , (19) 
(zgain _~ 0 ; (X,. nloss / r ~  1.3. 

The lossalm', ~s of the mode nm is determined by the skin 
depth 

6s = [2/(kZotr)] 1/2, (20) 

where Z o -- 377 f~ represents the free-space impedance 
of vacuum, and o- the electrical conductivity of the 
walls. For a rectangular waveguide of height 2a and 
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width 2b the lossc~ s of mode mn is given by 

loss __ 2 - - k  
• (n2/a  3 q- m2/h3) / (n2 /a  2 -Jr m 2 / b 2 ) .  (21) 

2.4. Coupling Coefficients 

The coupling coefficients ~: _+ are crucial parameters of 
the coupled-wave theory because they determine the 
relative power per unit length exchanged between the 
two modes. While there is a general agreement in 
literature about the coupling coefficients for TE 
polarization [27, 59-63], there are conflicting results 
with regard to the coupling coefficients for TM polar- 
ization [48, 59, 64] depending on the analytical ap- 
proach. Fortunately, the essential features of back- 
ward Bragg coupling in DFB lasers can be observed 
without considering in detail the coupling between 
modes of the discrete spectrum [27]. 

In contrast to Shubert [27], Kogelnik and Shank 
[20] considered two coupled bulk waves propagating 
in a dielectric medium, i.e./3+ = - /3_ = 13. This implies 
rather simple coupling coefficients 

x+ = x _  = x = (flonl/n + i~0/2 (22) 

independent of /3. Recently, Gnepf and Kneubiihl 
[22] calculated the TEM coupling for strong index 
and/or gain modulation. In a waveguide however, a 
coupling between different forward (/3 +) and backward 
(/3_) modes is also possible [27]. In this case, the 
coupling coefficients have to be calculated by overlap 
integrals of the transverse fields of the proper modes. 
Yet, all these calculations refer to the coupled-wave 
theory of TEM bulk waves or TE and TM waves in 
dielectric media. 

A coupled-wave theory which allows the calcula- 
tion of coupling coefficients for modes in metallic 
waveguides was developed by Katsenelenbaum [32]. 
Subsequently, it was extended by Kovalev et al. [29), 
Denisov and Reznikov [30], and Bratman et al. [31]. 
In order to describe the perturbations in a hollow 
metal waveguide, Katsenelenbaum [32] introduced a 
magnetic surface current f". For this purpose he 
modified the relevant Maxwell equation as follows 

curl E = --/~o t?/c3tH--j".  (23) 

The calculation of j" is performed by the determi- 
nation of an additional field on the surface of the 
unperturbed waveguide such that the electric field 
parallel to the surface of the perturbed waveguide 
vanishes. 

If the periodic perturbation of a metal waveguide 
consists of a corrugation of its bottom wall, the height 
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2a of the guide varies with the position z on the axis 

2a(z) = 2a(z + L) = 2a + al cos(2fl0z ) +. . .  + . . . ,  (24) 

where al indicates the first Fourier coefficient. For a 
triangular corrugation of depth 2a, this coefficient is 
a l  = 8al /~2" 

Under these circumstances (23) implies a surface 
current ]m [29] 

j" =n  • [Zoikl(n x H)+  grad(E, n/)]. (25) 

u is normal to the surface of the unperturbed wave- 
guide. I represents the perturbation 

l = ~  1 COS(2floZ ) o n  the corrugated surface, 
(26) 

l= 0 on all other surfaces. 

The coefficients c+(z) of the orthonormalized 
modes (5) are related to this surface current by the 
integral [29] 

4.  de +/dz = -T- ~ j " H *  ds, (27) 

where the integration is carried out over the unper- 
turbed waveguide profile in the x,y-plane perpen- 
dicular to the waveguide axis z. The coupled-wave 
equations (9) can be deduced from (26 and 27) by 
neglecting terms of the order l 2. This yields the 
following coupling coefficients: 

x + = x*- = x = - e -  Ziaz. (k/4Zo) 

x ~/[Zog(n * ' s n - , .  + n +, zH_,  =) - E + , . E _  ,3 ds. 

(28) 
The index z denotes the field in z direction, the index s 
the field perpendicular to z and parallel to the surface, 
and the index n the field normal to the surface. 

For a hollow waveguide of rectangular cross 
section (28) yields a selection rule for the transverse 
mode numbers m+ of the propagation constants fl+ (15 
and 16) 

Im+ I = Ira-I = m. (29) 

In the following we restrict the considerations to 
TMm, + - TMm,_ couplings, since in the case of rectan- 

gular waveguides only these modes couple efficiently 
[16, 30]. For these couplings the coefficients x is given 
by 

al k2 +I/L/LI (30) 
x =  f ~-  a ( i / ~ + / L i y / 2  ' 

where the factor f is defined by 

f =  {:[1 +(main+b) 2] [1 +(main_b)2]} - ,/2. (31) 

For ma,~ n + b this factor is approximately one. 
The determination of the coupling coefficients (30) 

for the corrugated hollow metal waveguide is the 
relevant feature of the coupled-wave theory presented. 
Naturally, several approximation had to be made to 
obtain the simple coupling constant tc represented by 
(30 and 31). Nevertheless, this coupling constant is in 
remarkable agreement with the measurements dis- 
cussed in Sects. 6 and 7. 

3. Dispersion Relations and Resonance Conditions 
for Continuous DFB Structures 

3.1. Dispersion Relations o f  Infinite D F B  Structures 

The dispersion relations of DFB structures with index 
and/or gain modulation have been studied in detail 
and reviewed by Kogelnik and Shank [20], Affolter 
and Kneubfihl [16], Preiswerk et al. [26], Gnepf and 
Kneubfihl [22]. These dispersion relations are relevant 
for the resonance conditions of DFB lasers which are 
discussed in the following Sect. 3.2. The context be- 
tween dispersion and resonance conditions is demon- 
strated in Sect. 3.3. With respect to these consider- 
ations it should be emphasized that dispersion rela- 
tions hold for infinite DFB structures, while reso- 
nance conditions refer to finite DFB structures. 

