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Abstract. A polyhedron can model irregularly shaped objects such as asteroids, comet nuclei, and 
small planetary satellites. With minor effort, such a model can incorporate important surface features 
such as large craters. Here we develop closed-form expressions for the exterior gravitational potential 
and acceleration components due to a constant-density polyhedron. An equlpotential surface of 
Phobos is illustrated. 
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1. Introduction 

Plans are being made to orbit the solar system's smaller bodies such as plane- 
tary satellites, comets, and asteroids. Images show many of these bodies to have 
elongated, non-spherical shapes, some with large craters (Figure 1). Conventional 
spherical harmonic representations of the gravitational potential of such bodies 
require high degree and order expansions which are difficult to obtain. 

The surface of such a body can be observed by remote imaging or radar. If 
complete coverage of the surface can be obtained, a polyhedral model of the body 
can be constructed (Figure 2). The polyhedron's faces can be large or small, and 
follow important surface features such as large craters and ridges. 

Here we develop closed-form expressions for the exterior gravitational potential 
and acceleration components experienced by a unit mass due to a homogeneous 
(constant-density) polyhedron. Using the Gauss Divergence Theorem and Green's 
Theorem, the potential and acceleration components can be expressed in terms of 
the polyhedron's edges and vertex angles. Accuracy of our results is determined 
by how closely the polyhedron models the actual body and by density variations 
within. 

Section 2 of this paper shows how to represent the gravitational potential of a 
homogeneous body in terms of its surface. In Section 3 we derive the contribution 
of a single planar triangular face to the gravitational potential of a polyhedron, and 
in Section 4 the corresponding acceleration expressions. In Section 5 we compare 
two equipotential surfaces of the inner Martian satellite Phobos, one generated by 
this paper's technique and the other by conventional spherical harmonics. Section 6 
cites related work by other researchers. 
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Fig. 1. This montage shows asteroid 951Gaspra (top) and the Martian satellites Deimos (lowerleft) 
and Phobos (lower right). The three bodies appear at the same scale and nearly the same lighting 
conditions. Gaspra is about 17 km long. (Photograph courtesy of NASA/JPL). 

2. Gravitational Potential in Terms of a Body's Surface 

The gravitational force vector f experienced by a unit mass located at (z, y, z) due 
to another point mass rn at (~, 7, if) can be expressed as the gradient of a potential 
U: 

where r is the distance between the unit mass and rn, and G is the gravitational 
constant. V represents the three-dimensional del operator whose Cartesian form is 
iO/Oz + jO/Og + kO/Oz. When the other mass rn is part of an extended body, the 
potential expression becomes an integral over the volume of the body: 

U = G ] ] J  r- l  dm 
body 

The usual approach is to expand r -  1 in terms of Legendre polynomials and U 
in terms of spherical harmonics (Kaula, 1966; Heiskanen et al., 1967). But there is 
another way to proceed. 

If we can find some vector-valued function w = w(~, 7, ~) such that its diver- 
gence V ,, w = r -1  , then we can use the Gauss Divergence Theorem to manipulate 
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Phobos' physical surface 
i0 y 

) z 

Fig. 2. A polyhedral model of the Martian satellite Phobos (Turner, 1978). North is up and Mars is to 
the right in the + x  direction. The large depression near the right limb represents the crater Stickney. 
The semiaxes dimensions of a fitted ellipsoid are a = 13.5 km, b = 10.7 km, and e = 9.4 km. 

the potential expression (here, the del operator acts on ~, ~/, 4). This theorem states 
the divergence of a vector field w integrated throughout a volume V is equal to 
the inner product of the surface normal fi and the vector field, integrated over the 
surface S of the volume: 

I f  V e w d V = f f f i e w d S  
V S 

The volume V must be bounded and connected, its surface S must be piecewise 
smooth and orientable, and the vector w and its first derivative must exist and be 
continuous throughout V and on S (Greenberg, 1978). 

The volume integral for the potential contains dm while the volume integral 
for the Gauss Divergence Theorem contains dV. We eliminate this problem by 
assuming the body has constant density. For brevity, we omit the density factor 
cr = d m / d V  and G, the gravitational constant, from all subsequent expressions. 

The desired vector is w = f-/2, where ~ is a unit vector from the unit mass 
directed toward the differential volume element. (In this paper, unit vectors such 
as ~ and fi wear a hat.) Under the assumption of constant density, the gravitational 
potential can be expressed as 
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U = f f f  r - ldv  = 1 f f  f i .~dS 
V S 

(2.1) 

We emphasize that this expresses the gravitational potential of a volume, not a 
surface. 

If the unit mass is on or within the body, the direction of/" is undefined for the 
volume element coincident with the unit mass, and a precondition for the Gauss 
Divergence Theorem is violated. Thus, we claim our expressions are valid only 
when the unit mass is exterior to the body. 

Equation (2.1) holds true for any constant-density body which satisfies the 
preconditions of the Divergence Theorem. If the surface integral is tractable, we 
can develop a closed-form expression for the potential. For example, it is not 
difficult to show that the exterior gravitational potential due to a homogeneous 
sphere is equivalent to the potential generated by the sphere's mass concentrated 
at its center. In this paper we proceed by evaluating Equation (2.1) in the form of 
a polyhedron. 

3. Potential Contribution due to a Triangular Face 

We might model a body's surface by a polyhedron. This is attractive because fi 
is constant on each face, say fif. We compute a polyhedron's potential by first 
integrating f i f •  ~ over the area of each face, then summing over all faces: 

2U= f f  f i .~dS= E [ f f  fif.~dS] . 
S faces face 

In this section, we integrate l~lf • I" over a planar region, then specialize to a 
convex polygon, and finally to a triangle. 

3.1. PLANAR FACE 

If the body is a polyhedron, the faces must be polygons - planar regions with 
straight edges. Initially however, we can derive slightly more general results by 
assuming only that the faces are planar. The edges of these planar faces need not 

be straight. 
For each planar face, establish a right-handed Cartesian 'face' coordinate system 

with basis vectors i, j parallel to the face plane and t~ aligned with the face's 
outward-pointing normal fif. The specific direction of ] or j is unimportant. In the 
face coordinate system, all points in the face share the same ( coordinate which 
we label ( f .  A typical point on the face has coordinates ((, 71, ( f) .  

