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The purpose of the present article is to emphasize the usefulness of the ideas of E. R. 
Huggins in thinking about vortex motion and phase slip in superfluid 4He, and is 
primarily pedagogical. Several explicit illustrations of  vortex motion and phase-slip 
processes are considered. In addition, it is shown that Huggins's results lead to a 
generalization and a more complete understanding of the familiar expression E + Vs " p 
for the energy in the rest system of an excitation in the flowing superfluid, as applied to 
vortex excitations. Here, E is the energy and p is the momentum of the excitation in the 
moving system, and Vs is the superfluid velocity. 

PACS-93 numbers: 67.40.Hf, 6Z40.Vs 

1. INTRODUCTION 

Some years ago, E. R. Huggins derived expressions for energy transfer in a 
classical ideal incompressible fluid in which singular vortex lines are present. 1 
This work continued a line of development pursued by P. W. Anderson and 
others in previous years to describe phase slip in superfluid 4He by the motion 
of quantum vortices, 2 and was followed by the work of K. W. Schwarz and 
others. 3 In recent years, the observation of discrete phase-slip events in the 
flow of superfluid ~He through tiny apertures 4"6 and the observation in these 
apertures of critical velocities which decreased with temperature in a 
consistent way 5-8 have stimulated new interest in this area. 9,10 

The purpose of the present article is to emphasize the usefulness of 
Huggins's results in thinking about vortex motion and phase slip, and is 
primarily pedagogical. Several explicit illustrations of vortex motion and 
phase-slip processes are considered. In addition, it is shown that Huggins's 
results lead to a generalization and a more complete understanding of the 
familiar expression E + Vs. p for the energy in the rest system of an excitation in 
the flowing superfluid, as applied to vortex excitations. Here, E is the energy 
and p is the momentum of the excitation in the moving system, and Vs is the 
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superfluid velocity. A somewhat different approach to energy transfers in 
vortex motion and phase slip in superfluid 4He is contained in the article by 
K. W. Schwarz to appear in this same journal issue. 

In this article, we shall assume that the results for a classical ideal 
incompressible fluid in the limit of an infinitesimal vortex core radius can be 
applied directly to the superfluid component of 4He. At a minimum, this 
assumption limits velocities to much less than the speed of sound (and second 
sound in the two-fluid region) and lengths to much larger than the interatomic 
distance in liquid 4He. In making this application we shall assume that with 
an appropriate choice of core radius parameter the superfluid 4He vortex 
energy can be treated as if it were all kinetic. 11 

2. ENERGY TRANSFER 

The results derived by Huggins on which this paper is based are the 
following. Imagine the flow of an ideal nonviscous incompressible fluid in a 
channel with fixed wails completely filled by the fluid. For definiteness and 
simplicity, let us imagine the channel to be simply-connected and to be closed at 
both ends by pistons which move with the fluid, as shown in Fig. 2.1. The 
velocities of the pistons may vary with time. Further, assume that in addition 
to potential flow between the pistons, vortices with filamentary cores may be 
present. These vortex lines either close upon themselves or terminate at the 
walls. For the application of this formalism to superfluid 4He, we assume that 
all of the vortices have the same circulation lc. Further, let us assume that the 
ends of the flow region at the pistons are far away from a central region in 
which vortices are present. As suggested by the figure, we shall be interested 
primarily, but not exclusively, in cases in which the channel contains a 

I J 
Piston 1 

Region in which 
vor tex motion occurs 

Piston 2 

Fig. 2.1. Schematic view of the flow tube in which the fluid is contained 
between two pistons that are located far from the region in which vortex motion 

takes place. 
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constriction, in particular a small aperture in a partition. 
For a given velocity of one of the pistons and a given configuration of 

vortex lines, the velocity field v(r) is uniquely determined and may uniquely be 
decomposed into a sum of a potential flow field Vp(r) and a vortex flow field 
Vv(r ). Furthermore, as Huggins shows, the total kinetic energy of the fluid T 
may be written as the sum of a kinetic energy of potential flow Tp and a kinetic 
energy of vortex flow Tv, without any interaction term, assuming that Vv = 0 at 
the pistons, so that the normal component of Vv at the boundaries is everywhere 
z e r o .  