Standard dispersion relations connect the propag- 
ation constant of a wave in a medium or in a 
waveguiding structure with the circular frequency co or 
free-space wavenumber k. Examples are the dispersion 
relation fl,,,(k) of the unperturbed modes mn of the 
metal waveguide, (15), and the function 7(A) of a DFB 

TUNING MIRROR 
P U M j ~ H T  ^ <2a 

OUTPUT 
MIRROR ~ ~.. \ ~ . / ' /  

. . . . . . . . .  - -  . . . .  \ "  " " \ GRAZING- 
INCIDENCE 
GRAT, NG 

Fig. 1. Schematic view of a grazing- 
incidence dye laser 
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structure derived from coupled-wave theory, (14). In 
our experiments, however, the frequency c~ and the 
wavenumber k can be assumed constant, because we 
work with the optically pumped 496 gm CH3F emis- 
sion which exhibits a strong laser action due to a pure 
rotational transition [19]. This FIR laser transition is 
homogeneously broadened by 40 MHz/Torr at pres- 
sures above 50 mTorr [-65]. This implies a gain band- 
width of about 150 MHz in our actual 496 gm CH3F 
laser. For this reason We tune the laser by a variation of 
the cross section of its waveguide. Consequently, we 
consider the propagation constants as functions of the 
waveguide height a o = 2 a -  a i instead of the wavenum- 
ber k. For this purpose we replace fl,,,(k) by 
fl~,(k= const, ao) in (15) and 7(A) by 7(k =const, ao) in 
(14). This allows us a more convenient comparison of 
theory and experiment. 

In order to compare the dispersions of the unper- 
turbed and perturbed waves we consider the complete 
propagation constants ]~(ao) of the forward and back- 
ward eigenwaves in the corrugated waveguide. Ac- 
cording to (5, 10-12, and 14) ]~(ao) is defined by 

~+ (ao) = fl_+ (ao) ___ [7(ao) - A (ao)] �9 (32) 

For a vanishing perturbation, i.e. x+ =0, (32) reduces 
tO 

]~+ (a0) = fl_+ (ao) ___ is. (33) 

This represents the propagation constant of an unper- 
turbed forward or backward wave with gain c~. 

In general, both, the forward wave ~+ and back- 
ward wave ~_, are required to describe the fields in the 
corrugated waveguide and thus, to determine the 
dispersion relation. In addition, the determination of 
the resonance condition of the finite corrugated struc- 
ture in Sect. 3.2 involves the definition of a round-trip 
condition of the optical path. This is accomplished by a 
summation of the phases of the two counterpropagat- 
ing waves which are determined by the propagation 
constants j~_+. Therefore, it was found convenient to 
introduce a modified propagation constant fi which is 
defined as 

fl(ao) = [~+(ao)- j~-(ao)]/2 

= t o  + ?(ao) = (n /L)  + 7(ao) (34) 

or  

fl(ao) " (L/n)  = 1 + ?(ao) (L /n) .  (35) 

Both equations hold for the first-order Bragg or DFB 
resonance defined by the Bragg wavenumber to = rc/L. 

For a passive waveguide structure with ~ = 0 the 
real part of the dispersion relation exhibits the well- 
known stopband at to. Lower and upper boundaries of 
this gap are determined by the coupling coefficient tc 

with the rdation 

A = _ ~:. (36) 

In Fig. 2 we show the real and imaginary part of the 
dispersion relation (35) of the passive waveguide for 
three different mode-couplings, i.e. T M l l - T M l l ,  
T M H - T M 1 2 ,  and T M I z - T M i 2 .  This dispersion 
relation has been calculated for a spacing of the 
periodic corrugations ofL = 0.255 mm and a free-space 
wavelength 2=0.496 mm. These parameters corre- 
spond to the experiments described in Sects. 6 and 7. 
The flash where flL/rc = 2L /2  indicates the free-space 
wavenumber fl = k. This value cannot be exceeded. 

Figure 3 shows the dispersion relation of the same 
mode-couplings as Fig. 2, but with a positive gain c~. 
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Fig. 2. Dispersion relation 
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of a passive (c~=0) rectangular 
periodic waveguide. The normalized propagation constant flL/n 
is plotted as a function of the waveguide height ao for different 
mode couplings. The grating period is L=  0.255 mm, and the free- 
space wavelength k=0.496 mm 

a o [mm] 2L/a 
V 

t fl/IUllll 
.95 i .O0 

Re (pL/Iz) 

Fig. 3. Dispersion relation 

i 
-.i 0'.0 i 

Im ([BLItz) 

of an active (c~>0) rectangular 
periodic waveguide. The normalized propagation constant flL/r~ 
is plotted as a function of the waveguide height ao for different 
mode couplings. The grating period is L = 0.255 mm, and the free- 
space wavelength 2 = 0.496 mm. The thick lines indicate low gain 
(c~=0.05 cm-i) ,  while the thin lines correspond to high gain 
(c~ = 10 cm- l) 
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For the limit of the low-gain approximation (N ~ ~c), 
indicated by thick lines, the real part of fi shows no 
significant change. Only the sign of the imaginary part 
of fi changes. For the limit of the high-gain approxi- 
mation (1~1 "> ~), indicated by the thin lines, the charac- 
teristic stopband disappears completely, and the dis- 
persion relation approaches that of a unperturbed 
waveguide,-T-he-intersection of the low- and the high- 
gain curves indicates the center of the stopband, i.e. 
A=0. 

3.2. Resonance Conditions o f  Finite Structures 

On the basis of the general solution of the coupled- 
mode equations (12) we derive a resonance condition 
as follows: The corrugated waveguide has a finite 
length R from z = 0 to z--R. We assume that no input 
waves at z = 0 and z-- R are admitted, i.e. that A +(z-- 0) 
= A_(z = R)= 0 (12). If we take into consideration the 
boundary conditions for A+(z) at z = 0  and z = R ,  we 
find the following resonance condition [22, 30] 

s z e x p ( -  2i7R ) = e x p ( -  27dq), (37) 

where according to (13, 28, and 30), s is given by 

s 2 = s+s_.  (38) 

The integer q denotes the DFB mode number. In the 
resonance condition (37) constant phases are neglec- 
ted. It has been derived by assuming self-consistency 
which implies that the DFB cavity yields an output 
without admitting an input. This corresponds to a self- 
consistent oscillation. 