In the face coordinate system, the unit mass has coordinates (z, y, z). For much 
of our derivation it is convenient to use coordinates relative to the unit mass, 
so we define Ax = ~ - x, Ay = 71 - y, and Az = ( f  - Z. Then we have 

= i - ~  + j ~ + f~ -~ ,  where Az is the constant, signed coordinate of the face 
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~ A x  

Fig. 3. An imaginary sphere is centered on the unit mass and just touches the face plane. The face 
is projected onto this tangent sphere and the area of its image computed in terms of the spherical 
vertex angles. The value of a spherical angle (e.g. $2) can be calculated from the coordinates of three 
consecutive vertices of the corresponding planar polygon (Ph P2, and P3). 

plane relative to the unit mass, and r 2 = A x  2 + z~xy 2 -~- z2XZ 2. The differential surface 
element is dS  = d~ d~ = d (Ax)  d(Ay) .  

It is convenient to illustrate a lemma before proceeding. Imagine a sphere of  
radius ]Az], centered at the unit mass, which just touches the face plane (Figure 3). 
Use a central projection to map the planar face onto this ' tangent sphere' and find 
the area of  its image. The differential area element on the tangent sphere, always 
positive, is dA = ]Azl3/r 3 dS (Appendix A). The positive area of  the image on 
the sphere is 

Aimage - -  f f d A = / /  IAzl3/r 3 dS 
planar 
face 

image 
on sphere 

Lemma 1 is 

/Az3/r dS = s ign(Az)  " Aimage 

planar 
face 

where s ign(Az)  is +1 ,  - 1 ,  or 0 as Az  is greater than, less than, or equal to, zero. 
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With this lemma, a planar face's contribution to the volume gravitational poten- 
tial can be developed quickly: 

2Upl.narface = / /  l~lf • ~ d S  

planar 
face 

= k. + j  + k  dS 
T T 

planar 
face 

_-f/ zr 
planar 
face 

dS (3.1) 

= H- r3 r3 
planar 
face 

dS 

= A z  + t d S -  ~ 5 - d S  
planar planar 
face face 

= Az 
' ( r  2 + zx~ 2) 

plan.r rg ] dS - s ign(Az) .  Aimage 

face 

= Az r3 + - dS - sign(Az) • A i m a g e  

planar 
face 

= Az # ( o f )  0 Ax + 

OAx r OAy 
planar 
face 

dS - sign(Az) . A i m a g e  

= A z .~lbo.u.a,da~o e ( - ~ f  d a y  ~YdAx)-sign(Az)'Aimage (3.2) 

where the last step is an application of Green's Theorem. The contribution of 
one planar face to its volume's potential involves a line integral counterclockwise 
around the boundary of the face and the area of the face projected onto the tangent 
sphere described for Lemma 1. Counterclockwise is in the sense of the right-hand 

rule and l~lf. 
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3.2. CONVEX PLANAR POLYGON 

In the preceding development we assumed only that the face is planar. We now 
assume the face has straight sides and is convex; that it is a convex planar polygon. 
Straight sides allow us to evaluate the line integral easily. Convexity simplifies the 
expression for the area of the face image. 

Here are definitions we use subsequently. Let/91, P2,. • • denote the vertices of 
the polygonal face, taken in counterclockwise order. Relative to the unit mass, the 
coordinates of these vertices are P1 = (Axl, Ayl, Az), /02 = ( A X 2 ,  Ay2, Az), 
and so on. Let rl,  r2, . . ,  denote the distances between the unit mass and points 
/01, P2, . . . .  Let r12 denote the constant distance between points P1 and P2, with 
similar definitions for r23 and so on. The angle oq2 is measured between the 
Ax axis and the edge connecting P1 and P2; we define it in terms of cos oq2 = 
(Ax2-AXl) / r12  = (~2-~1)/r12 andsin OZ12 = (Ay2-Ayl) /r12 = ( r 1 2 - ~ ] l ) / r 1 2 ,  

with similar definitions for 0~23 and so on. Finally, it is convenient to define certain 
determinant expressions: det12 = AZlAY2 - A x 2 A Y l  and similarly for det23, etc. 

3.2.1. Line integral 
We compute the line integral around the polygon boundary (taken from the first 
term of Equation (3.2)) by integrating along each edge and summing: 

f.po (ArXdAy A-YdAx) = E [edgfe ( ~ d A y - -  A--~YdAx)] 

To evaluate 

/ ( ~ f d A y -  A@ max)  

edge 

for the typical edge connecting points P1 and t92, let s parameterize the distance 
along the path of integration; 0 _< s < r12. Coordinates Ax and Ay become 
A z  = Ax(s)  = AXl + s cos oq2 and Ay = Ay(s) = Ayl + s sin Oq2. Also, 
dAx = ds cos c~12 and dAy = ds sin c~12. The edge integral becomes 

/ ( - ~ f d A y - ~ d A x )  = Ax  sine~12-Ayc°sct12dSr 

PI 0 

__-- rj2 ( A Z l  -~- s cos  oq2 ) sin Oq2 --r (Ay~ + s sin OZ12 ) COS Oq2 
ds 

7'12 

= 0 f V/s 2 + 2(Axl 

(Axl sin oq2 - A y  1 cos oz12 ) ds  

COS Oq2 -Jr- m y  1 sin (YI2) 8 -~- (Z2kX~ -~- A y  2 n t- z~z 2) 
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= ( A X l  sin Oq2 --  Ayl cos a12) ln(1` + s + Axl  cos Oq2 

\ I S = r l 2 , r = r 2  
+ A y l  sin cq2)ls=o,~=~l 

= (Ax,  sin ~12 - Ayl cos oq2 ) In ( 1"2 ÷ 1`12 q---/~X--~l _COS _C~12 ÷ ~ Y l  sin_oq2~ 
1̀ 1 + Axl  cos ~a2 + AYl sin Oq2 ] 

