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Abstract. Guided modes of a planar dielectric waveguide which encounter a nondiagonal 
permittivity tensor are neither TE nor TM, but hybrid. They are described by a pair of 
coupled second-order differential equations for the transversal electric and magnetic field 
components. We construct a real-valued function which plays the role of the transversal 
electric or magnetic field in the uncoupled Sturm-Liouville differential equation for TE or 
TM modes. The number of zeroes, or nodes, of this function labels the modes. The nodes 
increase with the prospective propagation constant. This fact is proven by constructing 
suitable self-adjoint operators and referring to the minimax principle. The nodal properties 
allow to formulate an efficient bisection algorithm for effective indices and field distri- 
butions of guided hybrid modes. 

PACS: 42.80, 42.82 

Linear or planar dielectric waveguides are the key 
components of integrated optical devices. They serve 
to guide light waves along a strip or within a layer 
upon appropriate substrates. Waveguiding regions of 
increased permittivity, i.e. permittivity profiles, have 
been produced by exchange, implantation, in- or 
outdiffusion of suitable ions, or by combinations of 
such procedures. 

Most applications are based on electro- or mag- 
netooptic properties of the substrates and require 
single domain, optically anisotropic crystals. LiNbO3 
is a well-known example. For such media, not only the 
bulk permittivities, but also the permittivity profiles on 
top of them must be described by tensors. The resulting 
mode equations are rather complicated, even for 
planar waveguides. If, however, the crystal is cut 
perpendicular to an (optical) symmetry axis and if the 
propagation direction coincides with another (optical) 
symmetry axis the mode equations decouple and allow 
for simple TE or TM solutions. 

There are various reasons to investigate hybrid 
modes in planar dielectric waveguides. 

In some applications the propagation constants of 
different modes must coincide in order to have phase 
matching over a long interaction length (generation of 
second and higher harmonics, TE/TM mode conver- 

sion, etc.). This may be achieved by selecting an 
appropriate angle between symmetry axis and propag- 
ation direction. 

Another domain is holography in planar wave- 
guides. Here two or more surface waves are super- 
imposed to generate an interference pattern which 
is to be recorded, fixed, and reconstructed. It is not 
possible, in general, that all waves travel along a 
symmetry axis, some or all are necessarily hybrid. 

A third reason to study hybrid modes is the so- 
called inverse problem. Mode propagation constants 
are measured in an effort to reconstruct the guiding 
permittivity profiles. By investigating pure TE or TM 
modes only a few n u m b e r s  - the propagation constants 
/~,,- are to determine two or three permittivity profi les .  
If we take hybrid modes into consideration as well we 
have to fit curves/~, ,(0) ,  where 0 is the angle between a 
symmetry axis and the mode propagation direction. It 
is evident: the more data to be fitted the less ambiguous 
the reconstructed profiles. 

Yamamoto et al. [1] investigated an anisotropic 
and gyrotropic slab waveguide. The non-diagonal 
elements of the permittivity tensor were treated as 
perturbations. Burns and Warner [2] derived a closed 
expression for the dispersion equation of hybrid 
modes. They assumed isotropic cover layers and 
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specialized to a coplanar optical axis in the waveguid- 
ing slab. Marcuse I-3] analysed hybrid modes if the 
optical axis is not in the slab plane, and anisotropic 
covers were examined by Marcuse and Kaminow [4]. 
Ctyrok) and Cada 1-5] tackled the anisotropic graded 
index waveguide by a generalized WKB method, 
Kolosovskil et al. [6] by Runge-Kutta integration, 
Koshiba et al. [7] by a finite element calculation. 

If the profiles are broad the WKB method can 
provide rather accurate effective indices, but no field 
distributions. The finite-element method, on the other 
hand, is versatile but, in general, difficult to implement. 
Guided modes have to fall off on both sides of the 
surface: this is a boundary value problem for which the 
finite element method is the appropriate tool. In the 
cover region, however, the mode equations can be 
solved analytically, and the corresponding initial/ 
boundary value problem is much simpler. The effec- 
tive index, or the propagation constant t ,  appears as a 
parameter in the differential equations and in the initial 
conditions. It has to be determined such that the 
boundary condition on the substrate side is met. 
Kolosovskil et al. have to scan the whole range of 
possible fl values. We present a much simpler and 
faster method. 

