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Abstract. The nutations of the Earth can be seen as variations in longitude and in obliquity of the 
position of the Celestial Ephemeris Pole (CEP); these variations are given for each nutation frequency, 
and correspond to an elliptical motion of the CEP in the inertial space. Therefore the nutations can 
also be expressed as the sum of two circular motions of opposite direction (one prograde and one 
retrograde) with the same frequency. In the literature, the nutations are given in one or the other 
representation. Because the conventions are not always the same, we review here the mathematical 
expressions of both descriptions and we give the way to get one from the other. 
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1. Introduction 

Due to the luni-solar attraction (and eventually the attraction of other planets) a 
torque is applied on the Earth which tends to rock the equator towards the ecliptic. 
Due to the Earth's rotation, this torque produces a 'precessional' motion of the 
Earth in space: the precession. The periodic changes of the relative positions of the 
Moon, Earth, and Sun (and eventually the other planets) imply additional, inertial, 
periodic motions of the Earth, called nutations. 

The nutation coefficients for a deformable Earth are computed from the rigid 
Earth nutation amplitudes by convolution with the relative values of the ampli- 
tudes with respect to the rigid Earth results, at each nutation component. In the 
literature these relative values are known as the 'Brati o' (Wahr, 1979, 1981); they 
express the ratios in the frequency domain between the nutation amplitude for a 
deformable Earth and for a rigid Earth. Rigid Earth theoretical nutations as well as 
observed nutations (obtained from VLBI and LLR observations) are expressed as 
variations in longitude and obliquity of the position of the Celestial Ephemeris Pole 
(CEP); taken together, these variations form a sum of elliptical motions at periods 
ranging from a few days to a few years in the inertial space. They result from 
the combination of two circular motions, one in the prograde direction and one in 
the retrograde direction, at the same period. The ratios as given by Wahr (1979, 
1981), are corresponding to the normalized amplitudes of these circular motions. It 
is thus necessary to make the link between those two different ways of expressing 
nutations. Because in the literature it is very hard to find the conventions used 
by the different authors, the purpose of this paper is to clarify the mathematical 
expressions for both representations. 
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Let us consider a diurnal tidal forcing acting on the Earth at a retrograde 
(opposite to the Earth's rotation) quasi-diurnal frequency Aj in the Earth's reference 
system. Let us write Aj = -w j  where wj is positive. The Earth will have a nutation 
at a frequency A} = Aj + f~ = - Acoj = -aJj + f~ in the inertial space where f~ is the 
Earth's rotation frequency (prograde). With this frequency A j, another frequency 
which is symmetrical with respect to the - 1  cycle~sidereal day (K1) frequency 
is associated. With the frequency A} (or -Acoj),  a frequency -A} (or Acaj), 
symmetrical with respect to 0 cycle~sidereal day (precession), is associated. So, 
a tidal frequency wj which is higher (respectively lower) than the Earth rotation 
frequency gives rise to a retrograde (respectively prograde) circular nutation in the 
inertial space. 

Some authors work with the angular velocity Awj as nutation frequency, i.e. 
with the frequency introduced here above and which is positive in a sense opposite 
to the prograde Earth's rotation; consequently, in that case, a positive frequency 
corresponds to a retrograde nutation and a negative frequency corresponds to a 
prograde nutation. If we really want to note that the angular velocities are in radians 
per time unit and knowing that positive angles are prograde, then the Earth's rotation 
rate must be +f~ if~2 is positive as before. Furthermore, the frequency in radians per 
time unit in the inertial space is A~ = - A w  i . Positive A~ (negative Aco/) correspond 
to prograde nutations and negative ),~ (positive Awj) to retrograde nutations. Note 
that a prograde frequency does not automatically correspond to a linear combination 
of the Doodson variables (like in tide generating potential developments, see e.g. 
Roosbeek, 1995) or the Delaunay variables (like in rigid nutation developments, 
see e.g. Kinoshita and Souchay, 1990) with positive coefficients because one of the 
variables is the longitude of the Moon's nood which is retrograde. In this paper we 
shall work either with )'5, and thus take the convention that positive frequencies 
correspond to prograde nutations and negative frequencies to retrograde nutations, 
or with AaJj and thus take the opposite convention. 