= ( A x  1 sin c q 2 _  Ay 1 c°s °q2 ) in (1̀77212 + Ax2 cos 0112 ÷ / \ y 2  sin ~12~ 
÷ Ax 1 cos oq2 ÷ ~Yl sin oq2 ] 

1`2 + A x e )  
= --Ay'  In 771 + Ax ] 

where the primed coordinates locate the two points in an 'edge' coordinate system 
rotated so its Ax'  axis is aligned with the edge. That is, &x] = Axl  cos c~12 + 
Ayl  sin oq2, Ax~ = AX2 COS Oq2 ÷ A y  2 sin OZl2 , and Ay'  = Ay~ = Ay~ = 
Ay 2 COS Oq2 --AX2 sin o~12. Note that in this edge coordinate system, A x e - A x ]  = 

?'12. 
MacMillan (1930, §43) simplifies the in argument further: 

1`2 ÷ AX~ 21  ̀2 ÷ (AX~ ÷ AXe) ÷ (Ax~ - AX]) (AX~ -- ~kx]) 
- -  . 

2(Ax~ - Ax'~)r2 + (Ax~ 2 - Ax]  2) + (Ax~ -- Ax])  2 

2(Ax~ - Ax~)1` 1 ÷ (Ax~ 2 - Ax] 2) - (Ax~ - Axe) 2 

27`127`2 ÷ (?`2 _ 1̀ 12) ÷ 1`22 

21`121`1 + (?̀ 22 -- ?̀ 12) -- ?̀122 

(r2 + 1`12) 2 - r 2 

- (?`1 - m ) '  

(r2+rl2+rl) ( r2+r12  - r l )  

(V2÷Vl --V12)(r2 - - r l  ÷r12)  

rl  ÷ r2 ÷ r12 

T1 ÷ ?`2 - 7"12 

With this simplification, the line integral between points/91 and/92 becomes 

P2 
f (d~rXdAy--- 
PI 



THE GRAVITATIONAL POTENTIAL OF A HOMOGENEOUS POLYHEDRON 261 

AxlAY2--Ax2Aylrl2 l n ( r ~  ++r2+--r12)r2 r12 

= detl2 L12 (3.3) 

where we define L12 = In [(rl + r2 + rl2)/(rl + r2 - r12)]/r12, with similar 
definitions for L23 and so on .  L12 is expressed intrinsically in terms of distances 
and is independent of any coordinate system. 

In a rigid polyhedron, the edge length rl2 is fixed; a computer subroutine need 
not recompute the value each time the subroutine is called. Further, any edge is 
shared between two faces. We need not calculate L12 for both. 

3.2.2. Area of a spherical polygon 
Now we evaluate the other term in Equation (3.2) which involves the area of the 
polygon projected onto the tangent sphere described for Lemma 1. 

The image of a face polygon projected on its tangent sphere is a spherical 
polygon whose edges are great circular arcs. On a sphere of radius R, the area of 
such a spherical polygon is R 2 [P, vertex angles -- (n -- 2)rr], where n is the number 
of edges. 

Here we present expressions for one vertex angle $2 of a spherical polygon in 
terms of the corresponding planar polygon. We stipulate that the planar polygon 
be convex because the spherical polygon's interior angles will be confined to the 
range [0, rr). 

Let P1, 1:'2, and P3 be three consecutive vertices of the planar polygon, and 
S1, $2, and $3 be the corresponding points on the tangent sphere (Figure 3). In 
Appendix B we derive this expression for the spherical vertex angle $2: 

I/kZl [71 (~3 -- ~2) -t- 72({1 --  ~3) q- 73({2  --  El)]  
$2 = arctan 

-{det12det23 + ~z2[(~3 - ~2)({2 - {1) + (73 - 72)(72 --  7 1 ) ] } / T 2  " 

The bracketed factors in the numerator and denominator are invariant for a rigid 
face. The bracketed numerator factor [71 ({3 - {2) + 72({1 - ~3) + 73({2 - {1)] is 
twice the area of the planar triangle defined by P1, P2, and/='3. 

Since we stipulate that the polygon face is convex, the angle Sz must lie in 
quadrants I or II. Since the arctangent's numerator is never negative (Appendix B), 
the sign of the denominator indicates whether $2 lies in quadrant I (denominator 
positive) or II (negative). 

Recall that we actually need the expression sign(Az) • Aimage. We can automati- 
cally incorporate the sign(Az) factor by substituting Az for [Az I in the arctangent 
expression, with the understanding that arctan must now return angles in the range 

+re): 

A Z  [71 (~3 -- ~2) -+- 72(~1 -- ~3) -}- T/3({2 -- ~ l ) ]  
$2 = arctan 

-{detladet23 + A z 2 [ ( { 3  - ~2)({2  - E l )  q- (73 - 7 2 ) ( 7 2  - 71)1}/r2 " 
(3.4) 
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We compute all the vertex angles of the spherical polygon by substituting the 
coordinates of each triplet of consecutive planar vertices. Then 

//',z3/r dS = sign(Az) • A i m a g e  

planar 
face 

= Az2[S1 + $2 + . . .  + Sn - ( n -  2) sign(Az) Tr]. 

For a triangular face there are only three vertices, so the numerators of the three 
arctan expressions $1, $2, and $3 are equal. 

3.3. TRIANGULAR FACE 

Equations (3.3) and (3.4) are reasonably simple subexpressions for the contribution 
of a convex polygonal face to its polyhedron's gravitational potential. Here we 
present the entire contribution to the potential due to one triangular face. We 
restate our definitions here for your convenience. 