Approximations of (37) can be deduced for the 
limits of high and low threshold gains. For the high- 
gain approximation with I~1 "> x we obtain from (14) an 
approximate expression for 7 

7 = A + ia. (39) 

A comparison of the absolute values of (37 and 39) 
results in the threshold condition [20] 

x = 2~e ~R (40) 

while a comparison of the phases gives the resonance 
condition for high threshold gain [16, 18, 20, 38-42]: 

R .  A(ao) + ~ = qn (41) 

or 

Rift + (ao)-- fl-(ao)] = rc(rM + q + 1/2). (42) 

In this condition r indicates the DFB order, q the DFB 
mode number, and M = R / L  the number of corruga- 
tions. For a wedged waveguide applied in a grazing- 
incidence gas laser [38-42] the left side of(42) has to be 

( )ho 
t'5 I 
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Fig. 4. (A2/A~) versus tuning angle ~ for different high-gain 
mode couplings 

replaced by an integral according to (17) 
R 
I (fl+ -- f l - )dz  = ~z(rM + q + 1/2). (43) 
o 

This integration allows us to eliminate the 
z-dependence of the propagation constant (Sect. 2.3). 

In order to demonstrate the influence of the tuning 
angle �9 on the resonant wavelength we have calculated 
the relations between the variation A ~ and the corre- 
sponding change A 2 of the emission wavelength. These 
calculations are based on the high-gain approximation 
(43). The height ho = ao + R.  �9 is kept constant accord- 
ing to the design of the experiment (Sect. 5). Figure 4 
shows this relation for axial mode number q =0  and 
the symmetrical mode couplings TMa~-TM~I  , 
T M x 2 -  TM~2, and the asymmetrical coupling 
TMI~-TM12.  These curves are valid for first-as well 
as for second-order DFB because the halving of the 
number M of corrugations compensates the doubling 
of the corrugation spacing L. 

In order to derive approximate resonance con- 
ditions for low threshold gain, respectively high feed- 
back characterized by lel ~x,  we first evaluate the 
eigenvalue 7 (14) 

7 = (sgnA) x(2e) 1/2 -F i~(2e)- 1/2 (44) 

where 

e = IA I /x-  1 ~ 1 (45) 

is supposed to be small. This implies that the re- 
sonances are close to the stopband boundaries. With 
the assumption that to. R>>(2e)~/2~_O, the resonance 
condition (37) can be written as [30, 31] 

q~ = RTo(ao), (46) 

where 70 is the real part of 7 in (14). The threshold gain 
aq depends on the DFB mode number q. It is deter- 
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mined by 

c~q = ( qrc/lr,)2 R - 3 (47) 

for a given q resonance. For a grazing-incidence laser, 
the expression ( f l+ - f l_ )  implicitly included in (46) 
needs to be replaced by the integral (17) as demon- 
strated for the case of high threshold gain (43). 

In contrast to the high-gain approximation the 
resonance condition (46) still depends on the coupling 
coefficient x. This is reasonable since the low-gain 
approximation corresponds to the case of the passive 
resonator, whose dispersion relation is strongly in- 
fluenced by tc (Fig, 2). 

3.3. Relations Between Dispersion 
and Resonance Conditions 

For a vanishing tuning angle ~ = 0 ,  the resonance 
conditions (41 and 46) can be interpreted graphically 
with the aid of the dispersion relations plotted in 
Figs. 2 and 3. 

By multiplying the dispersion relation (34) by R we 
can write for the low-gain approximation (46) 

Re {fi}. R = ~R/L + 7o R = ~R/L  + qrt (48) 

o r  

Re {fl} (L/~z) = 1 + (qL/R) = 1 + (q/M), (49) 

Therefore, the resonant heights ar can be evaluated by 
scaling the axis (Refl)(L/=) around 1 with q/M, where 
q--0, ___ 1, +2,  __ 3 .... For  the low-gain limit this has 
been done in Fig. 2 in order to show the separation 
between two neighbouring resonances. 

For  the limit of the high-gain approximation (41) 
the dispersion relation indicated by thin lines in Fig. 3 
is relevant for the determination of the resonant 
heights at, because these curves correspond to the 
dispersion of an unperturbed waveguide. With respect 
to the low-gain approximation the equidistant inter- 
vals are shifted by 1/2M 

Re {fl} (L/rc) = 1 + (q + 1/2)/M. (50) 

On the normalized fl-axis the separations between 
two adjacent axial modes defined by q agree for both 
approximations. On the other hand, the difference 
between two adjacent resonant heights-a, is much 
smaller for the low-gain approximation. 

4. Resonance Conditions for DFB Structures 
with a Gap 

The high- and low-gain approximations of the disper- 
sion relations and resonance conditions of Sect. 3 for 

continuous DFB structures reveal the absence of laser 
resonances inside the stopband of the dispersion 
relation. Resonances inside the stopband have an 
advantage over those outside because they involve a 
higher feedback [29]. They can be realized by the 
introduction of an additional phase-shifting compo- 
nent, e.g. by a variable gap D in the center, i.e. at 
z = R/2, of the otherwise continuously periodic DFB 
structure. This yields a laser oscillation near the Bragg 
frequency [27, 30, 31]. In addition, the gap provides a 
controllable discrimination between the individual 
laser modes, which allows single-mode operation of 
the DFB gap laser [27, 33]. 

The boundary conditions for A + (z), (12), at the gap 
and at the ends of the DFB laser, i.e. at z=0 ,  R/2, 
R /2+D,  R + D  imply the following resonance 
conditions 

s2[1 - e x p ( - i T R ) ]  2 
exp [ - i(fl + - fl_) D] [ 1 -- s2 exp ( -- iyR)] z 

= exp ( -- 2rdN), (51) 

where N is an integer. For  D = 0 this general resonance 
equation corresponds to the resonance condition (37) 
of the DFB laser without gap. 

An approximative resonance condition for the 
limit of low threshold gain is obtained by a comparison 
of the phases in (51). Inside the stopband 7 is imaginary. 
Thus, we define for e-~ 0 

~7=i7 =(te2--A2) */2 . (52) 

If we eliminate s 2 in (51) with the aid of(13 and 38) we 
find 

~[1 + e x p ( -  ~TR)] 
2ten + (fi + - fl _) D = 2- arctg A [1 -- exp ( - ~TR)]" 

(53) 

The integer N indicates that the resonances are 2re 
periodic. For the center of the stop band where A = 0 
the phase (o=( f l+- f l_)D is equal re. For a laser 
oscillation near the Bragg frequency the gap D fulfils 
therefore the following approximate resonance 
condition 

D ~- (p + 1/2) (2guide/2), (54) 

p = 0 ,  1,2,3,4, ... .  