At each frequency (either prograde or retrograde), one can compute the product 
of a B~atio and a rigid Earth amplitude; the combination of a couple of these pro- 
ducts for opposite sign frequencies gives nutations in obliquity and in longitude. 
These nutations can also be retrieved from the prograde and retrograde nutations 
as we shall see. 

2. Expression of the nutations in longitude and obliquity in function of 
the tidal forcing 

The expression of the diurnal tidal forcing (as the tesseral part of the tidal poten- 
tial W21R21(O,A) + I~21S21(0, A), where R21(0, A) = P21(cos0)cosraA and 
$21(0, A) = P21(cos 0) sin mA, and where P21 is the associated Legendre poly- 
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nomial) in function of the tide generating potential (TGP) is given by 

OQ 

W21 = 1(2 E A21j sin(wjt + (~j) (1) 
j=0 

o o  

VV'21 ----- /~2 E A21jc°s(~J t q- o~j) (2) 
j=o 

where K2 2 D = 5 ~ ,  and where D is the tidal Doodson constant (noted G in Melchior 
and Georis, 1968) and which is different for the Moon, the Sun and each of the 
planets; a is the mean radius of the Earth. The complex sum of the two first 
components of the volumetric external torque acting on Earth and associated to the 
diurnal tidal forcing can be expressed as: 

F = F1 q- i r2  (3) 
3 i a A  

- ~-~ (W21 + i17d21) (4) 

= --~2CEM-S A21j e -iw3t + E A21-j e -iw-'t , (5) 
j=o j=0 

3~A r.- . A and C are the principal inertia moments, f~ is the where E M - S  -- Uff-j2 x~ 2, 
mean rotation, and c~ is the dynamical flattening of the Earth (o~ = (C  - A ) / A ) .  
The position of the instantaneous rotation axis (m = ral + ira2) in a terrestrial 
frame is then given by the solution of Euler equations: 

A ~ n  - i ( C  - A ) f t m  = r .  (6) 

This equation leads to 

( ~  A21j e_iwjt ~ A21-j e_iW_j t (7) i ~ C  E M - S  -4- E C m -  C 
j=0 ~ g / q -  Awj j=0 ~ + AuJ_j 

From this expression, we can obtain the nutation of the Celestial Ephemeris 
Pole (CEP) by integration with respect to the time (Capitaine, 1982): 

AfCE p Jr- i sin eoA~bEp = - ~rn e ia~- d r  (8) 

where A ¢ '  is the classical Euler angle (positive = prograde) for the precession, 
it is thus retrograde with time; the conventional definition of nutation in longitude 
corresponds to A ¢  = - A C t  because nutations are considered to be added to the 
precessional angle. Substituting equation (7) in equation (8) leads to 
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AeCE P + i sin e0A¢~Ep 
j=o A~j C --~fl +/kwj 

e-i(Awjt+Pj) 

+ Ec~ A21-JAwj C 1 ei(Zx~t+~j) , (9) 

j=o - ~  - / X ~ j  

using the fact that Aw_j = - A w j ,  and fl_j = -/3j which are the phases related to 
the initial conditions. This shows that to one tidal frequency wj (or)U) corresponds 
one nutation frequency A~j  (or)~}). These nutations, as derived from the external 
torque P, correspond to rigid Earth nutations. Nevertheless, the expression (9) can 
be extended for a non-rigid Earth (see Capitaine, 1982). If we note Aj the amplitude 
of the nutations for a non-rigid Earth, equation (9) is replaced by: 

OO 

A~CE P -~ i sincoA~P~Ep = ~ (A s e -i(A~°j~+~D - A_j e i(A~,t+~j)) (10) 
% 

j=O 

= ~ (Aj ei(:~; t+¢~) - A_j ei(~;t+¢J)) , (11) 
j=o 

where ¢j = - f l j .  In the rigid case, the amplitudes Aj and A_j can be related to 
the amplitudes of the tidal forcing by: 

~2C 1 A21j ~2C 1 Aj  = A21J E M _ s  _ _ _  , 
A~ A C - , Awj EM-S A Cf l  

-~2 - Aj A + Awj 

~2C 1 ~f~j . f~2C 1 _ A21-j  E M - S  - -  
A_j - A 3 EM_s A C Awj A C 

(12) 