First, the triangular face's vertex coordinates must be rotated from the body 
coordinate system to a face-specific, right-handed Cartesian coordinate system 
whose I~ axis is aligned with the face's outward-pointing surface normal fif. Here 
is one way to find the rotation matrix. Suppose the three vertices have components 
P1 = (XI ,Y1 ,Z1) ,  P2 = (Xz, Yz, Z2), and/)3 = (X3,Y3,Z3) in the body coor- 
dinate system. Form two vector differences Rlz  = P2 - P1 and R23 = P3 - P2. 
The outward-pointing surface normal vector is the normalized cross product of 
the two, in this order: fif = 1~ = (R12 x Rz3)/IIR12 × R2311. We can normal- 
ize one of the vector differences and adopt it as another coordinate direction, say 
1 = R12~/I[R121[, and find the last coordinate direction by another cross product: 
j = k x i. The components of these basis vectors (which are expressed in the body 
coordinate system) form the rotation matrix from body to face: 

Cz kx kv kz 
In the face coordinate system, the three vertices have fixed coordinates (~1, 7/1, ~f ), 

(~2, 7/2, fly), and (~3, 7/3, fiX) taken in counterclockwise order according to the right- 
hand rule and fly. Let r12, r23, and r31 represent the fixed lengths of the edges. All 
of these coordinates and distances can be computed once and saved. 

The unit mass has coordinates (x, y, z) in the face coordinate system. The 
coordinate differences from the unit mass to the first vertex are Axl = 41 - x, 
Ayl  = 7/1 - Y, and similarly for the other two vertices. All three vertices share the 
same Az = Cy - z. Symbols rl ,  r2, and r3 represent distances between the unit 
mass and the three vertices. 

For notation, we define three determinant, three logarithm, and three arctangent 
expressions: 
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detl2 = AxlAY2 - Ax2Ayl ;  det23 = Ax2AY3 -- Ax3Ay2; 

det31 = Ax3AYl - AxlAY3 

1 (f_~ll q-T2-~-rl2" ) L 1 2 = - -  In -- ; L23 
/'12 q-/'2 T12/' 

: __1 ln(r~22+r3+___r23~} 
/'23 + /'3 - -  r 2 3 /  ' 

I ( T3 -+" TI -Jr- T31) 
L31 = -  In 

T31 r3 + 7"1 - -  7"31 

S 1 = arctan 
A z [ ~ l ( / ] 2  - 113) -~- ~2(/]3 - / ] 1 )  -1- ~3(/]1 - / ] 2 ) ]  

- { d e t 3 1 d e t 1 2  + k z 2 [ ( ~ 2  - ~1)(~1 - ~3) + (/]2 - / ] 1 ) ( / ] 1  - / ] 3 ) ] } / r l  

AZ[~I( / ]2  -- /]3) "Jr- ~2(/]3 - - / ]1 )  -+- ~3(/]1 - - / ]2)]  
- { d e t 1 2 d e t 2 3  + A z 2 [ ( ~ 3  - {2) (~2  - ~1) + (/]3 - / ] 2 ) ( / ] 2  - / ] 1 ) ] } / r 2  

za~Z[~l(/]2 -- /]3) -Jr- ~2(/]3 -- /]1) q- ~3(~1 -- /]2)] 

S 2 : arctan 

S 3 : arctan 
-{det23det31 + Az2[(~l - -  ~3)(~3 - {2) -t- (/]1 - / ] 3 ) ( / ] 3  - / ] 2 ) ] } / T 3  " 

The numerators of the three arctangent expressions are equal. The numerator and 
denominator of each arctangent expression have their own signs and together those 
signs determine the quadrant of the result, which must range through ( - %  +re). 

The bracketed factors in each arctangent expression are constants for a rigid 
triangle. They too can be computed once and saved. 

A triangular face's contribution to the gravitational potential of its polyhedron 
is 

Az 
Utrimlgle = ~ ( d e t l 2 L 1 2  -I- de t23L23  q- de t31L31)  

A z  2 
2 (& + $2 + $3 - sign(Az) 9r). 

The unit mass cannot be inside the body or on its surface without violating a 
precondition of the Gauss Divergence Theorem. If the unit mass were to lie exactly 
within some edge, then the L expression for that edge contains a division by zero. 

4. Acceleration Contribution due to a Triangular Face 

The acceleration experienced by the unit mass at (x, y, z) is found by taking the 
^ ~ ^ 

gradient of the potential. Here we derive the i, j, and k acceleration components 
due to one triangular face, starting from Equation (3.1). 

The i component of acceleration due to one triangular face is 



264 ROBERT A. WERNER 

triangle 

o (o)] dS 

2 angle 
boundary 

A z  

2 Z 
triangle 
edges 

Az2 [sin 
P2ds P3ds P I ~ ]  

/ - - + s i n c e 2 3  / - - + s i n o ~ 3 ,  / Oq2 7" 7" 
P1 /}2 1°3 

A z  

2 

7/2_2 7/2 In  ( T1 -'}- 7"2 q- 7.12~ 

7'12 \ r l  + 7.2 -- 7.12,/ 
/ ! 

7/3 -- 7/2 In {7.2 -k- 7.3 + 7"23 "~ -+ 
/ / 

7"23 \7"2 + 7"3 -- 7"23 / 
7/1 -- 7/3 In {7"3 -t- 7"1 -t- 7"31 ) 

/ / 
7"31 \7"3 -}- 7"1 -- 7"31 ] 

A z  
2 [(7/2 --  7/1) L12 -'~ (7/3 --  7/2) L23 + (7/1 --  7/3) L31] • 

If we arrange the face coordinate system so that, say, the edge between points ^ 
1 and 2 parallels the i axis, then 7/1 = 7/2 and we need accumulate one fewer term: 

0 A z  
- -  Uspo~i.~ - [0 + (7/3 - 7/2) L23 + (7/1 - 7/3) L31]  • 
0X triangle 2 

This simplification (r/2 - 7/1 = 0) also affects $1, $2, and $3. 
In a similar way, the j component is found to be: 

o A z  
Utriangle = - I - -~  -T- [({2 -- {1) L12 -t- ({3 - {2) L23 -I- ({1 - {3) L31] • o!/ Z ~  

The 1~ component requires a different approach: 

oT ½ V ½ 
triangle triangle 

/ r2 __ A Z  2 
_ 1 d S  

- -  --~ T3 
triangle 
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' l i  (1 Az 2 2Az2~ 
= - g  7 +  r---T-- r3 ) dS 

triangle 

265 

1 f i (1 Az2~ 1 i i  Az 3 - -  - + d S  + dS 
- 7 

triangle triangle 

= 1 [det12L12 + det23L23 + det31L31] 

q-Az[S1 -'b ~2 q- ~3 - sign(Az) re]. 

