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Abstract. An infinitesimal contact transformationis proposed to simplify at first order the Hamiltonian 
representing the attitude of a triaxial rigid body on a Keplerian orbit around a mass point. The 
simplified problem reduces to the Euler-Poinsot model, but with moments of inertia depending on 
time through the longitude in orbit. Should the orbit be circular, the moments of inertia would be 
constant. 
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About the attitude of  a rigid body revolving around another body, this note considers 
a simple case: the attracting body is taken to be a mass point, the center of  mass of  
the rigid body is moving on a fixed Keplerian orbit; nevertheless, no assumption 
is made conceming the moments of  inertia of  the rigid body. In spite of  these 
assumptions, the problem is not an elementary one: its general solution cannot be 
expressed in terms of  elementary functions including the elliptic functions (Hughes, 
1986). 

Although it is well known that both motions, orbital and rotational, are coupled, 
under certain assumptions, mainly that the orbital distances are much bigger than 
the dimensions of  the rigid body and that its spinning is much faster than the orbital 
mean motion, it is usual to neglect the gravitational coupling of attitude to orbit, 
and therefore, the orbit is prescribed prior to solving for attitude. In this context, 
we shall assume that the orbit is a fixed elliptic orbit. Then, according to Cochran 
(1972), the Hamiltonian is decomposed as the sum 

= ~ E  + eT~c, 

where ~ E  stands for the Hamiltonian of  a rigid body in free rotation, whereas H c  
contains the coupled terms. The small parameter ~ is the quotient of  the orbital 
mean motion of the center of  mass by a reference value of  the rigid body's  rotational 
angular velocity (Cochran, 1972, p. 128). 

The Hamiltonian is formulated in Serret-Andoyer variables for the attitude 
motion. These variables (g, g, h, L, G, H)  are defined as usual (Serret, 1866; 
Andoyer, 1923). In this note, we use two angles 8 and ~ given by cos 6 = H / G ,  

c o s  o-  = L/G. 
Without loss of  generality, we shall assume that the principal moments of  inertia 

of  the rigid body (I1, I2, I3) are in the relation/1 _< I2 < / 3 .  
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The Hamiltonian of the Euler-Poinsot motion of a rigid body in torque free 
rotation (7~E) in these variables is: 

= (sin2 g COS 2 g 
7-/E \ - ~ 1  + 212 ] (G2-L2)+l-~-L2"213 (1) 

This problem is integrable, and ways of solving it are well known. We intend to 
show in some cases how a perturbed Euler-Poinsot problem can be readily reduced 
to the unperturbed model. 

Since the orbit is suppossed to be Keplerian, we choose for fixed frame Osl szs3 
the frame determined by the orbit and the orbital angular momentum (Os3) with 
the axis Osl in the direction of the pericenter. This is why we may take for the 
perturbation 7-tc the developments in Fourier series in three arguments, namely g, 
g and f - h with coefficients that are functions of the canonical momenta given by 
Kinoshita (1972, Formulas 58 and 59), where now I = 0. 

Once the perturbation function is expanded in Fourier series, we proceed to 
construct an infinitesimal contact transformation (Whittaker, 1904) 

(e,9, h , L , a ,  m , , (e ' ,9 ' ,h ' ,r ' ,O' ,H') ,  

so that the new Hamiltonian 7l' = 'H~ + eT-t~ will be appropriate for our purposes. 
The problem here considered is a particular case of the one considered by 

Kinoshita (1972). This author obtains a first order perturbation theory for the orbital 
rotational motion of a rigid body attracted by a mass point. By means of a canonical 
transformation he reduces the Hamiltonian to a new one depending only on the 
action variables. That is to say, he normalizes the Hamiltonian. The transformation 
we propose is not a normalization, in the sense that the new Hamiltonian still 
contains one angular variable (namely g'), but belongs to the what recently has 
been named as simplification (Deprit and Miller, 1989). 

The generating function 142 of the transformation and the first order 7-t~ in the 
transformed Hamiltonlan must satisfy the partial differential identity 

(W, n ~ )  + 7-/' c = 7-to, (2) 

where ( - ,  - )  denotes the Poisson bracket, and 7/~ is the unperturbed Hamiltonian 
7-/E expressed in the new set of variables. To solve this PDE, we select for ~1 c the 
average of 7/c  over the two angles 9 and h. Then (2) becomes a partial differential 
equation in the unknown IV. 

To solve it, we limit ourselves to the regions in phase space where all orbits 
of the unperturbed problem are periodic, that is to say, to the connected domain 
containing a stable equilibrium (a rotation about the axis of greatest inertia or 
of smallest inertia). There the variables (g, g, L) may be expressed explicitly as 
functions of the independent variable t, in terms of elliptic functions. Assuming 
that these expressions have been substituted into 7-t' E, we recognize that 

(w, 7/'z) - dW f dt ' and 142 = [7-go- 7/~c] dr, 
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which means that the generator of the infinitesimal contact transformation can be 
obtained by quadratures. Of course, these quadratures are not elementary at all, 
since functions of Keplerian problem and elliptic functions are involved; ways 
in performing these quadratures are by expansions of the functions involved in 
Fourier series of t, or by means of specific algebraic packages which handle this 
kind of function. 