Following Huggins, we assume that in addition to the force on the fluid 
exerted by the walls due to the pressure of the fluid, there are at most a 
conservative body force per unit mass gf2(r) acting on the fluid derivable from a 
potential f2(r) (gf~ = - grad ~) and a local force per unit mass ge(r) that cannot 
be derived from a potential and that acts on the fluid only near the vortex 
cores. Forces of type ge might arise from the action of an electric field on an ion 
trapped on a vortex core or from the scattering of elementary excitations in the 
fluid or in the walls by the cores. 

It is then possible to show that the time derivative of Tp and Tv are given 
by the expressions 

dTp/dt = I (Z1- X2) + P J Vp. (v x ca + ge) dV, 

dTv/dt =- p J Vp. (vx ca + ge)dV +p Jv .  ge dV. 

(2.1) 

(2.2) 

Here I = .~o is the total mass current flowing in the channel from piston 1 to 
piston 2. llae potential X is given by the expression 

x=t~+P/p, (23) 

where P is the pressure and p is the density, and Z1 and X2 are the values of X at 
pistons 1 and 2, respectively, at each of which ~ is assumed to be uniform. The 
integrals run over the entire volume of the fluid, and ca =curlv = curlvv. The 
derivation of Eq. (2.2) depends on the normal component of Vv being zero at the 
boundaries, an additional reason for assurcdng that any vorticity is located far 
from the pistons. (These expressions differ slightly from the corresponding ones 
given by Huggins, in that here the time derivatives are total derivatives for a 
region with moving boundaries (at the pistons) rather than derivatives for a 
region with boundaries at the pistons fixed at the instantaneous positions of the 
pistons.) 

The first term on the right-hand side of Eq. (2.1) represents the rate at 
which work is being done on the fluid by the pistons and the force gf~, whereas 
the second term on the right-hand side of Eq. (2.2) is the rate at which work is 
being done on the fluid by the force ge. Hence when Eqs. (2.1) and (2.2) are 
added together, we have an overall kinetic-energy-work equation for the fluid. 
Furthermore, we may interpret the equations individually as if the pistons and 
force gf~ act only to change the energy of potential flow and the force ge acts 
only to change the energy of vortex flow, if at the same time the expression 
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- pl vp.(vxca+g~)dV (2.4) 

is taken to represent the rate dE /d t  (p --> v) at which energy is transferred from 
potential flow to vortex flow. We may then rewrite Eqs. (2.1) and (2.2) in the 
shortened forms 

dTp/dt = dWp/dt  - clE/dt (p -~v), 

dTv/dt = dE/dt  (p --> v) + dWe/dt, 

(2.5) 

(2.6) 

where the terms correspond to those in Eqs. (2.1) and (2.2). 
In the absence of work being done on the fluid by the pistons, by gfb and by 

ge, the interpretation of expression (2.4) as d E / d t  (p --> v) seems clearly 
established. However,  in the presence of work being done by any of these 
means, the interpretations above do not seem to have any justification beyond 
Eqs. (2.1) and (2.2). Nevertheless, they provide a consistent and useful 
bookkeeping scheme for energy transfers involving the fluid. 

As Huggins has shown, the expression (2.4) for d E / d t  (p --> v) has a simple 
geometrical form when as in the present case, the vorticity co is concentrated in 
filamentary vortex cores. First, we may transform the volume integral in (2.4) 
into a line integral along the vortex cores, obtaining 

dE/d t  (p --4 v) =-  p J Vp. (Vav x ~c + he) dl, (2.7) 

where Vav is a vorticity-weighted average velocity at the core given by 

VavX ~=JvxcadS  (2.8) 

integrated over a cross section of the core perpendicular to the axis of the core. 
In these formulas, ~: is a vector whose magnitude equals the circulation of the 
vortex and whose direction is parallel to the core in the direction of ca, ph  e is 
the force per unit length of vortex due to ge acting on the fluid, and dl is an 
element of length along the vortex core. 