The acceleration components are expressed in the face-specific coordinate sys- 
tem. They must be rotated to a common body coordinate system before being 
summed over all faces. 

In summary, we have derived closed-form expressions for the gravitational 
potential and acceleration components experienced by a unit mass due to a constant- 
density polyhedron. Next we apply the technique to approximate the gravitational 
potential of the Martian satellite Phobos. 

5. E q u i p o t e n t i a l  S u r f a c e s  o f  P h o b o s  

We use coordinates published in Turner (1978) to model the inner Martian satellite 
Phobos as a polyhedron containing 146 vertices and 288 triangular faces (Figure 2). 
The volume of this model is slightly less than 5400 km 3, and the centroid is at (-0.23, 
0.07, -0.20) km relative to the origin used by Turner. Duxbury (1989) develops 
a spherical-harmonic representation of Phobos' surface and finds its volume to 
be 5533.1 km 3. Duxbury's model does not incorporate the large crater Stickney, 
whereas Turner's model does. Simonelli et  al. (1993) express the surface of Phobos 
numerically as the radial distances in a number of preselected (latitude, longitude) 
directions. The volume of their high-resolution model is 5740 -t- 190 km 3. 

Figures 4a and b show equipotential surfaces derived from two Phobos models. 
Both models are based on surface coordinates given in (Turner, 1978, Table III), and 
include the large crater Stickney. The two figures depict the potential due solely to 
the models' gravitation; they omit the rotational potential and third-body potential 
due to Mars. Each equipotential surface passes through the point (15,0,0) km 
(approximately 1.5 km above the sub-Mars point). To enhance irregularities, the 
figures depict the surfaces' radial altitude relative to fitted ellipsoids. 

In Figure 4a, the topography of Phobos is modeled as a polyhedron. Gravitation- 
al potential is evaluated from this constant-density polyhedron using the formulas 
of this paper. The fitted ellipsoid has semiaxes (15.3, 14.0, 13.5) km. For compar- 
ison, the equipotential surface in Figure 4b is generated from Stokes' coefficients 
in (Martinec et  al., 1989, Table IV). These authors derive their Stokes' coefficients 
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Eguipotential map via polyhedron [Turner 1978] relative to fitted ellipsoid 
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Fig. 4. Equipotential surfaces of Phobos' gravitation relative to fitted ellipsoids, omitting rotation 
and third-body effects. The surfaces pass through the point (15,0,0) km which is approximately 
1.5 km above the sub-Mars point at 0 ° latitude and 0 ° longitude. Contours are at integer multiples of 
0.1 km. Both surfaces are based on surface coordinates in (Turner, 1978, Table III). In part (a), the 
coordinates are made into a polyhedron and the equipotential surface is generated using this paper's 
techniques. Radial altitudes are relative to a fitted ellipsoid with semiaxes (15.3, 14.0, 13.5) km. In 
part (b), the equipotential surface is generated from a 6 x 6 spherical-harmonic field (Martinec et  al. ,  
1989, Table IV) derived from the (Turner, 1978, Table III) surface coordinates. Radial altitudes are 
relative to an ellipsoid with semiaxes (15.3, 13.9, 13.4) km. 
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from surface coordinates in (Turner, 1978, Table III). Like us, they assume the 
model has constant density. The fitted ellipsoid has semiaxes (15.3, 13.9, 13.4) km. 

Visually, Figures 4a and b compare well. Both show the northern hemisphere as 
being lower than the southern, but this is because the centers of the fitted ellipsoids 
are at the origins of surface coordinates, not at the centroids of the models. The 
extreme altitudes occur in the same areas in the two maps, the high at about 
230°W, 45°S and the low near 340°W, 25°N. The large crater Stickney is centered 
approximately 60°W, 10°S and both equipotential surfaces show a depression there. 
We conclude that the polyhedral technique produces much the same results as a 
conventional spherical-harmonic approach. 

6. Relation to Other Work 

Strakhov et al. (1990, § 1) state, "The direct gravimetric and magnetometric prob- 
lems for homogeneous polyhedrons are classical. They were first studied in the 
19th century (Meller and Sludsky), but it wasn't  until the 1960s-1980s that special 
attention was devoted to them", and cite eighteen references. We have not yet 
located these 19th century works of Meller and Sludsky. 

MacMillan (1930, §43) derives a closed-form expression for the potential of a 
homogeneous, rectangular parallelepiped by evaluating a triple integral. It was from 
this work that we gained the insight of projecting a face onto a tangent sphere. For 
verification, we have specialized our expressions and found exact correspondence 
with MacMillan's. 

Timmer et  al. (1980) evaluate the surface area, volume, centroid, and moments 
of inertia of solid objects using the same theorems as we do (Divergence, Green's), 
but in the context of computer-aided design. They model intersecting objects such 
as cylinders, cones, and spheres, and use Gaussian quadrature approximations 
because of the difficulty in expressing surface boundaries. Our result are in closed 
form because we use polyhedra exclusively. 

Waldvogel (1979) expresses the gravitational potential of a general homoge- 
neous polyhedron in closed form. The potential at one vertex of a standard element, 
a rectangular simplex, is found by evaluating a triple integral. The potential of a gen- 
eral polyhedron is found by adding and subtracting appropriately sized simplices. 
Each edge of a given face requires two simplices for a total of four transcenden- 
tal function evaluations (arctan and arctanh), twice the number required by the 
technique presented in this paper. 

Barnett (1976) and Okabe (1979) use the three-dimensional Gauss Divergence 
Theorem and its two-dimensional form or other means to evaluate the gradient and 
second partials of a polyhedron's potential. Poh~mka (1988) states those authors 
should not claim to have valid expressions when the unit mass is inside the body 
or on its surface. The Divergence Theorem should not be used with a singular 
integrand. 
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We confess to using manual techniques to form a polyhedron from a collection 
of surface points. Computer algorithms for this task are described in Cavendish et 

al. (1985) and Hoppe et al. (1992). 