Kinoshita chooses for the new order one the averaging of the disturbing function 
over all the angular variables, whereas in our case we average over all the variables 
except g. This is why we could use his formulas to obtain the generating function 
of our transformation. The averaged Hamiltonian is 

7_// 1 C = 1--6-~r3 ( ([1 + [2 - 213)(1 - 3cos25')(1 - 3cos2cr ~) 
(3) 

- - 3 ( / 1  - - / 2 ) ( 1  --  3 cos 25') sin 2 o '  cos(2~')}. 

For our purpose, since we are not interested at this moment  in obtaining the 
equations of the transformation, but we are concerned solely in analyzing the 
qualitative behavior of the transformed Hamiltonian 7-/~, we do not need to deal 
with the very complicated problem of performing the quadrature along the solution 
of the unperturbed problem. 
The relation among the old variables and the new ones is given by the equations 

OW 
(~,g,h)  = ( ~ ' , g ' , h ' ) +  

O ( U , G ' , H ' )  

OW 
( L , G , H )  = (L ' ,G ' ,H ' )  + 

O(~l, gl, hi) • 

It is worth recalling once again that the new Hamiltonian still contains the 
angular variable ~; in other words, the Hamiltonian has not been normalized, but 
it is an intermediary of the original one. 

The angles g~, h ~ being cyclic, its conjugate momenta G/, H ~ are integrals of 
the motion. Thus, the averaged first order is reduced to one degree of freedom, and 
therefore it is integrable. 

It is not much the integrability character that makes this intermediary interesting, 
but the fact that it represents the rotation of a body with time-varying moments of 
inertia. A few elementary manipulations will make that point very clear. Indeed, 
after performing some elementary algebraic manipulations, and dropping those 
terms which do not depend explicitly on the variables ~ and L I, the perturbation 
(3) may be expressed as: 

3 (1 - 3cos 25') [([l - / 2 )  sin 2 ~' sin 2 o'  + (I3 - / 2 )  cos 2 or']. 7 - t c  = 
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Keeping into account that sin 2 ~' = (G r2 - U Z ) / G  r2 and that cos z o-' = L ~ / G  r2, 

the previous expression is equivalent to 

7-@ = (Asin2 g' + B COS2 gt)(G t2 - L '2) + CL '2, (4) 

where 

3 
A = 8G,Zr------ ~ (1 - 3 COS 2 ~')(/1 - / 2 ) ,  

B = 0 ,  

3 
C -- 8Gt2•3 (1 - 3 COS 2 ~t)(/3 --/2). 

The expression (4) matches with the unperturbed Hamiltonian (1), and therefore, 
putting all terms together, the Hamiltonian 7-/' = 7-t~ + eH~  is written, eventually, 
as: 

~ ,  21 ( sin 2 gt ~COS 2 ~t ) 1 t2 
= + _ - + . ( 5 )  

It has exactly the same form as the Hamiltonian of a rigid body in torque-free 
motion (1); the pseudo-moments of inertia I* are 

1 1 1 1 1 1 
I~ --  I1 + 2e  A,  I~ - 12' I~' --  /3 + 2e  C. (6) 

It is worth noting that in spite of the appearance, the pseudo-  moments of inertia 
I* varies with time, because they contain the radius vector r. Time dependence of 
the moments of inertia is quite common when we consider attitude dynamics of 
deformable bodies, such as flexible platforms, satellites with damping or rotors, 
and, of course, rotation of the Earth, just to mention a few examples. 

When the orbit is circular, the quantifies A and B are constant, and of oposite 
signs, and therefore, the pseudo-moments of inertia I* are time independent. In 
this case, the phase flow of the intermediary is identical to the phase flow of the 
unperturbed problem (1). The result of the perturbation on the unperturbed problem, 
is a slight increase (decrease), of the moments of inertia I1, I3 depending on the 
sign of 1 - 3 cos 2 5 ' ,  whereas the moment  of inertia/2 is not affected. 

Let it be remarked also that, whatever the orbit would be, for the particular 
value of the inclination angle 6' = arccos(1/v/3)(= 5477356), the constant (1 - 
3 cos 2 6 ~) = 0, and therefore, the pseudo-moments  of inertia coincide with the 
original ones, and the perturbation disappears from the averaged Hamiltonian. 
The same value has been obtained by Chernousko (1972) when he considers a 
near-spherical rigid body moving in a Keplerian orbit. 

Since we have not computed the generating function, we cannot afirm that it 
will not contain secular terms. Should this be the case, though, our intermediary 
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would still be a valid approximation of the original system, but only for a small 
span of time. To be practical, let us say that the intermediary is worth considering, 
provided it is valid over the short intervals separating two maneuvers to control the 
attitude of a spacecraft. 

Conclusions 

After the problem of the attitude dynamics of a tri-axial rigid body moving in 
a Keplerian orbit has been formulated in Serret-Andoyer variables, and after it 
has been averaged over the variables 9 and/z, we recognize that the intermediary 
Hamiltonian has exactly the same expression that the unperturbed Hamiltonian, 
i.e., a tri-axial rigid body in torque free motion, but with moments of inertia varying 
with the time. 
This simplification is very important when the orbit is circular; indeed, the moments 
of inertia of the reduced Hamiltonian are constant and the solution may be obtained 
as in the classical Euler-Poinsot case. 
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