The transverse velocity of the core Vc satisfies the relationship 1 

vcx  Jc = J (v x ca + ge perp) dS = Vav x lc + he perp, (2.9) 

where the subscript perp denotes the component  perpendicular to the core. 
Hence if we assume that in their entirety ge and he act locally perpendicular to 
the core, 12 we then have 

dE/dt  (p ---~ v) = - p lc I Vp- Vc x dl, (2.10) 

where we have replaced lcdl by lcdl. 
The expression - Vcx dl represents the rate at which the element of core dl 
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is sweeping out area, as illustrated in Fig. 2.2. (The sign is chosen here to 
produce a result in agreement with Huggins's convention.) Thus, the dot product 
of pVp with - v c x dl represents the rate at which the mass current associated 
with Vp is crossed by dl. The right-hand side of Eq. (2.10) then represents the 
product of g and the net rate at which potential flow mass current is being 
crossed by vortex cores, the sense, for a vortex loop, being such that when the 
net potential flow mass current through the loop decreases due to vortex motion, 
dE/dt  (p ~ v) is positive. Here we assume that the positive sense of the area 
spanning the loop is defined in relation to the sense of ~c by the usual right- 
hand rule. We may write Eq. (2.10) as 

dE/dt (p ~ v) = K (dIp/d0crossing. (2.11) 

We may now describe the dissipation of superfluid flow by vortex motion 
in the following way. If the vortex moves so as to sweep across streamlines of 
potential flow in the proper sense, energy is transferred from potential flow to 
vortex flow. Vortex flow energy may in some circumstances be expended 
concurrently against external forces, while in others it may be transported by 
vortex motion to some other part of the system to be expended later against 
external forces. 

Vp 

--c txd, ! 

Fig. 2.2. Perspective view of a section of vortex core showing the area swept out 
by an element dl in time dr, an area through which potential flow with 

velocity Vp is taking place. 

3. EXAMPLES 

Let us now consider several examples of processes in which energy transfers 
into and out of vortex motion occur. 
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3.1. Example A 

First consider the process envisaged by Iordanskii and Langer and Fisher 
as occurring above threshold in their homogeneous nucleation theories of 
superfluid critical velocity.13,14 As shown in Fig. 3.1, a circular vortex ring 
with self-induced velocity directed to the left is present in the superfluid, 
which undergoes potential flow with uniform speed v to the right. Assume 
that the radius R of the ring is large enough so that thPe speed Vr of the ring 
relative to the fluid is less than Vp and that the ring is transported to the right 
with speed Vp - v r. In the absence of any resistance, simple translation is all 
that will occur, the vortex ring remaining unchanged in size. No energy transfer 
will take place between potential and vortex flow. 

In the presence of a stationary normal-fluid component, a resistive force 
will act on the ring to the left, causing the ring to expand. In so doing, the vortex 
core cuts streamlines of potential flow in such a direction as to transfer energy 
from potential flow to yortex flow. At the same time, the resistive force does 
negative work on the vortex, but this loss in vortex energy is over-balanced by 
the transfer of energy to the vortex from potential flow, and the net change in 
vortex energy is positive. Here we have an illustration of an energy transfer 
between potential and vortex flows that requires the concurrent action of a local 
force. (It is interesting to note that if we view this process from the frame of the 
superfluid, the work done by the resistive force on the vortex is positive, and 
the increase in vortex energy is simply equal to this work.) 

F e = 

Vp ~ Vp-  v r 

Fig. 3.1. Example A: A circular vortex ring with self-induced velocity v r to the 
left is being swept to the right in a uniform potential flow field Vp, with Vp > 
yr. A resistive force Fe acts on the vortex core to the left, causing the radius of 

the ring to grow. 
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3.2. ~ampleB 

Next consider a circular vortex ring placed symmetrically on the axis of a 
circular aperture through which potential flow is taking place, as shown in 
Fig. 3.2. In this example, discussed by Huggins, 1 let both the potential flow and 
the self-induced velocity of the vortex ring be directed to the right. In the 
absence of any local forces, the elements of the vortex core will tend to be Swept 
to the right and outward along the streamlines of potential flow, at the same 
time moving in addition to the right with the self-induced velocity of the 
vortex. The dotted curves in Fig. 3.2 show a calculated representative trajectory 
of the core, neglecting any influence of the image of the vortex in the wall 
containing the aperture. In so moving, the vortex core cuts streamlines of 
potential flow in such a direction that dE/dt  (p ~ v) > 0, and the increase in 
vortex energy is manifest in the increase in ring radius. Here we have an 
illustration of a process in which transfer of energy from potential flow to 
vortex flow occurs in the presence of diverging potential flow without the 
action of any local forces. 