7. Conclusions and Future Work 

We have derived closed-form expressions for the exterior gravitational potential and 
acceleration components of a homogeneous polyhedron whose surface consists of 
planar triangles. The expressions contain two kinds of terms, logarithms associated 
with the polyhedron's edges and arctangents associated with interior vertex angles 
of the faces. To demonstrate the utility of the technique, we depict an equipotential 
surface of the Martian satellite Phobos. The large crater Stickney is present in 
the model of the physical surface and its effect is discernible in the equipotential 
surface. The equipotential surface derived from the polyhedral technique compares 
well with one produced using a conventional spherical-harmonic expansion. 

One advantage we see in the polyhedral technique is that the quantities which 
parameterize the potential and acceleration expressions (the polyhedron's vertices, 
edges, and faces) are local in scope. Incorporating a surface feature into the mod- 
el affects only the faces in the vicinity of the feature. This is in contrast to a 
spherical-harmonic surface representation where the quantities have global scope; 
incorporating a surface feature generally affects every coefficient. 

The polyhedron expressions are an approximation to reality since real bodies are 
not polyhedra and contain density irregularities. The expressions seem unsuitable 
for analytic studies since they do not separate into the Keplerian term and disturbing 
function. But they can certainly be used to propagate trajectories in ejecta studies 
or mission design. 

It might be fruitful to study orbits around simple polyhedra such as the Platonic 
solids. A tetrahedron seems to affect orbits in a way similar to the spherical 
harmonics J3 and J3,3. 
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Appendix A. Differential Area Element on the Tangent Sphere 

We use the following results from differential geometry (Kreyszig, 1959, §35-36). 
Let S(Ul, u2) define a surface embedded in three-dimensional space. The directions 
of Ul and u2 are not necessarily orthogonal. For notation we define 

OS OS OS OS 
- -  o - -  912 = g 2 1  : - - ' - -  
O U l  O U l  ' O U l  OU2 

g l l  : 

and 

OS OS 
922 = OU2 • O u 2  

g=911922-g12921=det [ 911921922912] . 

Then the differential area element on the surface is dA = V/ffdul du2, and the 
angle a: between coordinate directions Ul and u2 is cos w = 9 1 2 / g ~ 2 2 .  

The arccos function is very sensitive to argument inaccuracy when the angle 
is near a multiple of 7r, so we use tan w = v/~/912 instead. An angle evaluated 
using arccos lies in quadrants I or II, so we require this of arctan as well. Since 
the numerator of tan a2, x/-g, is never negative, it is the sign of the denominator 912 
which indicates quadrant I (912 > 0) or II (912 < 0). 

In this appendix we use such expressions to evaluate the differential area element 
on the tangent sphere. Intermediate results are then used in the next appendix to 
evaluate a typical vertex angle of a spherical polygon. In both cases the surface 
S (Ul, u2) is the tangent sphere described in Section 3.1. All results can be expressed 
in terms of  quantities on the face plane. 

Differential Area Element 

Let P -- Ax~ + Ayj  + Azl~ denote the location of an arbitrary point on the face 
plane. Coordinates are measured relative to the unit mass, and Az is the constant, 
signed perpendicular distance from the unit mass to the face plane. Let S denote 
the corresponding point projected on a sphere of radius R centered at the unit mass: 

s = s (zxx ,  zXy) = R i + j + 1~ 
T 

where r 2 = Ax 2 + Ay2 + Az 2. For the particular case of the tangent sphere, the 
radius R = IAzl. However, we postpone this substitution until later. 

The partials of S are easily found to be 

o s  _ R t ~ J r (~-  ~'x~)i-~xx~xY-:- t ' x t ' ~ l  OAx r 3 
(A.1) 

OS R 
- ~ [ -  ~ x  ~ y ~  + ( ~  - ~ y ~ ) j  - ~ ~ k ]  

OAy 
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Now we evaluate the quantities gl 1,922, g12, and 9, from which we can determine 
dA. The derivation of g22 parallels gll and we omit intermediate steps: 

OS OS 
g l l  = Oa----~ * OAx /.6 

R 2 
= r- T [r 4 -- 2 r 2 A x  2 q- A x  4 q- Ax2Ay  2 q- A x 2 A z  2] 

R 2 
= --r 6 [ r 4 - 2 r 2 ~ x x 2 q - A x 2 ( A x 2 + A y 2 q - / k z 2 ) ]  = 7R2 [ r 4 - r 2 A x 2 ]  

R 2 
= r --~'- [/.2 _ A x  2] (A.2) 

0S 0S R 2 
0 2 2 -  oqA~ I OqZ~ ~ -- 7.4 [7'2-- my2] (A.3) 

g12 = OA---X t OAy -- 1,6 [ q - ( - A x  A Z ) ( - A y  AZ) J 

R 2 
-- r6 [ 2r 2 A x A y + A x A y ( A x  2+Ay 2+Az2)] 

R 2 
= r-- 2- [--Ax Ay] (A.4) 

R 4 
= gllg22 --g22 = 7 [ ( ' v 2 -  AX2)(T2- -  Ay2)  -- ( - - A x A y )  2] 9 

R 4 
= - ~  [r 4 -- rZ(Ax 2 + Ay 2) -1- AX 2 Ay 2 -- A x  2 Ay 2] 

R 4 

.R 4 
~___ - -  AZ 2 . 

?-6 

When we substitute R = IAz I, we find the differential area element on the tan- 

gent sphere is dA = x / ~ d A x  d a y  = ~ / ~ - ~ r  6 dAx dAy = [ A z l 3 / r  3 dAx dAy. 

