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Abstract. We consider the motion of a massless particle around an oblate planet, keeping only in the 
expression of the perturbing potential the second degree zonal harmonic. We prove the analytical non 
integrability of this problem, by using Ziglin's theorem and the Yoshida criterion for homogeneous 
potentials. 
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1. Introduction 

Consider the three degrees of freedom family of Hamiltonians defined by 

1 ( ( z ) 2 )  2 + p 2 ) _ # +  ~ -k-/3 , (1) 

where r 2 = x z + y2 + z z, and ~ and ~ are real parameters with/3 ¢ 0. We are 
interested, in particular, in the case: o~ = (3/2)a~ # J2 and/3 = - (1 /2 ) a~  # J2. 
This corresponds to the motion of an artificial satellite around an oblate planet, 
keeping only the J2 term in the expansion of the perturbing potential in spherical 
harmonics. The coefficient # is the gravitational coefficient (# = GM, where G is 
the gravitational constant of  Newton and M is the mass of the planet) and ae is the 
equatorial radius of the planet. It is immediate that J2 is adimensional. The value 
for the Earth is close to 1.082 × 10 -3. 

The numerical evidence seems to show that (1) is non integrable. However, the 
size of the stochastic zones in the case of the Earth and for reallistic orbits (i.e., 
r > ae for all time) is so small that the lack of integrability can be neglected for all 
practical purposes (Sim6, 1991). Of course, the numerical experiments to visualize 
the non integrability are carried out, either for values of J2 much larger than the 
one of the Earth, or allowing r to be quite small. 

We shall prove here that (1), with o~//3 = - 3 ,  has no other meromorphic inte- 
grals than the classical ones (energy and z component of the angular momentum). 

2. The Spatial Problem with Fixed z Component of the Angular Momentum 

We can write 7¢ in cylindrical coordinates (p, O, z,pp,PO,pz), and we obtain: 
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= + p 0  + - 

where r 2 = p2 + z z. 
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+/3 , (2) 

The first integral, Po = c, allows to split the couple (O,po) and to reduce (2) to 
a two degrees of freedom Hamiltonian, with reduced Hamiltonian: 

) + +/3 (3) 

In the equatorial plane, z = 0, the reduced system has one degree of freedom, and 
the first integral, 7-/= h, defines the solutions, Fh, by: 

2# c 2 2/3 
pp2 = 2h + p p2 p3 ' (4) 

where 15 = pp. 
The change of time d~ = p2 ds, shows that the solutions Ph are defined by 

Jacobi elliptic functions (Whittaker and Watson, 1927), p(s), where s is a complex 
variable, because (4) can be written as: 

= f (2hp 4 + 2#p 3 - c2p 2 - 2/3p) -1/2 dp.  (5) 8 

These solutions Fh are also solutions of the spatial problem defined by (3). We want 
to show that this system has not other meromorphic integral (independent of 7~) in 
a neighbourhood of 1-' h. TO this end, we shall apply Ziglin's theorem (Ziglin, 1983) 
and the Yoshida criterion concerning homogeneous potentials (Yoshida, 1987). 
First, we recall these results. 

3. Ziglin's Theorem 

We shall state this Theorem in the context of the Hamiltonian systems with two 
degrees of freedom. It gives necessary conditions to be satisfied by the solutions 
of the linearized equations along a family of particular solutions, assuming that the 
Hamiltonian system has a second meromorphic integral. The proof can be found 
in (Ziglin, 1983) or (Ito, 1985). 

Theorem (Ziglin). Assume that a Hamiltonian system has a family of particular 
solutions, Fh, parametrized by elliptic functions of a complex time, and depending 
analytically on a real parameter h E (hi,  h2). Let G be the monodromy group of 
the normal variational equation associated to the solution F h. We say that g E G 
is non resonant if no one of its eigenvalues is a root of unity. If the Hamiltonian 
system has a meromorphic integral, F,  functionally independent of ~ ,  in a neigh- 
bourhood of Fh, and G contains a non resonant element, gl, then, for any g2 E G, 
the commutator 9" = g21 9{ -1 92 91 satisfies: either g* = Id, or 9" = 92. 
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It is enough that these necessary conditions be not satisfied by a Hamiltonian 
system to ensure that is not analytically integrable. This happens, in particular, if 
one can find two different non resonant monodromy matrices, 91 and gz, such that 
they do not commute (Yoshida et al., 1988). We shall apply this to the Hamiltonian 
(3). 

