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Abstract. The luni-solar effects of a geosynchronous artificial satellite orbiting near the critical 
inclination is investigated. To tackle this four-degrees-of-freedom problem, a preliminary exploration 
separately analyzing each harmonic formed by a combination of the satellite longitude of the node 
and the Moon longitude of the node is opportune. This study demonstrates that the dynamics induced 
by these harmonics does not show resonance phenomena. In a second approach, the number of 
degrees of freedom is halved by averaging the total Hamiltonian over the two non-resonant angular 
variables. A semi-numerical method can now be applied as was done when considering solely the 
inhomogeneity of the geopotential (see Delhaise et Henrard, 1992). Approximate surfaces of section 
are constructed in the plane of the inclination and argument of perigee. The main effects of the Sun 
and Moon attractions compared to the terrestrial attraction alone are a strong increase in the amplitude 
of libration in inclination (from 0.6 ° to 3.2 °) and a decrease of the corresponding libration period 
(from the order of 200 years to the order of 20 years). 
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1. Introduction 

The published solutions of the main problem of artificial satellite theory (Brouwer 
1959, Garfinkel 1959, Kozai 1959) contain an intrinsic singularity at the so-called 
critical inclination (cos 2 i = 1/5). For these values of the inclination the secular 
J2 effect in the argument of perigee is zero. The dynamics of this one-degree of 
freedom resonance problem has been extensively studied by many authors using 
various methods and variables. A detailed review of these investigations is given 
by Jupp (1988). 

The perturbation effects on geosynchronous satellites orbiting near the critical 
inclination have however rarely been under investigation. In fact, this system re- 
quires a treatment totally different from the critical inclination problem. We deal 
with a double resonance problem: a mean motion commensurability between the 
satellite's mean motion and the Earth's rotation rate, combined with the critical in- 
clination. In a preliminary study (Delhaise et Henrard, 1992), only the gravitational 
perturbations arising from an aspherical Earth were taken into consideration. The 
secular dynamics of this two-degrees-of-freedom system was explored in a global 
way. More specifically the 12-hr Molniya-type and the 24-hr Tundra-type orbits, 
both located at the critical inclination, were analyzed. 

In this paper, the perturbation model is expanded through inclusion of the luni- 
solar gravitational effects. For the Molniya and Tundra type orbits which travel out 
to several Earth radii, the effects of the gravitational attractions of Sun and Moon are 
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appreciable. The eccentricity can increase sufficiently to cause premature decay of 
the satellite by forcing the perigee down to the Earth surface. This will be illustrated 
for the case of the Molniya orbit. 

First, the Hamiltonian of this system is developed. The lunar orbital elements 
are preferably referred with respect to an ecliptic reference system while the satel- 
lite's orbital elements are still related to the Earth equator. Obviously, taking into 
account the terrestrial together with the luni-solar perturbation effects compounds 
the diffÉculties of the problem. After averaging over the fast angular variables, the 
problem still has four degrees of freedom. Due to this complexity, the terrestrial 
and lunar effects are at first considered alone. A preliminary exploration separately 
analyzing each harmonic defined as a combination of the longitude of the ascending 
node of the satellite (x4) and the longitude of the Moon (zs), is appropriate for a 
subsequent simplification of the system. 

In a second approach, the number of degrees of freedom is halved by averaging 
the total Hamiltonian over the two non-resonant angular variables z4 and x 5. The 
resulting two-degrees-of-freedom Hamiltonian can then be studied by means of 
the semi-numerical method (Henrard, 1990). Approximate surfaces of section are 
constructed in the plane of the inclination and argument of perigee. Such figures 
yield a global view of the secular dynamics of such type of orbits. Finally, the solar 
effects are added to the Hamiltonian system. 