Pure TE or TM modes are described by a Sturm- 
Liouville problem for which there is an efficient 
algorithm: guess an eigenvalue, integrate the differen- 
tial equation, count the number of zeroes and decide 
whether the guessed value was too high or too low. 
Repeated bisections allow any desired accuracy. We 
show that this strategy can be applied to hybrid modes 
as well. Although a system of two coupled second- 
order differential equations is encountered we exhibit a 
real-valued node function such that its zeroes behave 
just as in the pure TE or TM case: if the prospective 
propagation constant is lowered the nodes move away 
from infinity, and each time a new node creeps in at 
infinity, an eigenvalue has been found. 

In the following section we set up the differential 
equations for hybrid modes as well as the appropriate 
boundary conditions and introduce nodes. We present 
an equivalent Hilbert space formulation in Sect. 2 and 
prove that nodes move away from infinity if the 
propagation constant is lowered. Counting nodes, as 
outlined in Sect. 3, allows to formulate a bisection 
algorithm which serves to calculate the propagation 
constants fl~ and field distributions for guided modes. 

I. Differential Equations 

In order to simplify notation we shall rescale the 
electric displacement and the magnetic field strength 
such that they are comparable with the electric field 

strength. We replace D//3 o by the symbol D, #oCo H by 
H, and Co B by B. Likewise dimensionless coordinates 
are used. With co as light wave frequency and k 0 = co~Co 
as corresponding vacuum wave number we replace kox 
by x, etc. 

Let us introduce Cartesian coordinates such that 
the x-axis is normal to the waveguide surface, and 
mode propagation is along the z-axis. All fields are of 
the form 

F(x, y, z, t)=F(x) e i(p=- ~ . (1) 

We have a dielectric waveguide which is described 
by 
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Dj(x)= E ejk(X)Ek(X) and Bi(x)=Hi(x ). (2) 
k=l  

The permittivities ejk(X) are constant in the cover 
region x<0.  In the substrate region x > 0  they are 
assumed to be smooth functions which converge 
sufficiently rapidly towards the bulk values with x ~ oo. 
The permittivities will jump at the cover/substrate 
interface. 

Maxwell's equations reduce to identities between 
field components and to first-order differential equa- 
tions. The identities are 

01 =[?H E , H 1 = - f i E  z . (3) 

Together with (2) we may express Di, E~, and H~ in 
terms of E2, E3, Hz, and H 3. The differential equations 
a r e  

iE~ = - H 3 ,  

(4) 
+ elan,_ E ' 

(e33 ell )3~-~e@llH2,  

( gt2g21 ~ E 
i l l ; = \  B~-e2~+ elt J 2 

+ (-/323-l-/321/313)E3-fl'g21H2 /311 

Note that Ez, E3, H2, and H 3 are tangential 
components of the electric and magnetic fields. They 
must be continuous at the cover/substrate interface at 
x=0.  By (3) the normal components of magnetic 
induction and electric displacement then are con- 
tinuous as well. 

If the permittivity tensor were diagonal the four 
coupled first order differential equations (4) would give 
rise to two independent second-order equations. With 
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~2 = ~22 we may write 

(5) 

This equation describes transverse electric, or TE 
modes. Solutions are of the form 

E a = 0 ,  E z = E ,  E3=0,  
(6) 

H i = - f i E ,  H2=0 , H3= - i E ' .  

The second equation is 

sx H' +(e~- f i 2 )H=O.  (7) 

Again we have set ex = el t and e3 = a3z. (7) describes 
transverse magnetic, or TM modes which are of the 
form 

f i l l  i l l '  
E 1 - , E 2 = 0 ,  E 3 = , 

q (8) 

H i = 0 ,  H 2 = H ,  H 3 = 0 .  