4. Change of Scale 

We perform the change of scale (p, z, t) ~ (9~, ¢, r) defined by 

p = _ (_h ) - l / 3  ill~3 79 , 

z = - ( - h )  -1/3/31/3 ~), 

t = 3 - 1 / 2 ( - h ) - 5 / 6 / 3 1 / 3  7-, 

always assuming, h < 0. 
Let e = - ( - h )  -1/3. Then the Hamiltonian (3) becomes 

#~2 C2~ 

Rf l l /3  2qD2 fl2/3 

(6) 

where/~2 = 992 q_ @2 and p~ = - 3  ~ ,  pC = - 3  -~. The study of (3) on the level 

7~ = h, is equivalent to the study of (7) on the level Ke = 1. 
The family of particular solutions Fh, defined by (4), becomes the family of 

solutions of (7) defined by 

3 (d(P~ 2 1 6 ,2 # C2 
- 2  \d--~TJ = 1 ~3 2fl2/3 ~9 ~ C q- ~ • (8) 

The variational equations along Fh in the p and z directions are uncoupled. The 
normal variational equation, i.e., in the z direction, is given, in the original variables, 
by 

~ +  # + -- ~ = 0 .  (9) 

This normal variational equation can also be written in the variables ~, ~, 7- 

dT_ 2 - qo 5 3il l /3 q° 3 e2 ?7 = 0 ,  (10) 

where ~ = ~(7-) is defined by (8). 
We shall study the monodromy group of (10), first for the limit problem that 

one obtains by letting h tend to -co ,  and later for fmite values of the energy. 

+~-~ 1 + ~  , (7) 
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5. Study of  the Limit Problem: h ---, - o o  

When e = - ( - h )  -1D --, 0 we reach the limit Hamiltonian 

1 ( c ~ ( _ ~ )  2 ) Ko(%@,p~,p¢)=-l(p~+p2¢)+-~ 1 + ~  , (7') 

with the first integral K0 = 1. 
The family of particular solutions Ph of (7) becomes P_~ ,  which are the 

solutions of (U) defined by 

3 ( d ~ )  2 1 
2 \d--?r/ = 1 ~3 • (8')  

Along these solutions P_~,  the normal variational equation is written as 

drZ 7 = 0 .  (10') 

In this way, we find exactly the problem, studied by Yoshida (Yoshida, 1987), 
defined by a Hamiltonian system with a homogeneous potential of degree k = - 3. 

For those Hamiltonians, Yoshida established a criterion of analytic non inte- 
grability (based on Ziglin's Theorem) which can be applied here. We describe it 
first. 

Consider the Hamiltonian system defined by 

~(ql,qz,  Pl,P2) = 1 2 2(Pl +p2) + V(ql, qz), ( l l )  

where V is a_homogeneous function of degree k E Z*. Then (11) admits solutions 
of the form q = e qs(t), where qS(t) is determined from the first integral 

/~ ( d ~  2 ~k 

\ - a T /  = 1 -  . 

Along these particular solutions, the normal variational equation has the form 
@ + = 0. 

6. Yoshida's Non Integrability Criterion 

We only consider k < - 3  (this is enough for our purposes). If the coefficient A 
belongs to 

S k = ( l ' ° ° ) t - J C U N ( e  J(J+l)lk' -J(J-1)lkl-j+l))2 

(12 )  
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then (11) has no analytic first integral independent of 7-/. 
The proof of this criterion (cf. Yoshida, 1987; Nahon) consists, first, in the 

study of the family of particular solutions characterized by ~(t) .  This function of 
t E C defines a Riemann surface, 17. To every loop, % on F with base point w0, 
we can associate the symplectic matrix g which accounts for the evolution of the 
fundamental solutions of the normal variational equation along ft. The matrix 9 
depends only on the homotopy class of % The set of all these matrices forms the 
monodromy group, G, of the normal variational equation. 

To study G, Yoshida remarks that the normal variational equation can be trans- 
formed, by means of the change of independent variable z = (~(t))  k, into the 
Gauss hypergeometric equation 

z(1 - z) d2~/ dr/ 
+ (c - + b + 1) z) Uz - -- 0 ,  (13) 

where a + b = 1/2 - I l k ,  ab = - ~ / 2 k ,  c = 1 - 1 / k .  