(13) 

From equations (10) and (11), we deduce the variations in longitude and in obliquity 
of the position of the CEP: 

o o  OO 

AcCEP = E ( A j  - A_j)cos(~}t + Cj) = E ( A j  - A_j)cos(Awjt  + flj) (14) 
j=o j=o 

o 0  

sine0A¢~Ep = ~ ( A j  + A_j)sin()~}t + Cj) 
j=O 

c o  

= - ~ ( A j  + A_j)s in(Awjt  + flj). 
j=O 

(15) 
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Z, 

X,  X .  

Fig. 1. Projections in the (x, y) plane of the new position of the CEP. Z0 is the initial position and Ae 
and sin e0A¢ are the variations in obliquity and in longtiude. We have yl --- Ac and zl --~ sin e0A¢. 

These expressions show that the nutations of the Tisserand axis correspond to 
elliptical motions of the Tisserand pole (i.e. pole of the CEP) in the inertial space. 
The semi-minor and semi-major axes of these ellipses are given by (Aj - A_j )  and 
(Aj  + A_j) ,  and the normal to the ellipses is directed towards the ecliptic pole. 

3. Position of the CEP 

The celestial ephemeris pole (CEP) position which determines the convention- 
al nutation axis (it corresponds to the Tisserand axis) has a motion in space 
which can be expressed from the motion of the z-axis of the terrestrial frame: 
(see figure 1) 

XCEP = -- sin eo A ¢ '  = sin eoA¢ (16) 

YCEp=Ac (17) 

o r  

xCEP + iyCEP = sin eO A ¢  + iAe. 

From equations (14), (15), equation (18) gives: 

XCEP @ iyCEP 

(18) 

The motion of the CEP in space is thus the sum of two spherical motions, one 
prograde and one retrograde, of the same angular velocity. The result is thus an 
elliptical motion at that frequency. 

= i E ( A j  e -i(A~Jt+z~) - A_j  e i(zx~t+L~j)) (19) 

j=0 
o o  

= i ~ ( A j  ei(a) +e') - A_j e-i(a}*+CJ)). (20) 
j=0 
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Wahr in his thesis (1979) works also with the retrograde and prograde nutations. 
He computes the toroidal mean displacement ~ at the surface of the Earth. It is 
easy to show that, if we express this displacement in a classical cartesian terrestrial 
coordinate system, we obtain : 

f l  = [5a(5 + i~]) e i6'it+~A] A 

(5 + i W 1 ei(wjtTfli) 
r 

A g, (21) 

where W 1 is the toroidal tangential displacement as defined by Smith (1974) or in 
Wahr's work (1979, 1981), 5 and ~) correspond to the unit director vectors of the 
terrestrial frame (5 gives the direction of the equinox in the equatorial plane) and 

corresponds to the initial position. The displacement g] is then exactly a rotation 
around an axis in the equatorial plane, thus a nutation of the whole Earth. This is 
true for czj and cz_j. The total effect due to this couple of frequencies, symmetrical 
around the frequency of 1 cycle~sidereal  day, can be expressed in the terrestrial 
reference frame by : 

[6a + ei(~Jt+~) ) + 6a-  ei("~-Jt+Z[)](5 + i~/) A ~. (22) 

For/3 + =/3j  and/3~- = -/3j, this gives in the inertial reference frame: 

[~a + e i(A~jt+Bj) -t- 6a-  e-i(hw~t+~J)](:~ + i~)) A g. (23) 

In particular, this is true for the ~ axis, which points along the time averaged rotation 
vector ~.  So, for g = (0 0 1) t, and for a total toroidal displacement taken for the 
mean outer surface and free from body tide effects, we take the real part of (23) 
and get the position of the CEP: 

- (6a + - 6a - )  s in(Awj t  +/3j)5  - (6a + + 6a- )  cos(Aczjt +/3j)~). (24) 

This expression is given for positive Aa~j, so, if we allow the use of a negative 
frequency too, we have to write 