The threshold gain a as a function of the gap D cab 
be evaluated by a comparison of the absolute values of 
the left and the right side of (51). However, due to the 
high reflection coefficient of the structure near the 
Bragg frequency [27, 30] the threshold gain is very low 
and cannot be determined analytically. Hence in a first 
approximation the threshold gain a is of the order of 
the waveguide losses determined by (20 and 21). 
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5. Design and Operation of the Laser 

In this chapter we report on the design and the 
operational characteristics of the DFB and grazing- 
incidence optically pumped 496 gm CH3F laser. The 
first section is devoted to the design of the specific laser 
cavity, the second to the general experimental arrange- 
ment, and the third to the transverse mode pattern of 
the pump beam which is relevant for our experiments 
described in Sects. 6 and 7. Finally, in the last section 
we discuss the experimental procedures applied in our 
investigations. 

5.1. The Laser Cavity 

Most features of our DFB and grazing-incidence 
optically pumped 496 gm CH3F laser agree with those 
of our previous DFB CH3F laser published by Affolter 
and Kneub/ihl [15-17]. The main difference is a new 
cavity which is illustrated in Fig. 5 a. It consists of a 
special rectangular metallic waveguide of length 
R=300  ram, whose bottom wall is formed by an 
exchangable grating mounted in a dovetailed guide. 
The top wall, which represents the tuning mirror, is 
plane and can be rotated by a small angle �9 with 
respect to the grating. In addition, the height h o of the 
cavity can be varied between 0 and 10 mm. The 
adjustable height ho allows the cavity to be tuned over 
a wide frequency range while the slight variation of the 
angle �9 permits fine tuning (Sect. 2.3). The side walls, 
the tuning mirror and the grating of the hollow 
metallic cavity are covered with gold by vapor depo- 
sition in order to prevent surface oxidation. The gold 
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Fig. 5a, b. Schematic view of the FIR cavities, (a) with a 
continuous grating, (b) with a gap in the center of the grating 

film has a thickness of at least 0.5 gm which corre- 
sponds to 5 times the skin depth of an electromagnetic 
wave with a wavelength of 500 gin. 

In order to achieve a higher feedback and, conse- 
quently, a narrow-band operation of our laser, we have 
also worked with gratings equipped with a variable 
gap in the center. The gap allows a continuous 
correction of any phase mismatch in the roundtrip of 
the optical path. A schematic view of this modified 
phase-matched waveguide is shown in Fig. 5b. 

In our study we have applied three different 
gratings with periods L=  250, 255, and 500 gm which 
provide first- as well as second-order DFB resonances. 
The average groove spacing L was measured by means 
of a projecting microscope with a reading precision of 
1 gm. This yields a relative accuracy of AL/L= 10 -4. 
The determination of an average value of L is reason- 
able, because small statistical deviations from the 
correct period cause no significant alteration of the 
DFB characteristics [66]. All gratings used in our 
experiments have a blaze angle of 45 ~ They have been 
manufactured by diamond cutting or high-speed mill- 
ing in our workshop. 

The entire cavity is mounted in a cell filled with 
CH3F at an optimum pressure of 3.5 to 4.5 Torr. The 
pump beam is coupled into one end of the CH3F cell 
through a KC1 Brewster window. At the other end we 
have mounted a quartz window which is transparent 
only for the FIR radiation. 

5.2. Experimental Arrangement 

Our experimental arrangement shown in Fig. 6 is 
similar to that applied to the study of the first linear 
periodic DFB [15-17-] and HFB [24-26] gas lasers. 
The stimulated 496 gm CH3F emission is pumped by 
the 9.55 gm 9P(20) radiation from a pulsed hybrid CO2 
laser in single-mode operation. The power of the pump 
pulse is measured by a photon-drag detector PD. It is 
of the order of several hundred kW. The parallel- 
polarized pump pulse is focused into the CH3F cavity 
by a cylindrical lens CL of focal length 540 mm. The 
inclinations ~ and 6, as well as the KC1 plate W1 of the 
CH3F cell, serve for the delicate height adjustment of 
the pump beam. In the course of our experiments, the 
entrance height of the pump beam relative to the CH3F 
waveguide turned out to be relevant and crucial. 

The first measurements of the energy of the FIR 
pulses were made with a Golay detector combined 
with sample-and-hold electronics. Later, the acqui- 
sition of a high-repetition rate (5-20 pps) CO 2 pump 
laser (PRF 150, Laser Science Inc.) allowed us the 
application of a pyroelectric detector (ELTEC Instru- 
ments, Model 406) directly connected to a lock-in 
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Fig. 6. Experimental arrangement of the 
grazing-incidence 496 gm CH3F laser. 
Wl  indicates a KC1 plate, W2 a KC1 
window, and W 3 a quartz window 

amplifier. Thus, an integration over 5-20 FIR pulses 
was possible. 

5.3. Transverse-Mode Pattern of the Pump Beam 

The transverse mode pattern of the pump beam turned 
out to be a very essential feature of the experiment. 
Higher transverse modes of the pump beam lead to the 
stimulation of different and irreproducible mode cou- 
plings in the waveguide. For this reason we have 
developed a low-cost CO2 laser beam profile monitor 
[67]. In the monitor a small slit covered by a tempera- 
ture dependent fluorescent screen is imaged on a 
photodiode. A rotating mirror scans the spatial intens- 
ity distribution over the slit. The signal-to-noise ratio is 
improved by the repetitive sampling with a low-cost 
digital processing unit. The high sensitivity of the 
device permits a real-time surveillance of the spatial 
beam characteristics with the aid of a beam splitter. 

Figure 7 shows an example of a typical transverse 
mode pattern of the 9.55 gm pump beam measured 
with our beam profde monitor and used in our 
experiments. The dashed thin curve represents a 
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Fig. 7. Measured near-field transverse mode pat tern of the 
9.55 pm CO2-1aser pump beam. The dashed curve represents a 
Gaussian intensity distribution 

Gaussian intensity distribution, which shows that our 
pump beam intensity distribution corresponds well to 
a TEMoo mode. 

5.4. General Experimental Procedures 

In this section we briefly explain the measurement 
procedures which in general are identical for all 
gratings and both types of cavities, i.e. those with and 
without gap. 