2. Formulation of the Total Hamiltonian 

The part of  the Hamiltonian taking into account the oblateness of the Earth as well 
as the tesseral harmonics, is averaged over the mean anomaly of the satellite. Up 
to the second order in the second zonal harmonic J2, it takes on the following form 
(see Brouwer, 1959 and Sochilina, 1982): 

#2 
"/-/Earth -- 2L 2 o.,e H 

#4 R Z~ J2 ) 3 - - -  1 L 6 4 
[z6 4 2 

Re J2 [A(L,G,H)cos2  + C(L,G,H)] 
L 1° 4 

c o s  forl-,  e v e n  
Bl,~,p,q( a, e, i) sin {Ol,~,p,q} for I m odd, 2_., 

I,ra,p,q 
(1) 

where # is the product of the gravitational constant and the Earth's mass and 

0~,m,p,q = m ( ~ e  + h - Azm) + (l - 2p)~. (2) 

The angular variable ~g + h is the critical argument associated to the resonance 
in mean motion where the satellite performs/3 revolutions while the Earth rotates 
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o~ times. The variable Azm is the longitude of major axis of  symmetry of the (/, m) 
spherical harmonic. The set of  variables ( f = M, g = w, h, L, G, H) is the usual 
set of  the Delaunay variables with respect to a frame rotating with the Earth, which 
implies: 

h = ~ - wet, (3) 

where f~ is the right ascension of the ascending node in an inertial frame and 
t is the time. The coefficients A, Blmpq and C are the same as in Delhaise et 
Henrard (1992). It is noteworthy that these coefficients are not expanded in powers 
of eccentricity or inclination permitting, for example, a very large value of  the 
eccentricity. The term a;eH, where w~ is the Earth's mean angular velocity, is 
added to the initial Hamiltonian in order to remove its explicit time dependence. 

The indices of the summation l, m, p, q verify the following relation: 
OZ 

l - 2 p  + q = ~ m ,  (4) 

so that the short periodic terms disappear of  the Hamiltonian leaving only long 
period ones for commensurate or near-commensurate orbits. The main critical 
tesseral harmonics which are retained in this study are listed in Delhaise et Henrard 
(1992). 

The units have been chosen such that the gravitational constant G, the mass of 
the Earth Me and the mean equatorial radius of the Earth Re are unity. 

A third body gravitational force acting on the spacecraft can be described in a 
reference system defined at the Earth centre by the following potential: 

-GM~ rk • r 
V - + G M k - -  (5) 

pk r 3 

The index k refers to the third body. The vectors r and rk are the coordinates 
of the spacecraft and of the third body, respectively, Pk = r - rk, GMk is the 
Newtonian gravitational constant times the third body's mass. It is worth noting 
that the accelerating terms due to the Earth rotation around the Sun are neglected in 
this study. Kaula (1962) expanded this function in terms of the equatorial Keplerian 
elements of the satellite and of the third body: 

V 
oo a 1 t ( l - r n ) !  l l 

= -#k ~l=2 a~ +1 m=O ~ km (1; m)! ~= Flmp(i) ~=oE Fzm~(ik) 

ciX) O 0  

Htpq(e) ~ Gt~j(ek) cos[(l-2p)w + ( l - 2 p + q ) M -  
q=-oz j=-c~ 

- ( l - 2 s )  a;k-  ( l - 2 s + j )  Mk + m ( • - a k ) ] ,  (6) 

where ko = 1 and k m =  2 for rn ¢ 0. The eccentricity functions flIp q and a ls j  
can be related to the Hansen function X~ 'm (see Giacaglia, 1976). The inclina- 
tion functions Fzmv(i) are given in Kaula (1966). The form (6) is convenient for 
inclusion of the solar effects with the Earth gravitational effects. 
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Kozai (1973) noted that it is more desirable to develop a theory relying on 
Keplerian ephemerides for the Moon referred to the ecliptic plane. This renders 
the Moon's inclination roughly constant and the lunar longitude of the ascending 
node can be approximated by a single linear function of time. The orbital elements 
of the satellite should still be referred to the Earth equator. Lane (1989) assumes 
an ecliptic reference system for the lunar ephemerides while the satellite elements 
are related to the Earth equator. After several geometrical rotations, the following 
form of the lunar potential is obtained: 

oo 1 l 1 1 oo oo 

v = - E Z E Z E  E E 
l = 2  m = 0  s = 0  p = 0  q = 0  j = - c ~  r = - e o  

F l m p ( i )  F l s q ( i k )  G l q r ( e k )  H l p j ( e )  

cos  + 

(-1p [0, pj - 0',qT 

where 

g 'm 

k 1 = 

k 2 = 

k3 = 

t = 

b s = 

Olmpj --~ 
! 