/x j (6a+ - 6a-)sin([/Xc Jl t + 7j)5 

- (6a + + (~a-) cos ( IAwj l t  + 7j)~), (25) 

where 3'j =/3j  if Awj is positive, and ?j = - f l j  if Aa3j is negative. If we now use 
the international convention that the nutation in longitude is measured positively 
in the retrograde direction (they are added to the precession angle), we then work 
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with ~b rather than with the classical Euler angle ~Y(= - ~ )  used until now. By 
comparing (16) and (17) to (24) or (25), this yields: 

AecEP = - (aa + + 5a-)  cos(Awjt  + fiN) (26) 

= A e c o s ( A w j t  + fiN), (27) 

sin EoA¢czv = - ( S a  + - 5a - )  sin(Awjt + flj) (28) 

= sineoA~b sin(Awjt + f l j ) .  (29) 

From equations (14), (15), (26) and (28), one finds that: 

A j  = - ~ a -  

A _ j  = 5a +. (30) 

So, we can express the nutation in obliquity and in longitude as the sum of two 
circular motions, one in the prograde and one in the retrograde directions: 

AeCE P q- i sin coA~bcE P 

o o  

= - ~ ( S a  + e i(a~t+~¢) + 5a- e -i(Awjt+flj)) (31) 

j=o 

o o  

= - E ( 6 a +  e -i('x}t+¢j) -t- 5 a -  ei(;~'Jt+¢J)), 
j=O 

(32) 

where for positive Awj (negative A}), 5a + is the retrograde amplitude and ga -  is 
the prograde amplitude, and for negative Aa~j (positive A}), 6a + is the prograde 
amplitude and ~Sa- is the retrograde amplitude. We then can write: 

AECEP + i sin e0A~bczp 

o o  

= - ~--~,(A retro ei(lx'jIt+~,) + Apr° e-i(I;~}lt+'~3)) 

j=O 
(33) 

o o  

= _ ~ ( A  retro e/(la~ojlt+'Y~) + A pr° e-i(V,~jlt+~0)). 

j=O 
(34) 

Note that it could seem strange that a retrograde amplitude is in front of a coun- 
terclockwise (i.e. prograde) rotation, but in this conventional expression of the 
nutations, the retrograde amplitude (A retr°) corresponds in fact to a retrograde 
motion of the CEP in space. The same remarks applies for prograde amplitude. 

In practice, we do not compute directly the amplitudes of the nutations but 
rather the transfer functions i.e. coefficients in the frequency domain between the 
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nutational response of a deformable Earth and of a rigid Earth. This will endup in 
what Wahr calls the 'Bratio' .  If 6a0 (noted ri0 in Wahr, 1979) is the amplitude of the 
rigid nutation and tSa (noted ris in Wahr, 1979), the amplitude of the nutations for 
a deformable Earth, the Brati o 'S are defined by: 

Bratio - ris - ri0 _ ~ a  - ~a0  ( 3 5 )  
rio ~ao 

In the frequency domain, (26) and (28) become: 

Ac = - ( S a  + + ~a- )  

= -(Bratio+CSa + -t- Bratio-~Sao)- (~ao + -t-(~ao), (36) 

s ine0A¢ = - ( S a  + - ~a - )  

= -(Bratio+ ~a0 + - Bratio- (~ao) - (6a0 + - ~ao ), (37) 

where Bratio+ and Bratio- are  those given in the tables of Wahr's Ph.D.  Thesis 
(1979, see also Wahr, 1981). The amplitudes of the rigid nutations ~a + and ~a o 
can be found from the rigid nutation amplitudes in obliquity and in longitude by: 

~a + = - l ( A e 0  + sine0A¢0), (38) 

~Sa o = - ½(Aeo - sin eoA~bo). (39) 

This would give, combining (35), (36) and (37), (38) and (39): 

Ae = Bratio+(½)(Ae0 + sineoA¢o) + Bratio_(½)(Ae0 - sineoA¢o) + Ae0, (40) 

sineoA~b = Bratio+(½)(Aeo + sineoA~bo) 

-Bratio-(½)(Aeo - sin coA¢o) + sin e0A¢o. (41) 

The nutations as defined from the toroidal mean surface displacement are nutations 
of an axis which has no diurnal rotation in a uniformly rotating frame. These are 
nutations of the CEP and are directly related to the Tisserand axis B. 