Note that we must use the absolute value since Az is signed. This is the result we 
use in section 3.1. 
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Appendix B. Vertex Angle of a Spherical Polygon 

In this appendix we use intermediate expressions from Appendix A to evaluate a 
typical vertex angle $2 of a spherical polygon in terms of the corresponding planar 
vertex P2 = Ax2 ~+Ay2j+Az ~ and its two neighbors P l  = Axl i + A y l  j + A z  ~: 
and P3 = Ax3 i + Ay 3 j + Az k (Figure 3). 

There are many preliminaries. For brevity, we introduce c12 = cos 0~12 = 
(Ax2 - Axl)/rl2 ----- (~2 - ~1)/r12, s12 = sin oq2 = (Ay2 - Ayl)/rl2 = (~2 -- 
~1) Ira2, and corresponding definitions for c23 and s23. The angles oq2 and 0~23 are 
between the Ax axis and the edges P1P2 and P2P3. 

In the face plane, we set up a non-orthogonal coordinate system P(u l ,  u2) such 
that we move from point/92 to P1 or P3 along the two non-orthogonal directions: 
P(0,  0) = P2, P(r l2,  0) -- P l ,  and P(0,  r23) --- P3. The general point is 

P ( u l ,  U2) : ( A x 2  --  UlC12 q- U2C23) i -~- ( A y  2 - u1812 -~- uzs23) j + Az k 

= AX(2 t l ,  U2) 1 -~- A y ( 2 t l ,  u2)  j -}- A Z  1~. 

(B.1) 

We are more interested in the partial derivatives at the spherical point S 2 than 
its coordinates. We evaluate these partials by employing the chain rule: 

0S 2 0S 2 0 A x  0 S 2 0 ~ y  082 082 OAX 052 OAy . . . .  + . . . . .  + - -  
OU 1 OAx Ou 1 OAy Ou 1 ' Ou2 OAz Ou2 OAy Ou 2 

Expressions for OS/OAx, OS/OAy, gll, g22, and 912, appear in Appendix A, 
Equations (A. 1-A.4). To specialize them for the specific point $2, we need only 
relabel the quantities Ax, Ay, and r to read Ax2, Ay2, and r2: 

0S2 R 

OAx - r32 
- - [¢~ - ~Xx21~,- ~ ~ , ~  - ~Xx2 ~x~ f,] 

082 

OAy 
R - ~ [ - ~x~2 ~ x ~  ~ + / q  - ~ / ~  - ~v~ ~2 ~] 

R 2 R 2 R 2 

From Equation (B. 1) we have Ax(ul, U2) ---- AX 2 - u l c 1 2 - l - u 2 C 2 3  and Ay(ul, U2) ---- 

A y  2 - -  u1812 q- u2823 , SO the partials are 

OAx OAx 
OU 1 C12 ~ OU 2 = C23 

OAy OAy 
OU I 812 ~ OU 2 - -  823 • 
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Certain expressions with geometric meanings occur often in the derivations 
below. For brevity, we define coordinates of P2 expressed in two different primed 
coordinate systems, one rotated so the z'  axis is aligned with the edge P~P2, and 
the other's x" axis aligned with the edge P2P3 (Figure B1, parts a--c): 

A:;C~ = AX2Cl2 q- Ay2812 , A Z ~  = AZ2C23 q- Aff2823 , 

Aff~ = Ay2c12 -- Ax2sl2,  Ag~ ~ = Ay2c23 - Ax2s23 , 

~ = ~x42 + ~xy~2 + / , z 2 = / , . ~ 2  + ~xy~2 + Az 2 

The exterior angle at P2, viz. oz23 - oq2, often appears. Since we stipulate a 
convex polygon face (Section 3.2), this exterior angle is always in quadrants I or 

II. 
Two lemmas complete the preliminaries: 

Lemma B1 

! l! AZ~ A x ~  q- A y  2 A y  2 = (AX2C12 n t- Aff2812)(Ax2c23 -Jr- Ay2823) 

+ ( A y 2 c l 2  -- Ax2812)(Aff2e23 -- Ax2823) 

= AX2C12C23 -~- AxzAy2(c l a823  q- 812c23) -I- Ay2812823 

+zxv~c12c23 - zx~2ay2(c12823 + 812~23) + zXx~812823 

= Ax2(c12c23 -t- 812823) q- Ay2(c12c23 + s12s23) 

= (zXx~ + zxy~/cos(~23-  ~,2).  

- A y  2 Ay 2. We use this lemma as A:c~ Ax~ -- (A:c~ + Ay 2) cos(oz23 -- oq2) = ' " 

Lemma B2 
Let d be a certain distance shown in Figure B l(d). The first two equalities 

below hold because of the Law of Cosines for Planar Triangles. We take the second 

equality and continue: 

d 2 = Ax~ 2 -q- A.z~ 2 - 2Ax~ A:c~ cos(o~23 - oq2) 

= /ky~ 2 q- A y ~  t2 - 2Ay~ Ay~ COS(O~23 -- OZ12 ) 

= (Aff2Cl2 -- /ka72812) 2 -I- (AY2C23 -- Ax2823) 2 

- -2 (Ay2c12  -- Ax2812)(Ay2c23 -- Aa72823)(c12c23 -l- .312823) 
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(a) P3 

P1 

R" Ax 2 

(b) P3 
,2' 

R "  a12 

(c) e3 

p 2 ~  a23 

. , /" \ a23 
R -  

(d) 
3 

R ~ Ax~ ~ Ax~ 

Fig. B 1. (Part a) Relative to point R (the location of the unit mass projected onto the face plane), 

coordinates of/:'2 are (Ax2, Ay2) expressed in the usual coordinate system. We also use coordinates 

of P2 in rotated coordinate systems with z-axes paralleling edge P1P2 (part b) and PeP3 (part c). Part 

(d) shows a certain distance d is derived easily from the law of cosines for planar triangles. The three 

angles drawn with arcs all equal o~23 - ~12, the exterior vertex angle at P2. 