Olsqr : 

eme~(l-5)! f "~cL l 
( - 1 )  kl 

- bs 7r] 

1 i f m  = 0, 
2 i f m  ¢ 0, 

1 i f s  = 0, 
2 i f s  ¢ O, 
T/Z 

I[ ~- [], the largest integer part of __m 
2 '  

t ( r a + s - 1 ) +  l, 

t (m + ~), 
0 i f l - l i s e v e n a n d t =  l i f l - l i s o d d ,  

0 if s is even and bs = 1/2 if 8 is odd, 

( l - 2 p ) c 0  + ( 1 - 2 p + j ) M  + m ~ ,  

( l - 2 q ) c o k  + ( l - 2 q + r )  Mk + s ( f ~ k - T r / 2 ) ,  

and 

(7) 

(8) 
(9) 

min[l-s,l-ra] 

r=max[0,-(,~+s)] 

with ¢ = 23.4 ° 2T 08.26", the ecliptic inclination at Epoch J.D. 2415020.0. The 
total Hamiltonian is the result of the summation of the geopotential (1), the solar 
potential (6) and the lunar potential as given by (7). 
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3. Inclusion of  the Moon's Gravitational Effects 

Due to the complexity of the system the terrestrial and lunar gravitational effects 
are at first taken into account alone. The solar perturbations are included into the 
model subsequently. This study is here limited to the analysis of  the Molniya-type 
orbits. Identical methods could of course be applied for the Tundra-type orbits too. 

3.1. SIMPLIFYING ASSUMPTIONS 

The following simplifications and assumptions are introduced in the approximate 
study of  the secular dynamics of the Molniya-type orbits subjected to the terrestrial 
and lunar attractions. 

1. The summation over the index "l" of  the lunar potential (7) is truncated to 
include just the second harmonic (where the first is absent). We thus have: 

I = 2. (11) 
2. The Hamiltonian is averaged over the satellite mean anomaly up to the first 

order. The indices (1, p, j )  verify: 
l - 2 p  + j  = 0. (12) 

3. The Hamiltonian is averaged over the Moon mean anomaly up to the first order. 
The indices (I, q, r) verify: 

I - 2 q  + r  = 0. (13) 
4. The Moon's orbital eccentricity is assumed as zero so 

l - 2 q  = 0. (14) 
Note that assuming the Moon orbit as circular has nearly the same effect as 
averaging the Hamiltonian over the Moon argument of perigee at the first order 
since 

G210(eM) (1 e2M) -3/2 = - = 1.00438 _~ G210(0). (15) 

The part of  the Hamiltonian taking into account the lunar effects is then reduced to 
the following form: 

2 2 2 

~M = - ~  ~ ~ DM(a,e,i, aM, iM) 
m = 0  s=0 p=0 

where 

DM = #M(--1) kt 2 aM (2 + rn)! -~M F2,~,p(i) F2,s,I(iM) H2,p,2p-2(e)(17) 

where the index M refers to the Moon's parameter. 
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3.2. PRELIMINARY EXPLORATION 

We are confronted with a three-degrees-of-freedom problem, the Hamiltonian of 
which is time-dependent through the two angular variables g~ --- wet and f~M. 
These can be approximated by linear functions of time: 

g~(t) = g~(0) - 5 .8834.10 -2 t, (18) 
f~M(t) = f~M(0) -- 8.6298. 10 -6 t. 

The time unit is given with the units defined in section 2 and is of  the order of 
13m44 sec. 

The phase space is extended by two additional degrees of freedom in order to 
render the Hamiltonian autonomous. The set of  the canonical variables is defined 
by: 

~ = M  L 

g = w  G 

f~ H 

ge = wet Ae, 
~"~M AM. 

= L j ( 1 -  
= G cosi ,  (19) 

Note that the phase space is in fact restricted to four degrees of freedom inasmuch 
as the Hamiltonian is averaged over the satellite's mean anomaly. The frequency 
of ~ ( of  order of 2 .10  -5 due to the J2 secular effects) and especially f~M ( equals 
to 8.6 • 10 -6) being relatively small, it is interesting to analyze the effect produced 
by each harmonic of the type rag2 + 8~"~M, for m E {0, 2} and for s C { - 2 ,  2}, 
taking also into account the dynamics stemming from (x3, Y3), simultaneously. 
Following Delaunay's idea (1867), this study is performed sequentially for each 
value of the indices m and s. The phase space corresponding to such a harmonic 
could present two types of dynamics: a resonant or a non-resonant one. A resonant 
topology including libration and circulation zones separated by a critical curve 
would preclude all averaging over the above mentioned harmonics. In this case, a 
more sophisticated method like the successive elimination of perturbation harmon- 
ics (Morbidelli, (1991)) could be applied. This would still meet with considerable 
difficulties due to the high number of degrees of freedom. In the other case if 
the topology induced by each of  the harmonics presents only circulation with a 
reasonable amplitude of variations, a classical averaging technique can be applied 
to rid the Hamiltonian of these harmonics up to the desired order. 