4 .  I n - p h a s e  a n d  o u t - o f - p h a s e  c o m p o n e n t s  

Let us now imagine there is some dissipation which causes phases to the prograde 
and retrograde spherical components of the nutations: 
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Ac + i sin eoAtb = - //1~ A retr° e ~(l~}lt+'b+~j) 
\ j=0 

+ E APr° ei(-(I)'}[t+'vJ)+°~-J) 
j=o 

or at the first order, supposing that these phases are small, 

A~ + i sin e0A~ = - A retr° + iAretr°c~j) e i([~'~lt+'rj) 
\j=o 

(42) 

or 

A~ + i sin eoA~ 

+ E ( A  pr° + iApr°a_j) e-i(la;it+~) 
j=0 

_ (A~tr°iP + iA~°°P) e~([~;It+~i ) 

+ (a pr°ip + iA pr°°p) e-i([~;[t+'~j)) 
/ 

(43) 

(44) 

(j__~O ( retro ip -Aretroop,~ It+~j) = -- Aj + ,~j ) e i(It'~j 

+ (A~ r°ip + iA~ r°°p) e -~(t''~¢ It+'rj)) (45) 

where the superscript 'ip' means in-phase, and 'op', out-of-pha~e. 
The dissipation introduced in the spherical motions (by the phases a j  and 

a_ j )  must also be accounted for in the obliquity and longitude components of the 
nutations. This gives: 

(3O 

AE = E a~jcos(Awjt + flj + ~.), (46) 
j=0 

OO 

sin e0A¢ = E A~j sin(Awjt + ~j + ~ ) ,  (47) 
j=0 
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with A~j  = Aj  - A _ j  and AC~j = - ( A j  q- A_ j ) .  One usually writes at the first 
order: 

o o  

A¢ = ~ (A~jcos(AaJ j t  +/3j) 
j=0 

in - phase - component 

+ ( - A ~ j a ~ ) s i n ( A a ~ j t  + ~j))  

out - of  - phase - component  

(48) 

sin ¢0 A ¢ 
OQ 

=E 
j=O 

(ACj sin(Aczjt +/3j) 

in  - phase - component  

+ ( A ~ j a ~ ) c o s ( A w j t  +/3j))  

out - o f  - phase - component .  

(49) 

Equations (48) and (49) can be written: 

a ~  
(x)  

Ae~Pj cos(Awjt + flj) + Ae;~ s in(Awj t  -t-/3j), 
j=0 

(50) 

A ~ =  
OO 

A~b~ sin(Acojt +/3j)  + A ¢ O ~ c o s ( A w j t  +/3j) .  
j=O 

(51) 

In order to include the possibility of having a negative frequency, we can write: 

oo ip A w j  op 
Ae = ~ A%j cos(lAcojlt + 7j) + ~ A % j  sin(IAwjlt + 7j), (52) 

j=0 

(x)  

op awS ~P " l a ~ j l t  + ~s) + A % j  cos(lAc~s[t + ~/s). A¢ = }2  Ae s s,n( 
j=0 

(53) 

These expressions of the nutations can also be written for an inertial frequency 
/ .  Aj. 

o o  

Ae = ~ Ae~ p cos(A~t + e j ) +  Ae~ sin(A}t -t-ej), 
j=O 

(54) 

o o  

-= op t t A¢ E A ~ b ~ P s i n ( A ~ j t + ¢ j ) + A ~ b a j c o s ( A j  + ¢ j ) .  
j=0 

(55) 

Again, in order to include the possibility of having a negative frequency, we can 
write: 

O0 . ) l l  

'~ A~°P sin([A}lt + 7j), (56) Ae = E Ae~P COS(IA~ It -t- "~j) -[- lab.] Aj 
j=0 



NUTATIONS IN O B L I Q U I T Y  A N D  L O N G I T U D E  373 
OQ ,~/. 