The single-mode 9.55 gm CO2 laser pump pulses 
have an energy of 50-100 mJ and a duration of about 
150 ns. The radiation of the pump pulse is polarized 
parallel to the grooves. The tuning angle �9 of the cavity 
mirror is scanned from about - 2  to + 2 mrad for a 
constant cavity height h0 and gap D in the grating. 

The output energy of the FIR emissions is opti- 
mized by changing the inclination of the window Wl 
and the angle 6 shown in Fig. 6. The optimization has 
no influence on the resonant angles ~r. The polariz- 
ation of the CH3F emission is perpendicular to the 
grooves. No parallel-polarized emissions are observed 
even if the polarization of the pump beam is changed. 
Thus, we only observe TM mode couplings. 

6. Measurements on Laser Cavities Equipped 
with Continuous Gratings 

6.1. Experimental Conditions and Data Presentation 

We have succeeded in the first operation of a grazing- 
incidence 496 gm CH3F gas laser by means of a cavity 
equipped with various continuous gratings of different 
periods L and groove numbers M [37-42]. For these 
experiments we used a cavity width of 2b=40 mm 
which yielded a transverse mode spacing of only 
35 MHz. This is considerably less than the CH3F gain 
bandwidth of 250 MHz (Sect. 3.1). Hence we did not 
achieve a proper separation of the transverse modes. 
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The measurements on our grazing-incidence gas laser 
described in this chapter have therefore been perfor- 
med with a reduced cavity width of 2 b = 1 0 m m .  
Consequently, the transverse mode-spacing has in- 
creased to 550 MHz, which implies a considerable 
improvement  with respect to the mode  selectivity of 
our laser. 

In order to contrast  the measured resonant tuning 
angles ~r and heights a~ with the theory discussed in 
Sects. 2 and 3, we compare  our experimental data with 
the theoretical resonance conditions (43 and 46) with 
the aid of a o - � 9  plots, where a o is given by 

a o = 2 a -  a 1 = h o - R ~ ;  (55) 

2a is the waveguide height, and 2al is the groove depth, 
both  defined by (24). ho denotes the waveguide height 
at the waveguide end, i.e. at z = R = 300 mm. All these 
geometrical waveguide parameters  are shown in Fig. 5. 

In the following we describe experiments and the 
corresponding a o - ~  plots for laser cavities with 
gratings of different selected periods L and groove 
numbers M. In Sect. 6.2 we compare  results obtained 
for gratings with L=0 .250  m m  and M =  1200 versus 
data measured with gratings with L=0.255 m m  and 
M =  1176. Both gratings exhibit first-order DFB, but 
they reveal drastic differences in their DFB perfor- 
mance. In Sect. 6.3 we present measurements with a 
grating characterized by L =  0.500 m m  and M = 6 0 0 .  
This grating yields second-order DFB, i.e. proper  
grazing-incidence laser resonances. 

6.2. First-Order DFB Measurements 

In comparison to our  previous measurements [37-42] 
with cavities of width 2b = 40 mm, we have observed a 
drastic reduction of the number  of the laser resonances 
for the reduced cavity width 2 b =  10 ram. This indi- 
cates that  the reduced cavity width yields a consider- 
able decrease of the number  of the coupled modes. 
However,  Fig. 8 demonstrates that a proper  mode 
separation has not  been achieved yet, The resonance 
presented in Fig. 8 has been measured for a constant 
height ho = 2.95 m m  and a grating with L = 0.250 m m  
and M = 1200. Although this resonance is well defined, 
the sharp peaks on the main emission suggest different 
mode couplings with respect to the transverse mode 
number  m. Obviously, these couplings cannot be 
resolved. Figure 9 shows all the observed resonances 
measured with this grating in an a o -  4~ plot. The two 
resonances essentially observed are traced by a vari- 
ation of the tuning angle ~. This confirms our theoret- 
ical approach with averaged propagat ion constants 
(17). 

The resonances at a height ao "~ 3 m m  (Fig. 9) can 
be explained by the high-gain approximat ion (43), 
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Fig. 8. Example of a resonant first-order DFB 496 ~tm CHaF 
laser emission measured for a cavity with a continuous grating of 
M= 1200 grooves and of period L=0.250 mm. The angle 4~ is 
scanned at constant cavity height ho = 2.95 mm 
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Fig. 9. Comparison of theoretical and experimental first-order 
DFB resonances for a cavity with a continuous grating of 
M = 1200 grooves and of period L= 0.250 mm. The theoretical 
curves are calculated with high-gain and low-gain approxima- 
tions. For high gain the resonance conditions are plotted for the 
axial DFB mode numbers q = - 2 to + 2. For low gain, the axial 
DFB modes cannot be resolved. The observed resonances are 
indicated by triangles 

TM~I-TM~e high-gain 

TMu-TM,, high-gain 
TM~-TMI~ low-gain 

TMI~-TM:~ low-gain 

which is indicated by dash-dotted curves for the DFB 
mode numbers q = 0, _+ 1, _ 2. q = - 2 corresponds to 
the lowest curve of the respective mode coupling 
T M m n + - T M m , - .  The specific resonance "A" in- 
dicated in Fig. 8 is also labeled in Fig. 9. The res- 
onances observed at height ao -~ 3 m m  in Fig. 9 corre- 
spond to an axial mode number  q = - 1 of the mode 
coupling T M  11 - T M  a 2- 

The high-gain approximation is not adequate for 
the explanation of the resonances observed at height 
a o-~ 1.2 m m  in Fig. 9. For  decreasing height a o the 
coupling constant x (30) increases, because the relative 
perturbat ion alia of the waveguide increases. This has 
a direct influence on the feedback capability of a given 
structure. Due to the higher feedback the threshold 
gain decreases. Therefore, the low-gain approximat ion 
(46) can be applied. It  is indicated in Fig. 9 by the 
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dashed curves. According to the dispersion relation 
presented in Fig. 2 the resonant heights a, for different 
DFB mode numbers q do not change considerably, i.e. 
they cannot be resolved in our plots. However, the 
observed resonances can be identified with respect to 
the transverse mode structure: They occur near the 
stopband edge of the TM~I-TM~z coupling. 