To proceed to the sequential analysis of  the harmonics, a canonical transforma- 
tion is performed to obtain a suitable set of  variables containing the two angular 
variables x3 (x3 = ~g + h) and x4 (x4 = mf~ + Sf~M). Three different trans- 
formations are performed depending on the values taken on by the indices ra and 
8" 
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1. for m # 0and  s # 0: 

Xl -:- g 

X2 = g  

X3 = ~ + ~ -- g, 
xa = m ~  + s ~ M  

x5 -- ge 

2. for m = 0 a n d  s # 0: 

Yl = L - ~ H  + ~ m A M ,  

y 2 = G ,  
m 

Y3 = H -- s A M ,  

Y4 -= 1 AM~ 

Y5 = Ae + H - m A  i .  

(20) 

Xl ~-~ g Yl = L - ~ H ,  

X2 = g Y2 = G ,  

x3 = ~ g  + ~ -- ge Y3 = H, 

x4 : ~ M  Y4 = AM 
x5 = g* Y5 = A, + H. 

(21) 

3. for  m # 0 a n d  ~ = 0: 

Xl = g ffl = L - ~  A~, 

x2 = g Y2 = G, 
X3 = ~ ~ -t- ~'~ -- ge if3 = -A~,  

X5 = ~'~M if5 = A M .  

(22) 

The total Hamiltonian taking into account the terrestrial (see (1)) and lunar 
attractions (given in (16)), is expanded up to the quadratic terms in Yi - y~ around 
their values at the equilibrium y~'. The values y* are computed at the critical incli- 
nation (i* = 63.4 °) and at the value of the semi-major axis (a*) which corresponds 
to the resonance in mean motion, i.e. such that d x 3 / d t  = 0 at the first order in d2. 
The value of the eccentricity is arbitrarily chosen as e* = 0.7222 (see Delhaise et 
Henrard, 1992). 

For the indices ra and s fixed to a particular value, this Hamiltonian takes on 
the form: 

[ ] 21027-/0y2221027q~ Y 2 0 y 2 3  = ~ a M  + ~ a J2 y4 + y2 + 

1027-/ 027-/ 027-/ 027-/ 

+ 2 ov~ v~ + ov2v----5 v2 v3 + ow---~4 y2 y4 + 0v3---~4 w v4 

, cos for I - r even 
- ~ B t r p q ( a , e * , i * ) s i n  { r ( x g - A l r ) + ( l - 2 p ) x 2 }  fo r /  r oad ,  

l,r,p,q 
~6 4 2 

R~J~ A(y* )  cos2x2 
L .1° 4 

z - *  
P 
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Fig. 1. Level  curves o f  the pseudo-integral 7 illustrating the dynamics o f  the Molniya  orbit 
in the plane (z4,  y4) issued from the specific harmonics z4 defined by m = 2 and s = - 1 .  
The full lines represent the cases when the point (z3, ~ )  is in libration mode  and the dotted 
lines when it is in circulation mode. The results obtained for the harmonics: (m, s) = (1,1), 
(1,-2), (1,2), (2,-2), (2,1), (2,2) are similar to those represented here. 

Y 

/ 1  H H t  
0 ; " ' - 11111111  

~ .4 " IA / I l l .  . 