We have to deal with pure TE and TM modes if the 
waveguide surface is perpendicular to an optical 
symmetry axis and if the mode propagates along 
another symmetry axis. We now allow for an angle 0 
between the propagation direction (our z-axis) and the 
optical symmetry axis in the surface plane. The 
diagonal permittivity tensor with profiles e~, ~2, and e3 
must be rotated by an angle 0 around the x-axis. The 
result is (! 0 0 

ejk= e2 COS20+e3 s in20  (e2--83) cos0  s in0  

(~2--e3) COS0 sin0 e2 sin20+83 cos20 

(9) 
Just as above fields can be expressed in terms of the 

two transversal components: 

f i l l  ill '--E32E 
E t - , E E = E ,  E3 - 

gl 833 (10) 

H 1 = --fiE, Hz=H , H 3 =  - i E ' .  

E and H must obey the following system of coupled 
second-order differential equations: 

( g23932"~ E-I-ig23H' =fi2E, 
E"+ e22 e33 ./ /~33 

(11) 
ei - -  + e l H + i e l  =fiZH. 

\e33// \ e33 f 

In the cover region the permittivities are constant, 
and in order not to obscure the discussion we assume 
optical isotropy, 

ejk(X)=eeov(~jk for x < 0 .  (12) 

The non-exploding solutions of (11) in x < 0 are 

E(x) = E o e ~x, H(x) = H o e ~ where • = ~ .  

(13) 

Since E, E', H, and (H'+i%2E)/e33 are to be 
continuous we have the following initial conditions at 
the substrate side of the waveguide surface: 

E(0) = E o , E'(0) = tcEo, 
(14) 

H(O) = Ho,  H'(O) = - ie3  2(0)Eo + ~c s3 3(0) Ho. 
~cov 

fl in (11) is the propagation constant of a guided mode if 
a pair of amplitudes Eo, H0 can be chosen such that 
the initial condition (14) and the coupled-mode equa- 
tions (i 1) produce fields E, H vanishing with x--, + Go. 

A position 4 > 0  is called a node if there are 
amplitudes E0 and H 0 for which E(0 = H(4)= 0. The 
nodes clearly depend on the parameter fi in (11). They 
are labelled in increasing order, 0 < 4o(fi)< ~l(fl)< . . . .  
Note that the differential equations (11) for x > 0  as 
well as the corresponding initial conditions (14) de- 
pend analytically on fl (we stay well away from ~cov). By 
standard theorems for systems of ordinary linear 
differential equations the solutions then depend like- 
wise analytically on such parameters. We conclude 
that f i ~ m ( f l )  are continuous functions, and 
~m(fi,~) = ~ determines the propagation constants fi~ of 
guided modes. 

We will show in the next section that fi ~ ~,,(fi) are 
strictly increasing functions. These nodal properties - 
upon which our bisection algorithm is based - cannot 
be read off directly from the differential equations. We 
have to resort to Hilbert space methods to prove them. 

2. Hilbcrt Space Formulation 

In this section a field ~ = {E, H} is described by two 
square integrable complex valued functions E and H 
defined on the real axis. The scalar product of two 
fields (~ and ~ is defined by 

(r SdxE* + Idxu* . (15) 
gl 

This definition is motivated by demanding that the 
energy flux per unit lateral waveguide extension should 
be finite, 

j" dXSz = ~ dx(E*H2 - E:~Ht) 

f l , dx ( lE l2  + lHI2~ = < ~ .  (16) 

The Hilbert space ~ is equipped with the above 
scalar product. It contains all fields vanishing for x > 4 
and having a finite norm, ][qS[[ 2 =(q~, ~b)< oo. 
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Nr C ~ contains all fields 05 = {E, H} which 

1) are twice continuously differentiable in 
0 < x < 4 ,  

2) are twice continuously differentiable in x < 0, 
3) are tied together by E, E', H, and (H' + i/332E)/e33 

being continuous at x = 0, 
4) vanish at x = 4. 