2 2 
=  yi4: - +  xi4: + - + 

--2[Ay2c12C23 -- Ax2Ay2(812C23 q- c12823 ) -~- Ax2812823](C12C23 "q- 812823 ) 

2 2 = z~x21812 -~- 823 -- 2812823(c12c23 -~- 812,523)] 

2 2 +Ay2 [cn + c2Z3 - 2c12c23 (c12c23 + si2s23)] 

- - 2 A x 2 A y 2 [ c 1 2 8 1 2  + e23823 -- (812c23 + c12823)(c12C23 -Jr- 812823)] 

2 2 = AxZ[s22  + s~3 -- 2c12s12c23s23 -- 2SlzS23 ] 

+Ay2[c22  + c23 -- 2c22c23 -- 2c12812c23823] 

- - 2 A x 2 A y 2 [ c 1 2 8 1 2  -~- c23823 - c12812c23 - 822c23823 -- ¢22e23823 - c12812823] 
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Spherical Vertex Angle 

With the preliminaries finished, we evaluate the spherical vertex angle $2 as 
tan 5;2 = v / - G / G 1 2  . We capitalize Gll,  G22, G12, and G in this appendix to 
distinguish them from 911,922, and 912 which we continue to use from Appendix 
A. The derivation of G22 parallels Gll and we omit intermediate steps: 
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R 2 

We used Lemma B 1 in the last step because the ultimate result of this appendix 
then contains the det/j expressions from Section 3.2:det12 = AXl Ay2 - Ax2 Ayl  
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and det23 = Ax2 Ay3 - Ax3 Ay2. A computer subroutine needs to calculate them 
anyway for other terms. 

From GH, G12, and G22, we calculate G, using Lemma B2 in the fourth-to-last 
step: 

G = Gl lG22 -- G22 

= (~xv~ ~- + ~xz ~) (~xv~_ '2 + ~x~ ~) 

R4 2 [- - 

_ R 4 

-r--~ 

t2 A tt2 2 t2 It2 4 ] Ay2 Y2 q- Az (Ay  2 - / -Ay 2 ) q- Az 
- A v l  2 zxv~ 2 - 2zxvl zxv~ zXz ~ c o s ( ~ 3  - ~1~) 1 - -Az  4 c0s2(0~23 - Ctl2 ) 

A z 2 [ A  t2 -  t- A ,,2 2 A  t A t t  0z12)] R 4 [ Y2 Y2 - Y2 Y2 COS( OL23 - -  

+  411 J 

R4 { /kz2( /kx  2 q- Ay22 ) sin2(oz23 -- eel2 ) q - /kz  4 sin2(ct23 -- oz12)} 
- r ~  

R4 Az2 (Ax 2 + Ay 2 + Az 2) sin2(c~23 - cq2) 
- r2 s 

R 4 AZ 2 

- r 6  
sin2(oz23 -- oq2) • 

The spherical vertex angle $2 can be found from tan $2 = V~--G/G12 where the 
numerator is non-negative and the quadrant (I, II) is determined by the sign of 
the denominator. Since we stipulate only convex polygons for faces, the exterior 
vertex angle c~23 - oz12 is in quadrants I and II and sin (o~23 - oz12) _> 0. Thus it 
is safe to remove it from beneath the radical. However, we must use the absolute 
value of Az since it is signed. 

tan $2 = v~/a12 

~ /~4 AZ2 sin2(c~23 _ 0~12 ) { .R 2 
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- A z  2 cos  (0~23 - oq2)]  } 

lazl r2 sin (OZ23 - -  Oq2 ) 

-Ay~ Aye' - A z  2 c o s  (0~23 - oq2 ) " 

R, the radius of the sphere, has disappeared as it should. The vertex angle is 
independent of the radius. 

Now we insert the definitions of sin (c~23 - OZl2), cos (c~23 - oq2), Aye, and 
Aye' into tan $2. When it suits us, we expand factors such as el2 as either (Ax2 - 
A X l ) / T 1 2  or  (~2 -- ~ l ) /T12 • 

]Az[ r2 sin (O~23 - -  Oq2 ) 

tan $2 = - A y ~  Aye' - aZ 2 COS (O~23 - -  Oq2 ) 

IAzl/'2(823C12 -- C23812 ) 

- ( A y 2 c l 2  - Ax2s12)(AY2C23 - Ax2823)  -- Az2(c23512 q- 823812 ) 

IAzl  r2 ( 7 ] 3 : ? ] 2  ~ 2 ~  E1 ~3 : ~2 ?]2 - ?]1) 
\ r23 r12 r23 r12 

Ax2 - Axl  Ay2 - Ayl  
- ( A y 2 - - - - -  Ax2 - - - - - ~  

\ r12 r12 / 
Ax3 -- Ax2 Ay3 --Ay2 

(Ay2 - -  - -  Ax2 × 
\ r23 r23 / 

_ A z 2  ( ~ 3 ~ 2  ~2._~_~1 _~ ?]3--_.__._~2 ~2--...___~1) 

\ /'23 /'12 /'23 /'12 

IAzl  T2[(?]3 - ?]2)(~2 - ~1) - (~3 - ~2)(?]2 - ?]1)] 
- - [ A y 2 ( A x  -- A X l )  -- A x 2 ( A y 2  -- A y l )  ] ) 
X A y E ( A X  3 - AX2)  - A x 2 ( A y  3 -- A y 2 )  ] 

]Azl T2[?]l (~3 -- /]2) q-" ?]2(~1 -- ~3) q- ?]3(~2 -- ?]1)] 

--(Ax2 Ayl - AXl Ay2)(Ax3 Ay2 -- A z  2 Ay3) 
- - A z 2 [ ( ~ 3  - -  ~ 2 ) ( ~ 2  - -  ~1 )  q- (/]3 - -  ~12)(?]2 - -  ?]1)] ) 

IAZI [?]1 (~3 -- ~2) -1- ?]2(~1 -- ~3) q- ?]3({2 -- ~1)] 

-{det12det23 + Az2[(~3 - ~2)(~2 - ~1) + (?]3 - ?]2)Q12 - ? ] I ) ]} / r2  " 

We use this expression in Section 3.2.2 of the paper. The positive distance ~'2 
has been moved from the numerator to the denominator for esthetic reasons. Doing 
so does not affect the quadrant returned by arctan. 
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