IIOI-MIYR, ERC=0.;;~222= ~ ÷ 6EOPOTEMTIEL 

H ( t o t a l )  = 2 . 0 - 8 ,  ) ~  = 220.13EG., m = 1, ~ = -1 

" ' ,  I . . . .  I ~ = L ~  . . . .  ' " "  I ' ' "  ' 

100 200 3OO 
X~ tOEG) 

Fig. 2. Level  curves o f  the pseudo-integral ff illustrating the dynamics o f  the Molniyaorbi t  
in the plane (z4, Y4) for the harmonics z4 defined by m -- 1 and s ---- - 1 .  The results 
obtained for the harmonics: m = 0 and s - -  0 are similar to those represented here. 
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where all partial derivatives are evaluated at V~ = Y~'. Furthermore to shorten the 
notation, yi - V* is simply written as Vi. The Hamiltonian can be decomposed into 
three parts as follows: 

Ho(x2, x3,Y3,Y4) + Hl(x2, x4) + HI(Y2, Y3,Y4), (24) 

such that the semi-numerical method can be applied to H0 + H1 in the same way as 
performed in Delhalse et Henrard (1992). The terms of Hi ~ containing Y2 are not 
considered in this preliminary approach to enable an examination of the dynamics 
of  the two-degrees-of-freedom problem H0 + H1 in the field < x4, Y4 > with 
x2 taken as parameter. The perturbation method applied here takes into account 
the full distortion of the invariant tori of  the separable Hamiltonian H0 which is 
resonant, instead of  expanding it around the equilibrium point as is the case for a 
local analysis. This aim is achieved by introducing numerically a set of  convenient 
action angle variables (J, ¢ )  in the three different topological regions of the phase 
space of the separable Hamiltonian Ho. The transformation from (x3, Y3) to (J, ¢ )  
has to be extended to a two-degrees of freedom canonical transformation in order 
to compute H1 in the new set of variables. The total Hamiltonian is then averaged 
at the first order over the fast angular variable ¢. A supplementary quasi-integral 
results from this averaging. Indeed ] now remains constant up to the first order. 
The action angle variables (J, ¢ )  and the pseudo-integral ] are computed in a 
semi-numerical way (see Henrard, 1990): a grid of points is defined in the plane 
(x4, y4) while x3 = x~ defines the Poincar6 surface of section and Y3 is computed 
such that Ho + H1 = const. .  The level curves of the pseudo-integral J denote 
the trajectories on such Poincar6 section. They are computed for the case of the 
Molniya-type orbits and are represented in the plane (x4, y4) in Figs (1) and (2) 
for two different harmonics x4. The values of the constant energy level and of 
the parameter x2 equal 2 • l0 -8 and 270 °, respectively. From these figures, it can 
be deduced that the harmonics producing the most significant variations on y4 
are given by (m, s) = (1, - 1 ) ,  m =- 0 and s = 0. All other harmonics generate 
practically no variations over their conjugated momentum Y4. 

The main conclusion emanating from this preliminary approach is that no libra- 
tion zone is induced by any harmonic mf~ + .Sf~M. The amplitudes of  variations of 
their corresponding conjugated momentum are non-negligible but not excessively 
large. This justifies further simplifications of the model by averaging over the two 
non-resonant angular variables f~ and ~2M. The averaging process will be done up 
to the second order to take into account the effects of  these harmonics as far as 
possible. 

3.3. REDUCTION TO A TWO DEGREES OF FREEDOM SYSTEM 

In this section, the secular dynamics of the Molniya-type orbits subjecting terrestrial 
and lunar gravitational perturbations is studied in a global way. The Hamiltonian 
will be averaged over the two non-resonant variables ~ and f~M. The dimension 
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of the phase space is thus reduced from 8 to 4. Approximate surfaces of  section are 
constructed in the plane of the inclination and argument of perigee. The qualitative 
and some quantitative aspects illustrating the global secular dynamics are deduced 
from these figures. 

The following set of  canonical variables is convenient for this study: 

Xl = • Yl = L + ~A~, 

x2 = g Y2 = G, 
x3 = ~ ~ + ~ - g~ Y3 = -A~,  

x4 = ~ Y4 = H + A~, 
X5 = ~ M  Y5 = AM- 

(25) 

The relations describing the dependence of  the set (a, e, i) with respect to the 
variables (Yl, Y2, Y3) are the following: 

1( 
a = - Yl + Y3 ' 

- -  1 

i = a r c c o s ( Y 3 + Y 4 ) .  
Y2 

(26) 