We define the operator M~ on ~ by the left-hand 
side of (1 1). The first line defines the E-component of 
M~05, the second line the H-component. Permittivities 
are either constant (for x < 0) or smoothly varying (i.e. 
at least continuously differentiable for x > 0). Hence 
Me is well-defined on ~ .  

The M~ are symmetric operators. Besides ejk--/3kj* 
the continuity properties at x = 0 of 9r  are required as 
well as E = H = 0 at x = ~ and x = -  oo. With M~ we 
associate a quadratic form #r by 

#r = (05, M~05) = - ~ dx]E'I 2 + ~ dx/322[EI 2 

dx  IH , - I ~  +i /33eElZ+fdx lHI  2" (171 

This form is defined on 9r 
Let em~ ~ be the maximum of the two permittivity 

profiles ezg(X) and /31(x). From (17) we deduce /~r 
--< emaxl1051[ 2. We conclude that ~;max is an upper bound 
to the form #r as well as to the operator Me. 

M~ is a densely defined symmetric operator 
bounded from above, therefore the associated quadrat- 
ic form is closable [8]. We denote the closure by #~, 
defined on 9~  C ~ .  #~ is the quadratic form associated 
with a certain self-adjoint operator M~', the so-called 
Friedrichs extension of M e  Its domain of definition 
~ f  C ~ is larger than the original domain and smaller 
than the closed form domain, ~r C @f C ~ .  

The eigenvalues of the Friedrichs extension can be 
calculated from its associated form by the minimax 
principle [9]. For m=0,  i, ... we define 

A~, , ,= sup inf /~(05). (18) 
sc~g 4,~s 

dimS =m IIr =i 

This means: find the infimum of the form in an 
m-dimensional subspace, and take the supremum over 
all such subspaces. Ar are those eigenvalues of Mf  
which are above the continuous part of its spectrum. 
They are arranged in decreasing order, multiple eigen- 
values occur repeatedly. 

For 4<oo  the continuous spectrum consists of 
A </3~ov. For ~ = 0% i.e. if the support of fields is not 
restricted, the continuous spectrum is made up of 
A <e2,x. Either/31(oo) or 1/(/3- *)22(oe) determine the 
onset of leakage in this case, and/3m~x is the larger of the 
two. These properties may be read off from (17) when 
inserting trial functions of very long wavelength. (18) 

yields all eigenvalues above ~ .... but only those above 
em~ax are of interest here. We will prove now that the 
eigenvalues increase with the support. 

Assume 4<tl. Since the fields for which #~ is 
defined are absolutely continuous we conclude 
~ C 9 c. Note  that #~(05) = pc(05) for 05 E 9~. Therefore 

Ar sup inf gc(05)<A,,,, (19) 
scyg r 

dimS=m 11r = 1 

holds which means that {~--~Ar is an increasing 
function. 

We did not and need not - show that all 
eigenvalues of the Friedrichs extension are also eigen- 
values of the original mode operator. For our purpose 
it is sufficient to know that each eigenvalue fl~ of Me is 
also an eigenvalue of M~. Hence ft,, and ~ grow 
simultaneously. 

Since 4 ~ tim(4) increases there is an inverse func- 
tion fl~--~ 4,,(fl)- The former function may jump at 
certain points, and the inverse function then would be 
constant within a certain interval. This, however, is 
impossible since ~m(fl) depends analytically on ft. We 
conclude that it is strictly increasing. 

3. Bisection Algorithm 

The second-order equations (11) allow for rapid 
identification with symmetric operators. From a 
numerical point of view the first-order equations (4) are 
better suited. We specialize to the permittivity tensor 
(9) because nodal properties could be established for 
/312 =el3 = 0  only. Moreover, if e23 =/332 is real we get 
away with real-valued functions. 

Let us identify Yl... Y4 with E2, E3, iH2, and iH 3, 
respectively. The following differential equations 

Y'I = Y 4 ,  Y 2 =  - - 1  2 3 ,  

(2O) 
Y'3 = ez3Yl + g33Y2, Y'4 = (f12 _ eza)y 1 _/323Yz 

must be solved. With 

yl(0) = 1, y2(0) = 0, y3(0) = 0, y4(0) = tr (21) 

the mode vanishes at x ~  - ov and is TE polarized in 

the cover region. Recall that tc stands for ~ ,  
where/3~o~ is the cover permittivity. 