In order to measure the influence of the groove 
spacing on the DFB performance of a corrugated 
waveguide, we have exchanged the cavity grating of 
period L=0.250 mm and groove number M =  1200 
with one of increased period L=  0.255 mm and corre- 
spondingly reduced groove number M=1176. In 
Fig. 10 we present typical resonances observed with 
these gratings. The scan was made at a constant height 
h0 = 1.3 mm. The peaks belong to different axial DFB 
mode numbers q or to different transverse-mode 
couplings characterized by m. In the a o - ~  plot of 
Fig. l l t h e  observed resonances are indicated by 
triangles. In contrast to the measurements with a 
grating period L--0.250 mm those with the increased 
period L = 0.255 mm show many resonances. This can 
be explained by the smaller separation of different 
modes which might favour multimode couplings. 
Another observation supporting this interpretation is 
the lower sensitivity of the resonances to the incou- 
pling conditions of the pump beam. 

In Fig. 11 the theoretical resonance condition 
based on the high-gain approximation (43) is shown by 
dash-dotted lines. Only three axial mode numbers q 
are plotted for each mode coupling, i.e. q=0, __ 1. 
Again, the specific resonances "A", "B", "C", "D" 
indicated in Fig. 10 are labeled in the a o - ~  plot of 
Fig. 11. Assuming the threshold gain to be high we can 
assign these emissions to a transverse TM~ ~ - TM~ 
coupling, i.e. the lowest existing coupling. 
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Fig. 10. Examples of resonant first-order DFB 496 pm CH3F 
laser emissions measured for a cavity with a grating of M = 1176 
grooves and of period L=0.255 mm. The angle ~ is scanned at 
constant cavity height h o = 1.30 mm 
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Fig. 11. Comparison of theoretical and experimental first-order 
DFB resonances for a cavity with a continuous grating of 
M = 1176 grooves and of period L =  0.255 ram. The theoretical 
curves are calculated with the high-gain approximation and 
plotted for the axial DFB mode numbers q = - 1 , 0 ,  + 1. The 
observed resonances are indicated by triangles 

In summary, the cavity equipped with the grating 
of period L=0.250 mm and groove number M = 1200 
has an advantage over that with a grating defined by 
L=0.255mm and M=1176 with respect to mode 
selectivity. On the other hand, the enlargement of the 
grating period L results in a less critical excitation of 
the resonances. Unfortunately, the axial modes can be 
identified neither for the shorter nor for the longer 
period L. 

6.3. Second-Order DFB Measurements 

Our cavity grating of period L=  0.500 mm and groove 
number M--600 implies second-order DFB laser 
resonances, because the grating period L corresponds 
approximately to the emission wavelength 2 = 496 gm. 
The resonances observed with this grating are the 
proper grazing-incidence resonances. Yet, it should be 
noticed that they cannot be interpreted by Fraunhofer 
diffraction as those of standard optical grazing- 
incidence lasers, since the separation of the diffraction 
grating from the tuning mirror is only of the order of a 
few CH3F laser wavelengths. This implies Fresnel 
diffraction or waveguiding, as discussed in Sect. 2. 

An example of a resonance scan for a cavity height 
ho = 1.25 mm and the grating mentioned above is 
shown in Fig. 12. It is obvious that the different modes 
are not resolved. The two observed resonances are 
labeled by "A" and "B". In Fig. 13 all the observed 
resonances including "A" and "B" are presented in an 
a o - �9 plot. 

The second-order DFB high-gain resonance con- 
dition (43) is identical with that of first-order DFB 
because the halving of the number of grooves is 
neutralized by the doubled groove spacing. A different 
coupling phase could shift the theoretical curves 
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Fig. 12. Examples of resonant second-order DFB 496 gm CH3F 
laser emissions measured for a cavity with a grating of M = 600 
grooves and of period L=0.500 mm. The angle �9 is scanned at 
constant height h o = 1.25 mm 
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Fig. 13. Comparison of theoretical and experimental second- 
order DFB resonances for a cavity with a grating of M = 600 
grooves and of period L=0.500 mm. The resonance condition is 
assumed equal to that of first-order DFB represented in Fig. 6.2. 
The observed resonances are indicated by triangles 

TMii-TMia high-gain 

TMI~-TMII high-gain 
TMI2-TM~a low-gain 

TM~-TM~ low-gain 

unsignificantly. Since our resonances are not identifi- 
able, this shift is irrelevant. The theoretical curves are 
shown by dash-dotted lines for the axial mode num- 
bers q=0 ,  _+1, +2.  

The  low-gain approximation, which is indicated by 
the dashed curves, is based on the coupling coefficient 

(30) calculated for first-order DFB, because for 
second-order DFB tc cannot be calculated with present 
theories. However, assuming a coupling coefficient tc 
evaluated from first-order DFB theory, we find that the 
resonances "A" and "B" at a height h0 = 1.25 mm 
shown in Fig. 12 correspond to the T M l ~ - T M 1 2  
coupling as demonstrated in Fig. 13. 

In summary, the second-order DFB resonances are 
as strong as the first-order emissions described in 
Sect. 6.2, but not all of  them can be interpreted by our 
approximations of the resonance conditions. However, 
the coupling coefficient ~ seems to be of the same order 
of magnitude since the observed low-gain resonances 
are in agreement with the first-order DFB resonances. 

7. Measurements on Laser Cavities 
with a Gap in the Grating 

7.1. Purpose and Data Presentation 

Rapidly increasing bit rates and transmission distances 
made possible by improvements in the performance of 
optical fibers require laser diodes with very stable, 
single logitudinal mode output [68, 69]. As proposed 
in Sect. 4, a gap in the center of the corrugation can 
remove the mode degeneracy of conventional semi- 
conductor DFB lasers working at optical and near 
infrared wavelengths. In order to investigate the 
characteristics of such phase-matched DFB lasers in a 
wavelength region better suited for detailed experi- 
mental studies we have realized the first FIR DFB gas 
laser with a variable gap D in the center of the 
corrugation [43, 70]. 

As demonstrated in Sect. 6, the mode separation of 
different axial modes is very small for a laser cavity 
with a continuous grating. Therefore, it is not possible 
to identify the observed resonances in that case. In this 
chapter we show that the mode separation increases 
considerably by introducing a gap in the grating. 