4 / 

f .. .~ P 

Fig. 3.2. Example B: A circular vortex ring with self-induced velocity to the 
right moves in a potential flow field directed to the right and diverging from 
an orifice in a plane wall. The dotted curves show a calculated representative 

trajectory for the core of the ring. 

3.3. Example C 

Third, consider the process illustrated in Fig. 3.3, in which half of a 
circular vortex ring moves in a potential flow field diverging in a half-space 
from a point, an idealization of the situation that we would have for potential 
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~.~/~~~v/ex 
Fig. 3.3. Example C: A vortex loop with self-induced velocity upward moves in 
a potential flow field directed to the right and diverging from a small orifice 
in a plane wall. The dotted curve shows a calculated representative trajectory 

for the outermost portion of the core of the loop. 

flow through a circular orifice in a plane wall if the ring radius were mtrch 
larger than the radius of the orifice. 15 Here we assume that the axis of the 
half-ring lies in the half-plane and passes through the source. We also assume 
that the ends of the half-ring move freely over the walls without pinning. If as 
in Fig. 3.3 the self-induced motion of the half-ring is upward, a small initial 
half-ring below the origin in a sufficiently strong potential flow field will first 
be swept downward and outward from the half-plane. However, as the ring 
grows in radius, its self-induced motion will eventually dominate, and the ring 
will eventually move upward and outward. The dotted curve shows a 
calculated representative trajectory for the outermost portion of vortex core. 
Symmetry allows the half-ring to retain its plane circular shape throughout 
the motion, and its axis remains fixed. 

In the absence of any local forces the motion of the core is a simple 
combination of radial outward convection in the potential flow field and self- 
induced motion perpendicular to the plane of the half-ring. In so moving, the 
core cuts streamlines of potential flow in such a direction as to transfer energy 
from potential flow to vortex flow as the half-ring grows in size. Here, as in 
Example B, we have a case in which energy transfer occurs without the action 
of local forces. 

In this case, the trajectory shown in Fig. 3.3 is simply the result of the 
vector addition of a radial flow Vp = (A/21¢)r/r 3, where A is the volume rate of 
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flow from the point source into the right-hand half-space and r is a position 
vector with origin at the source, evaluated at the vortex core, and the upward 
self-induced velocity of the half-ring of magnitude (K/4~R)ln(8R/ea), where R 
is the radius of the half-ring, e is the base of the natural logarithms, and a is 
the core radius parameter. 1~ 

3.4. Example D 

, Last, consider uniform flow with velocity Vp past a stationary rod 
( wing ) of finite length aligned perpendicular to the flow. 16 Suppose that 
there is a circulation ~c around the rod and that attached to the ends of the rod 
is a vortex loop of circulation !c, as shown in Fig. 3.4. Assume that at the instant 
under consideration the vortex core lies in the plane of Vp and the rod. The 
right-hand end of the the vortex is being carried to the right with velocity Vp, 
and the upper and lower legs of the vortex are being lengthened. At the same 
time, the vortex experiences a nonuniform motion downward, induced by 
circulation around the rod and around the vortex itself. As a result, the right- 
hand end of the vortex cuts lines of potential flow in such a direction as to 
transfer energy from potential to vortex flow. Of course, the simple plane 
configuration considered here is a momentary one and will evolve rapidly into 
some more complicated nonplanar one. 

We may calculate the instantaneous rate of energy transfer as follows. If 
the length of the right-hand end segment of the vortex is d, the vertical 
component of the velocity of an element of this segment at position x along the 
segment, in the limit that the segment is far from the rod, is due to the two 
(~semi-infinite) segments lying parallel to the flow and is given by 

Y 

t 
rod vortex core L ~ 

= z w V p  

\ c / 

Fig. 3.4. Example D: A rectangular vortex loop, attached to a stationary rod and 
having a downward self-induced velocity, is being extended by uniform 

potential flow to the right. 