In this study the full Hamiltonian "]-/(X2, if2, X3, if3, X4, Y4, X5, Y5), taking into 
account all harmonics is expanded into a Taylor series over the variables yi around 
y* up to the third order for the non-trigonometric terms and up to the first and 
second orders for the trigonometric terms derived from the inhomogeneity of  the 
geopotential and from the Moon's gravitation, respectively. The higher degree of  
accuracy compared to the study considering solely the inhomogeneity of  the geopo- 
tential (see Delhaise et Henrard, 1992) is necessary due to the larger considered 
interval in inclination and consequently in Y2. The selected extremal inclination 
values are: 

imin = 59.835 °, 

and imax --- 67-035 °. (27) 

In this case, the maximum difference between Y2 and y~ equals 0.180. The corre- 
sponding interval in Cmean is: 

emin ~ 0.609, 

emax ~ 0.788. (28) 
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Note that the value of emean has the same meaning as that given in Delhaise et 
Henrard (1992): 

I (y~/cos i)2 (29) 
emean---- 1 -- (ffl-[-  ~ f f~)2"  

The form of the expanded full Hamiltonian is given in Delhaise (1992, p. 138). 
This Hamiltonian has four degrees of freedom. To halve the number of degrees of 
freedom of  the phase space, the Hamiltonian is averaged over the two non-resonant 
variables x4 and xs. This course of action is supported by the results obtained in 
the preliminary analysis. As was demonstrated in section 5.3, the variations of 
the corresponding conjugated momentum y4 produced by certain harmonics of the 
type mf~ + Sf~M are quite significant. For this reason the Hamiltonian is averaged 
up to the second order. The technique of Lie transforms is applied. The coefficients 
Yl are small quantities ( of order of 10 -1 for Y2 and 10 -2 for the others ). The 
coefficients of  the trigonometric terms are of the order of y~ or below. It is then 
natural to organize the inputs of the Lie triangle as follows: 

- linear terms in Yi in H~ °). 

- quadratic terms in Yi and trigonometric terms independent of yi in/ / (0) .  

- cubic terms in Yi and trigonometric terms dependent on Yi in H (°). 
However, in our particular case the coefficient of y~ is so large that the magnitude of 
this quadratic term is about that of the linear terms in Y4 and Ys. That is the reason 
why the libration period in x3 turns out to be the same order as the circulation 

period in if4 and Ys. Therefore, the quadratic term in y~ must  be included in H~ °). 
In the summation of the terms of the kind Bi,j cos(iz2 +jcc3), the term independent 

of z2 is retained in H~ °), which thus takes the form: 

1 0aT-/ 2 cos(jz3) (30) H~ 0) = ~4Y4 q- a)5Y5 q- 2 0 y ~  Y3 -t- BO,j 

The Lie algorithm to average the Hamiltonian over x4 and x5 can not be directly 

applied with such a choice of H (°). To overcome this problem, suitable action 
angle variables (~3, I3) are implicitly introduced by the canonical variable trans- 
formation: 

273 ----" X 3 ( ~ 3 ,  I3) ,  

y3 = (31)  

So that the term ½ ~°2g y32 + Bo,j cos(jz3) can be rewritten as K3(I3). Note that 

the functions X3 and I/3 are not known explicitly. Furthermore, the function K3 is 
expanded locally around [~', thus givi .ng 

I (~  ~--- tM 3 [3 -t- O~23 q-- /~ ~3 - t - - - . ,  (32) 
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where I3 = 13 - 1~ is considered small. Following this transformation, the inputs 
of the Lie triangle may now be written as: 

° ) 

H~ °) 

= 024 Y4 -~ W5 Y5 -I- W3 [3, 

1 027-[ 1 02~-[ 02~-~ 02"][ 
= c~ ~2 + 2 0 y  2 y2 + 2 0 y  2 y2 + Oy2Y3 Y2 ]/3(~fl3,I3) + 0y2---~4 

02 7~ 
-4- - -  Y3(~93,/3) Y4 - E Blmpq COSOlmpq -~- A COS2X2 

Oy3 Y4 Impq 

D .  cos ( 2 - 2 p ) x 2  + rex4 + s ( x s -  g)-bs  , 
raps 

= the remaining terms of the Hamiltonian with Y3 replaced by 

Y3 (qP3,/3) and x3 by X3(c23,/3)- 

Y2 Y4 

(33) 

With these settings, the Lie algorithm can be applied, in principle, up to an 
arbitrary order. The computations are performed here up to the second order to 

compute the mean values:/ t0 (1) and Ho (2) and the generating function W1. This is 
feasible even if the functions X3, Y~ and K3 are not given explicitly. The calculation 
of  the Lie algorithm beyond the second order requires the explicit knowledge of 
x3 and Y3 as function of the action angle variables (~3, •3). 