In the course of our experiments we have made 
various measurements on laser cavities at a constant 
waveguide height ho, but either with a variable gap D in 
the grating or with a variable angle �9 of the tuning 
mirror. The resonant gaps D r measured with an 
absolute accuracy of 30 ~tm, the resonant heights at, 
and angles ~r are compared with the resonance 
condition (53). For  this purpose we consider a o -  
plots for a constant gap D as well as a o -  D plots for 
~ = 0 .  

In Sects. 7.2 and 3 we report on the measurements 
with gratings of two different periods L and groove 
numbers M, i.e. L=0 .250mm,  M = 1 2 0 0  and 
L=0 .255mm,  M--1176.  We have also performed 
experiments on second-order DFB with gratings of 
period L = 0.500 mm and groove number M = 600 with 
a variable gap D. The observed resonances are strong 
and comparable to first-order DFB emissions. Unfor- 
tunately, as already mentioned in Sect. 6.3 the coupling 
coefficients cannot be calculated by our theory for 
second-order DFB. Consequently, we cannot describe 
properly the observed resonances and compare them 
with theory. 

7.2. Measurements with a Grating of Period 0.250 mm 

With regard to mode selectivity the best performance 
of our grazing-incidence gas laser is achieved with a 
grating of period L--0.250 m m  and groove number 
M = 1200. In order to determine the characteristics of 
the laser emissions inside the stopband we have 
scanned first the tuning angle ~ at constant gaps 
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Fig. 14. Example of a first-order 496 ~tm CH3F laser emission 
inside the stop band. The cavity is equipped with a split grating of 
M= 1200 grooves and of period L=0.250 ram. The angle q~ is 
scanned at constant cavity height ho = 1.29 mm and constant gap 
D =0.15 mm 
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Fig. 15. Comparison of theoretical and experimental first-order 
DFB resonances for a cavity with a split grating of M = 1200 
grooves, of period L = 0.250 mm and constant gap D = 0.145 ram. 
The measured resonances are indicated by triangles 

D =0.05, 0.1, 0.15, 0.2, and 0.25 mm. The height h 0 has 
been varied from I to 3.5 mm. We have found only a 
few well-defined resonances which are very sensitive to 
the coupling of the 9.55 pm CO2 laser pump  beam into 
the DFB waveguide cavity. This indicates that the 
pump  beam characteristics are important  for the 
stimulation of the gap modes. 

An example of a o - ~ - s c a n  with fixed gap 
D --- 0.15 m m  is shown in Fig. 14. Due to the higher Q of 
the phase-matched cavity [27, 30, 33], the full width at 
half max imum (FWHM) is at least four times smaller 
than that  of a comparable  resonance measured with a 
continuous grating defined by D = 0. The constant  gap 
D = 0.150 m m  corresponds to a phase shift ~b -~ 6~/5 per 
round trip which indicates that  the observed resonance 
"A" occurs near the Bragg frequency. 

Figure 15 shows all the observed resonances in the 
a o -  �9 plot for a measured gap D = 0.150 mm. The best 
fit of the data is achieved for theoretical curves (53) 
calculated with an effective gap D=0.145  mm. The 
correction of the gap by - 5 gm is well within the limits 

of accuracy. In addition, we have to reduce the 
coupling constant K (30) by a factor of 0.9 in order to 
achieve better agreement between theory and experi- 
ment. However,  the calculation of ~c is based on a linear 
approximation.  Consequently, the theory predicts a 
coupling constant only correct to the first power of the 
waveguide perturbation. Therefore, the agreement 
between theory and experiment is excellent and gives 
some confidence in the reliability of the coupled-wave 
theory. Furthermore,  the theory is based on a har- 
monic perturbation. The triangular grooves of all our  
gratings have a blaze angle of ~/4. Thus the modula- 
tion depth t71 in (30) is determined by the first Fourier 
coefficient of this triangular modulat ion (24). This is 
another  source of error which might be noticeable. 

Figure 16 shows an example of a D scan for a 
constant tuning angle ~ = 0  and a constant height 
ao = ho = 3.2 mm. The gap D is scanned from zero to 
the equivalent of a phase shift q~ = 4re as indicated on 
the ~ axis. The D scan is comparable  to a scanning 
Fabry-Pero t  measurement  since the two half-gratings 
can be regarded as scanning mirrors. Thus, the ob- 
served emission is 2re periodic, and the resonance is 
repeated after a scan distance of half the guide 
wavelength 20 (54). The D-scan measurement  demons- 
trates that the observed resonance is a proper  oscil- 
lation in the stopband, because for a vanishing gap 
D = 0, which corresponds to a grating without discont- 
inuity, no emission is observed. 

Figure 17 presents the resonance condition inside 
the s topband (53) as a function D(ao) for a tuning angle 
4~ = 0. In order to show all the measured resonances in 
this plot, the resonant heights a, of emissions at 4~ 4= 0 
have been converted into resonant heights a'r at 4~ = 0 
with the aid of(17). As a consequence, these resonances 
have been slightly shifted in height according to their 
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Fig. 16. Example of first-order 496 txm CHeF laser emissions 
inside the stop band. The cavity is equipped with a split grating of 
M=1200 grooves and of period L=0.250mm. The gap D is 
scanned at constant cavity height ho = 3.2 mm and Constant 
tuning angle �9 = 0 
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Fig. 17. Comparison of theoretical and experimental first-order 
DFB resonances inside the stop band for a cavity with a split 
grating of M= 1200 grooves, of period L=0.250 mm and con- 
stant tuning angle @ = 0. The measured resonances are indicated 
by triangles. The flash on the D-axis indicates the stopband center 

resonant angle ~r. This yields the five main resonances 
specified in Fig. 17. The indicated three resonances at a 
gap Dr=0.145 m m  are the converted resonances of 
Fig. 15. The low-gain approximat ion (46) for homo- 
geneous gratings agrees with the resonance condition 
(53) for a cavity grating with gap, if the phase-shift q5 
caused by the gap D is equal to N .  2re. Hence, the 
observed resonance explained by the low-gain ap- 
proximation in Fig. 9 is also indicated in Fig. 17. 

In summary,  we have succeeded in observing 
modes inside the stop band by introduction of a gap in 
the cavity grating. Their well-defined separation agrees 
with our theory and results in single-mode operation of 
the laser. 