But the monodromy group of the Gauss equation (13) is explicitly known (cf. 
Hille, 1976; Ince, 1956; Plemelj, 1964; Churchill and Rod, 1988). This group is 
generated by two matrices, 91 and 92, which can be chosen in a suitable way 
(Yoshida, 1987): 

I' 1 + { 2 A B  B(2 + { 2 A B )  "~ 

gl = ~ A({2  - 1 - f ~ A B )  1 + ({2 - 2 ) A B  - {2(AB) 2 ,} ' 

1 + (2 f~ -  1 ) A B  - {2(AB) 2 
g2 = A(1 - {2-1 _ A B )  

where {2 = e 2~/k, A = 1 - { 2 - 1  e--27rai, B = 1 - {2 -1 e -27rbi. 

These explicit expressions allow to establish the following result: 

{.k E Sk } ¢----> {trgl > 2, tr g2 > 2} ;" {91 and 9z are non resonant and, 
in this case, they do not commute}. 

Theorem 1. If  1 2c~ - ~ E S - 3 ,  as  g iven  by (12) (S-3 . . . .  U ( - 3 9 , - 3 4 )  U 
( - 2 5 , - 2 1 )  U ( - 1 4 , - 1 1 )  U ( - 6 , - 4 )  U ( - 1 , 0 )  U (1, oo)), then  the H a m i l t o n i a n  

s y s t em  (1) in the l imit  case  w h e n  h ~ - o o ,  has  no analy t ic  f i r s t  in tegral  indepen-  

den t  o f  ~ a n d  po. 

Corollary. In  the J2 case,  as  1 - ~ = 3, the s a m e  resul t  holds .  

R e m a r k  1. The Theorem 1 follows from Yoshida criterion, with k = - 3 ,  applied 
to the limit problem e = ]z - 1 / 3  = 0. Physically this means that we are considering 
the motion near the center of the planet but keeping the expression of the potential. 
Indeed, from (4), if h ~ - c o ,  one has p ~ 0 (we recall that/3 < 0 in the J2 
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problem). To establish the corollary, the actual value of J2 is irrelevant because 
only the quotient a//3 is needed. 

Remark  2. As noted in (Yoshida, 1987) the sufficient condition for non inte- 

grability is cos (~ ( ( k -  2) 2 +8Ak) 1/2) ~ - 1 - c o s  -~ + cos (27r qe), Vq e E 

Q (cos  (7 (25 - 24A) 1/2) ¢ _ 1  + c o s  (27rq~), Vaq E Q if k = - 3 ) .  This 

condition is not only satisfied in Sk but for all A except a countable set. 

7. Non Integrability for Finite Values of h 

When e ~ 0 it does not seem feasible to know explicitly the monodromy group 
of (10). However, one can show that Theorem 1 is still true for finite values of h. 
Hence the Corollary also holds. 

Theorem 2. There exists a value of  the energy, ho < O, such that for h E ( - ~ ,  h0) 
the Hamiltonian system (1) has no first independent of  7-l and Po, and analytical, 

2c~ provided 1 - ~ E S-3. 

Proof. When we pass from ~ = 0 to e ~ 0, the family of particular solutions 
Fh is defined by (8) instead of (8~). The change d~- = ~2ds shows that, in both 
cases, the solutions are described by Jacobi elliptic functions. As the second mem- 
ber of (8) is analytic with respect to e, the two simple poles of ~(s) are as close 
as desired to the poles of the limit problem, provided Ihl is large enough. The 
fundamental group of the Riemann surface Fh is, then, the same as the one of 
I'~-- O<3. 

Therefore, one can define, for e ~: 0 small enough, the generators 91 (e) and 
9z(c) of the monodromy group of the Equation (10) by using the same loops as 
used in the case e = 0. As the coefficient of ~/in (10) is also analytic in e along 
the loops, the matrices 91(c) and 92(e) are analytic in c. Hence, if 1 - ~-~ E S-3, 

there exists c0 < 0 such that the conditions: tr91(e ) > 2, tr92(e ) > 2, and 
91(~) 92~c) -- 92(e) 91 (~) ~ 0 hold if e E (co, 0). We can define ho < 0 such that 
h0 = eo ~, and the proof of Theorem 2 is complete. [] 

As a consequence, the Jz problem has no other global analytic integral, valid 
for all levels of energy, beyond the total energy, Po and functions of that two ones. 
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