We duplicate the system for fields which are TM 
polarized in the cover region. Y5 .--Y8 are likewise 
identified with E 2 ... i l l3.  They obey the same differen- 
tial equations: 

Y; : Y8 ,  26 : - -  Y 7 ,  
(22) 

Y'v =/323Y5 +/3 3 3 Y6 ,  y~ = (f12 _/322)Y5 - -  ez3Y6 . 
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The initial conditions, however, are different: 

K 
y5(0)=0, y 6 ( 0 ) = - - ,  yT(0)=l, ys(0)=0. (23) 

8cov 

We integrate the eight first-order differential equa- 
tions (20, 22) by a Runge-Kutta procedure starting 
with initial values (21, 23). The TE solution Yl ... Y4 
and the TM solution Ys..-Ys must be superimposed 
with amplitudes ATE and ATM respectively to obtain the 
generally polarized solution. The transversal electric 
and magnetic fields at a certain position x in the 
substrate region are 

E(x) = yl(x)ATE + ys(x)ATM, 
(24) 

i l l (x )  = y3(X)ATE + YT(X)ATM. 

is a node if, for given fl, ATE and ATM can be chosen 
such that E(~)=H(~)=0. A sufficient and necessary 
condition for this is that the determinant 

Aft(X) = y l ( x ) y 7 ( x )  - -  Y3(X)f l5(x)  (25) 

vanish at x = ~. 
Let us now formulate the bisection algorithm. With 

every iteration the interval is halved within which tim 
must be contained, fllow = em~176 and flhigh ~---emax is a safe 
guess. Recall that emax is an l-independent upper 
bound for the spectrum and e2ax is the upper limit of 
the continuous spectrum for ~ = c~. If tim is already 
known it may serve as /~high for tim+l" 

And this is the program for the mth mode: 

1) establish an interval [fllow, fihigh] within which 
to search for tim, 

2) reset the node counter to 0 and try 
�9 1 

fl" = 2 (fllaigh + fltow)' 
3) begin at x =  0 with (21, 23), 
4) integrate (20, 22) step by step, 
5) calculate the determinant A according to (25), 
6) if A has crossed the zero line increase the node 

counter, 
7) if m nodes have been found stop the in- 

tegration procedure, 
8) if a field gets too large - stop the integration 

procedure, 
9) ifm nodes have been found set fllo,,, : = fl else set 

10) repeat the procedure at step 2) until 
]flhigh--J~low[ is sufficiently small. 

The most recently found matrix 

( Yl(~) Ys(~)~ (26) 
Y3(~) Yv(~), ] 
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allows to determine the amplitudes ATE and ATM such 
that (24) describes the hybrid mode field distributions. 

4. Concluding Remarks 

The program we have just described is simple and 
efficient. With a personal computer it takes at most a 
few minutes to calculate all hybrid modes for a typical 
Ti:LiNbO3 waveguide. The Runge-Kutta four-point 
integration procedure is convenient, but any other 
method will do as well. 

A birefringent cover would cause no problem. 
Equation (13) has to be replaced by the two appropri- 
ate plane wave solutions. Only the initial conditions 
(21, 23) will change. 

If the permittivity tensor becomes non-diagonal 
because it is rotated it will be real and symmetric. This 
has been assumed when writing down (20, 22). The 
discussion in Sect. 2, however, assumes •32 = e~3 only. 
The nodal properties are valid for gyroscopic media as 
well. 

The waveguide normal must be an optical symme- 
try axis in the substrate. For the general permittivity 
tensor we could not yet rewrite (4) into an appropriate 
problem for eigenvalues which increase with the 
support of field. 

Although the operators M r and M~ describe leaky 
modes as well we cannot apply the bisection algorithm 
in a straightforward way. This method allows to search 
in a one-dimensional manifold only. 
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