The averaged Hamiltonian turns out to be a two degrees of freedom one: 

= "Ho(x2, x3, Y3, Y4) q- -ffl (52, Y2, x3, if3,94)" (34) 

The semi-numerical method (Henrard, 1990) can thus be applied. The technique 
computing the level curves of the pseudo-integral d denoting the trajectories in the 
field of the inclination and argument of perigee for a constant energy level is the 
same as described in Delhaise et Henrard (1992). The surface of section is defined 
by x3 = x~ verifying: 

dy3 -OHo 
- 0 ,  ( 3 5 )  

dt Ox3 

with x2 fixed at its initial value. The results illustrating the global secular dynamics 
of the Molniya type orbits are displayed through Figures (3) and (4) for energy 
levels equal: 0 and - 3  • 10 -7, respectively. The continuous lines represent the 
cases where the angle x3 librates, the dotted lines the cases where it circulates. 
This allows to locate the separatrix curve for the resonance of the first degree of 
freedom in the graphs. As will be verified by numerical integration, chaotic motion 
can be expected in the regions where the level curves cross this critical curve. 
The contributions of the Moon's attraction on the orbit evolution can be deduced 
from these figures. The lunar effects strongly increase the amplitude of libration 
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in inclination, which reaches a value as high as 3.2 ° while the geopotential effects 
alone cause a maximum libration amplitude of around 0.6 °. Another significant 
effect of  the Moon's gravitation is the decrease of the libration period in (x2, V2) 
(numerically computed). This ranges between 25 and 50 years but attains more 
than 200 years when solely the inhomogeneity of  the geopotential is considered. 
The value of the critical inclination is slightly different when the lunar gravitational 
perturbations are added to the model. Figures like (4) clearly show that this value 
is a function of x2. The equilibrium value in inclination is maximal (63.8 °) for 
xz = 0 ° and 180 °, the unstable equilibria, and minimal (63.2 °) for x2 = 90 ° and 
270 ° , the stable equilibria. 

In conclusion, including the Moon's gravitational effects to the model boils 
down to adding a term of the form a cos kxz with a factor a approximately 10 
times larger than when considering only the effects of  the geopotential. 

4. Inclusion of the Sun's Gravitational Effects 

In this section the solar effects are included in the model. Therefore, all dominant 
gravitational effects from the Earth, Sun and Moon are taken into consideration. 

4.1. SIMPLIFYING ASSUMPTIONS 

The parameters of the apparent Sun orbit related to the Earth equator are given in 
Appendix 1. The form of the Hamiltonian taking into account the solar perturbations 
is given in equation (6). The following simplifications are introduced in this part 
of  the Hamiltonian: 

1. The summation over the index "/" of  the solar potential (7) is truncated to 
include just the second harmonic. 

l = 2. (36) 
2. The Hamiltonian is averaged over the satellite and Earth mean anomaly up to 

the first order. Therefore the indices (l, p, q) and (/, 8, j )  verify: 
I - 2 p  + q  = 0, 

l - 2 s  + j  = 0. (37) 
3. The longitude of the ascending node f ~  is assumed as invariant over the time 

interval of  interest. 
4. The Earth orbit is assumed being circular, so 

1 - 2 s  = 0. (38) 

4.2. RESULTS 

Assuming ~2~ constant, no supplementary variable has to be added to the set of  
variables given in (25). The solar part of the Hamiltonian is also averaged over the 
satellite longitude of the ascending node x 4 up to the first order. 
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MOLMIYIq, Moon, Sun + Geop., Mum. In t .  

ENERGY LEVEL = O.DO 

.,/ ',- 

 illtt )ill" 
"-7 ~: 

. . . . . . . . . . . . . . . .  .i.,, ,~:- . . . . . .  