a A¢ ~p sin(IA}lt + 7j) + A ¢ ~  cos(IA}lt + 7j), (57) 
j=0 

where 7j =/3j  = - ¢ j  if Awj is positive (and A} negative), and 7j = -/3j = Cj if 
Acoj is negative (and A} positive). We can write, generally 

co  

A~ = ~ A~ ~ cos(lASlt + "lj) + ACj ~ sin(lASlt + 7j) (58) 
j=0 

= ~ Ae 7 cos(lA~jlt + 7j) + ae~ p sin(lAa;jlt + 7j), (59) 
j=o 

oo 

AV5 = ~ A~5} p sin(lAalt + ~yy) + A¢ff p cos(IASlt + 7j) (60) 
j=0 

oo 

A¢} p sin(lAwjlt + ")'j) + A¢ff p cos(lA~,jlt + "yj), 
j=0 

(61) 

with 

AE} p = Ae~  = AeiPj, (62) 

A ~ ; -  ~ A ~  °~.- A~j o; 
]A}] aa iAcoj [ A%j, (63) 

• , ~ / .  . 

A¢}; = ~ A,/,~; Awj iv 
IA~I w;~j- iAwj]A~b~oj, (64) 

A~ 7 = a ~  = A~;~. (65) 

These equations lead to 

A~i~j = - ( A ?  tr°ip q- APr°ip) , 

(aFo _ A ~ j  = la;-I 

A~b~s inE0-  [A}[ - APr°iP) ' 

A@~P sine0 = _  (Artr°°P + APr°°P) , 

and 

( ) ip " "3 A q / , z P .  sin e0 , 
proip - -  1 AeAj - 

Aj = 5 -  I;~1-~ 

(66) 

(67) 

(68) 

(69) 

(70) 
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ip " " retro ip -- 1 A e ~ j 
= z X , .  ~o AS 2 IAjl ~ ' (71) 

and 

pro ip 1 { ip 
Aj = --2 ~AewJ 

Aei~ = -  (A~ etr°ip + APr°iP), (74) 

A%J°P _ IAwjlAwJ (A~troop - APrOOp ) , (75) 

Awj (A}etroi p / x ~  sin~0 - IA~j I - Apr°~P), (76) 

A*°~ sineo = - (A; .etr°°p + Ayr°°P), (77) 

Ao2j ip • ) 
]AwjlAff;wj sin e0. , (78) 

Aj - Ae~j + i/._xwjr 

) _ 21 A~j A~j op Aj 

retroop 1 AcdJ ( op AcdJ op ) 
Aj - 51-S-~-~jl A%j i/xa;slA¢~jsine0 . ( 8 1 )  

Note that all these relations are given for the convention that 

pro pro ip .--pro op (82) Aj = Aj + z~j , 
Aretro retro ip .~retro op j = A s + ~ A j  . (83) 

Herring et al. (1986), as well as Wahr and Sasao (1981), define the prograde 
and retrograde amplitudes by: 

APrO = Aproip _ iAproop,  (84)  

A retr° = A retr°ip- iA  retr°°p, (85)  

pro op _ - 1 ,~j Ae~,~ + s in  ~o ( 7 2 )  
Aj 2 J),~[ I;,~1 ~ ' ,  ' 

Aj - 21Vjl I,X}l ~a3 sineo , (73) 
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so that with their convention we have 

2xt + i sintoA~b = - A retr°ip - iA retr°°p) 
\ j  =o 

ei(la~ ~ It+¢i) 

+ ( A  pr°ip - i A  pr°°p) e -i(IA~ilt+¢~)) (86) 

/ 

which gives the link between the variations in longitude and obliquity and the 
amplitudes of the retrograde and prograde motions: 

proip - 1  [ ~ j  j A¢~,j sin to Aj - 2 

( ) ip A¢~.  sin to , - 1  At~j - 
2 I;~ 

ip AaJj ip ) 
retroip - 1  Atwj + ~ A ¢ ~ o  j sinto Aj - 2 

(87) 

- 1  Ate, d + sinto 
= 2 I;~.1 " - ' ~  ' 

pro op 1 Awj { op z2xcoj op "~ 
Aj - 2 IA~jl k,A% + ~ : x % j  sinto 

(88) 

retro op _ Aj 

1 A i A e ~  + sin ¢o 
alAS[ 1;~51 - ~ a ~  , 

2 I/x~,jl At°~ IS-Sj~jIa%j sinto 

(89) 

= _1  Aj A e ~ -  ] CA3sme° , 

which is exactly what is presented in Mathews and Shapiro (1992). 

(90) 
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