7.3. Measurement with a Grating of Period 0.255 mm 

For  a grating with period L =  0.250 mm, the resonance 
condition strongly depends on the gap D in the region 
of the s topband center, as demonstrated by the theoret- 
ical curves in Fig. 17. This might imply the already 
mentioned high sensitivity to the coupling of the 
9.55 gm CO2-1aser pump beam into the waveguide 
cavity. Therefore, we have replaced the grating of 
period L--0.250 m m  and groove number  M = 1200 by 
that of period L = 0 . 2 5 5 m m  and groove number  
M=1176 .  This decreases the s topband width by a 
factor of one fourth. As a consequence the influence of 
the gap D is reduced. 

Figure J8 shows the theoretical curves and the 
strongest of the observed resonances, indicated by A's 
for a constant gap D=0.105  ram, while Fig. 19 pre- 
sents the D-scan measurements. It  should be noticed 
that due to the enlargement of the groove spacing L by 
+ 5 I~m, the theoretical mode separation has decreased 
drastically. Therefore, the number  of the observed 
resonances has increased. Again we have fitted theory 
with measurements by a correction of the resonant 
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Fig. t8. Comparison of theoretical and experimental first-order 
DFB resonances inside the stop band for a cavity with a split 
grating of M= 1176 grooves, of period L=0.255 mm and con- 
stant gap D = 0.105 mm. The measured resonances are indicated 
by triangles 
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Fig. 19. Comparison of theoretical and experimental first-order 
DFB resonances inside the stop band for a cavity with a split 
grating of M = 1 t 76 grooves, of period L = 0.255 mm and tuning 
angle �9 = 0. The measured resonances are indicated by triangles. 
The flash on the D-axis indicates the stopband center 

gaps D r by + 5 gm and by multiplying the theoretical 
coupling constant ~c by a factor 0.9. 

In contrast  to the measurements with the grating of 
period L=0.250  m m  not all the observed resonances 
can be explained by the coupled-wave theory. Due to 
the smaller mode separation more than two counter- 
propagat ing modes may couple. Thus, our restriction 
to a two-mode coupling is no more justified. Naturally, 
a mult imode coupling cannot be treated analytically 
by simple procedures, because in first-order approxi- 
mation it corresponds to an eigenvalue problem of a 
n x n matrix. However,  the strongest of the observed 
resonances fit well with theory. This indicates that the 
threshold gain for mult imode couplings is consider- 
ably higher than that for two-mode couplings. 

8. Conclusions 

We have performed theoretical and experimental 
studies on standard and phase-matched DFB and 
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grazing-incidence gas lasers. On the basis of the 
coupled-wave theory and the characteristics of metal 
waveguides we have derived dispersion relations and 
resonance conditions for these lasers. Furthermore, we 
have presented a coupled-wave theory which allows an 
approximative calculation of the coupling coefficients 
for corrugated metal waveguides. For the case of a 
rectangular waveguide we have calculated the TM- 
coupling coefficients and compared them with 
literature. 

In experiment, we have realized the first optically 
pumped 496 gm CHaF grazing-incidence laser. Its 
cavity consists of a hollow rectangular metallic 
waveguide whose bottom is formed by a grating which 
provides first- or second-order DFB. The tuning 
mirror acts as a top of this waveguide. We have 
measured the resonant tuning angles ~r and heights ar 
of our laser with three different continuous gratings. 
The best performance with respect to mode selectivity 
has been achieved with a grating with M--1200 
grooves and a groove spacing L =  0.250 ram. In order 
to improve the mode selectivity and to decrease the 
bandwidth of our FIR CH3F laser we have introduced 
a variable gap in the center of the grating which serves 
for phase matching. For this configuration we have 
achieved single-mode operation of our DFB laser 
because the gap in the grating yields a considerable 
increase of the mode separation. 

From our experiments we infer that the pump 
beam geometry of the single mode 9.55 gm CO2 laser is 
an important feature, because the region of excited 
CH3F in the waveguide strongly depends both on the 
transverse mode pattern and on the incoupling con- 
ditions. This phenomenon is enhanced with increasing 
mode separation, which suggests that the intensity 
distribution of the stimulated coupled modes should 
coincide with the pumped waveguide region. This 
condition represents a selection mechanism for the 
oscillation of the waveguide modes. 

We have furthermore compared the resonances 
observed with continuous gratings with high and low 
threshold gain approximations of the resonance con- 
dition derived from the coupled-wave theory. For this 
purpose we have contrasted the observed resonant 
tuning angles 4~ and heights ar with the theoretical 
resonance conditions. Most of the observed reso- 
nances have been identified with respect to the trans- 
verse mode number n. However, it was not possible to 
identify the DFB mode number q because the mode 
separation of adjacent q's is too small. 

For cavities phase-matched by a variable gap in the 
grating we have compared the heights a,, angles 4~ r and 
gaps D r of the resonances inside the stopband with the 
resonance equation adapted to phase matching. For a 
grating with period L=0.250mm and M=1200 

grooves all the observed resonances have been identi- 
fied with respect to the transverse mode numbers m, n. 
On the other hand, it was not possible to identify all 
observed resonances for a grating of period 
L=0.255mm and M=1176 grooves. The smaller 
mode separation provided by this grating probably 
implies multimode couplings. 

The excellent agreement of the measured gap 
modes with the perturbation theory in the case of a 
grating period L=0.250 mm and M=1200 grooves 
allows the conclusion that a large mode separation is 
an indispensible requirement for the application of a 
coupled-mode theory restricted to two modes. Fur- 
thermore, the gap in the center of the grating yields a 
high-feedback performance of the DFB structure. 
However, in order to attain an optimum laser output 
power, the net gain of the laser has to be related to the 
reflection coefficient of the structure. As a consequence, 
an additional selection mechanism for the oscillation 
of certain coupled modes is provided by the gap width 
D, because its variation permits an alteration of the 
feedback characteristics of the structure. 

Investigations on DFB semiconductor lasers with 
constant ~ phase matching have demonstrated an 
improvement of the characteristics with respect to 
mode selectivity. The mode degeneracy typical for 
conventional DFB lasers can be eliminated. Our 
investigations demonstrate that a variable phase 
matching in the center of a DFB structure would allow 
an even more advantageous performance of laser 
diodes, e.g. by the optimization of output power, the 
reduction of bandwidth, and the improvement of 
frequency tuning. 

In conclusion, it should be mentioned that the 
study of DFB and grazing-incidence far-infrared gas 
lasers provides detailed information on the influence of 
the various grating parameters on the characteristics of 
all types of DFB lasers. 
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