",:."~...:..r:.~.;" 

0 loo 200 300 
I'IEI::~I PRGUII~NT OF T H E  PERICEMTRE {DEG) 

Fig. 7. Mapping resulting of the numerical integration of the Hamiltonian taking into 
account the terrestrial and luni-solar effects on a Molniya-type orbit. The energy level 
equals 0. 
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The contribution of the Sun to the total Hamiltonian is of the form: 

2 2 
7[s = - #as p~o= (~s) F2,o,p(i) F2,O,l(is) H2,p,2p-l(e) cos[(2-2p)x2].(39) 

Each term of (39) is expanded around y* up to the first order to obtain the following 
formulation: 

[SI + $2y2 + $3y3] cos2x2 + S. (40) 

The semi-numerical method is again applied to yield the results of Figures (5) 
and (6) for the constant energy levels: 0 and - 3  • 10 -7, respectively. The Sun 
gravitation further increases the libration amplitude and shortens the libration 
period in (x2, i). Close to the equilibrium point, the latter is reduced to about 20 
years. The straight dashed line in Figures (5) and (6) represents the approximate 
limit where the eccentricity becomes so high that the perigee altitude descends 
below 100 km. The luni-solar effects are thus strong enough to reduce the satellite 
lifetime for particular initial conditions. Note that for a Tundra-type orbit, the 
initial perigee altitude being about 25000 km, there is no possibility of the luni- 
solar effects inducing a premature orbit decay. 

5. Comparison with the Numerical Integrations 

These results are confirmed by means of numerical integration of the differential 
equations derived from the averaged total Hamiltonian. The tests are performed for 
the constant energy levels 0 (see Fig. (7)) and - 3 . 1 0  -7 (see Fig. (8)). Comparing 
Figs (5) and (6) with Figs (7) and (8), we note that the results obtained by means of 
the semi-numerical method agree with those deriving of the numerical integration. 
As expected large chaotic regions appear along the separatrix curve of the resonance 
in (z3, Y3). 

6. Conclusion 

The problem of a geosynchronous artificial satellite orbiting near the critical in- 
clination is examined. In a preliminary study (Delhaise et Henrard, 1992), only 
the effects of the inhomogeneity of the geopotential were taken into considera- 
tion. This lead to a two-degrees-of-freedom problem. The perturbation model is 
now expanded through inclusion of the quite significant luni-solar gravitational 
effects. Obviously, this compounds the difficulties of the problem. Essentially, 
two additional degrees of freedom are introduced into the system. To tackle this 
four-degrees-of-freedom problem, a preliminary exploration separately analysing 
each harmonic stemming from the lunar potential is opportune. The considered 
harmonics are formed by a combination of the longitude of the ascending node 
of the satellite (x4) and the longitude of the Moon (xs). This study demonstrates 
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that the topology induced by these harmonics does not show resonance phenomena 
(i.e. libration and circulation zones separated by a so-called critical curve). In all 
cases the dynamics remains that of a circulating angular variable. Three specific 
harmonics produce the most significant variations on their respective conjugated 
momenta; the others are of negligible influence. In a second approach, the num- 
ber of degrees of freedom is halved by averaging the total Hamiltonian over the 
two non-resonant angular variables z4 and zs. As was demonstrated before, the 
variations produced by certain combinations of these two angles are significant. 
Therefore, the Hamiltonian is averaged up to the second order by the technique of 
Lie transforms. A semi-numerical method can now be applied as was done when 
considering solely the inhomogeneity of the geopotential. Approximate surfaces of 
section are constructed in the plane of the inclination and argument of perigee. The 
main effects of the Sun and Moon attractions compared to the terrestrial attraction 
alone are a strong increase in the amplitude of libration in inclination (from 0.6 ° to 
3.2 °) and a decrease of the corresponding libration period (from the order of 200 
years to the order of 20 years). 
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Appendix 

A. Moon and Sun's parameters 

The Moon's orbital parameters at Epoch J.D. 2415020.0 and referred to the ecliptic 
plane are the following: 

aM = 384399km, 
eM = 0.0549, 
iM = 5°8t43.427 ", 
~M ~---O.05295°/days, 

period __ 18.6 years, 
~M --~ O.1114°/days, 

period ~_ 8.85 years, 
J ~ M  ~ 12.8°/days, 

period "~ 28 days. 

(41) 
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The parameters of the apparent Sun orbit related to the Earth equator are given 
by: 

as = 1495979.102 km, 
es = 0.01673, 
is = 23.4 ° 271 08'1.26 
~s  _~ 18" .8 /yea r ,  
-~/s --- 1.Ol°/days,  

period _~ 1 year. 

The motion of the argument of perigee with time is strongly nonlinear. 

(42) 
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