1012 W. Zimmermann, Jr. 

Vcy(X) = - ¢/[4n((d/2) - x)] - ~/[4rc((dl2) + x)] (3.1) 

in terms of the axes shown in the figure. The origin is chosen to lie at the 
midpoint of the right-hand end segment. The rate dE/dt  (p ~ v) may then be 
evaluated from Eq. (3.1) by integrating along the right-hand end segment. The 
result is 

dE/dt (p -~ v) = (pvplC2/2~)ln(d/~), (3.2) 

if the integration is taken from - (d/2) + E to (d/2) - E, e being a cutoff that may 
be chosen to be the core radius parameter a. Note that this result is then equal 
to the product of Vp and the energy per unit length 

E = (p~12x)ln(d/a) (3.3) 

of a rectilinear pair of vortices with opposite circulations separated by a 
distance d. 11 This product is just the rate of increase of kinetic energy in the 
vortex system. Here again we have an example of the transfer of energy from 
potential flow to vortex flow without the action of local forces. 

4. PHASE-SLIP EXPERIMENTS 

Recent experiments have shown evidence for the occurrence of discrete 
energy losses in the flow of superfluid 4He through small apertures equal to ~I, 
where I is the (average) mass current during the loss event. 4-6 These losses are 
thus consistent with vortex motion events that involve the transfer of energy 
from potential flow to vortex flow in which the vortex cuts across the entire 
potential flow. In so far as such motion can be regarded as bringing about a slip 
of 21t in the difference between the phases of the superfluid order parameter at 
some upstream l~oint and some downstream point, they are often referred to as 
2~ phase slips, l /  

Examples A, B, and C all provide candidates for such events, at least as 
far as topology goes. In example A, such an event might involve the vortex ring 
originating at the center of the flow channel, growing radially outward, and 
eventually being annihilated at the wall, in so doing cutting all of the 
streamlines of potential flow. In example B, we might imagine a ring initially 
having the radius of the orifice originating at the orifice and moving out into 
the flow, asymptotically cutting all of the streamlines of potential flow as it 
moves far to the right. In example C, we may imagine a small ring originating 
below the orifice close to the wall and ending by moving far above, again 
asymptotically cutting all of the potential flow streamlines. 

In all of these examples, the vortex motion serves as an energy receiver 
to which energy of potential flow is transferred and in which the energy can be 
convected to another location. In example A, local forces act concurrently to 
dissipate the vortex energy. In examples B and C, local forces presumably act 
eventually to dissipate the vortex energy, perhaps near distant wails, but it is 
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not necessary for them to act before the 2~ phase slip is essentially complete. 
Because the nucleation of the initial vortex seems unlikely, Example B should 
not be taken as a realistic suggestion for a phase-slip process in 4He. 
Nevertheless, it illustrates in principle how energy transfers might take place 
in such events. On the other hand, Example C and another model topologically 
equivalent to Example C have recently been proposed as realistic possibilities 
for phase slip at an aperture. 15,10 

It is interesting to compare the situation in three dimensions to that in two 
dimensions, i.e., in films thin enough so that vortices are limited to those lying 
perpendicular to the plane of the film. In this case, the length of a vortex line 
has no opportunity to grow continuously as in three dimensions, and the ability 
for a vortex to act as an energy receiver and transporter is much weaker. 

Where does the energy come from which is transferred from potential flow 
to vortex flow during phase slip? If the piston velocities remain constant, so 
does Tp, and the energy is provided by work done on the fluid by the pistons (in 
the presence of a pressure difference between the pistons) or by work done on the 
fluid by a g~ force. On the other hand, if no work is done by such forces, the 
energy transferred must come from Tp, as the potential flow velocities decrease. 

5. IMPULSE 

Under the assumptions of the development described in this article, the 
vortex velocity field involves no net momentum. However, there can be defined 
a momentum-like variable, the impulse, which is often made use of in 
discussing vortices in superfluid 4He, and which we will refer to in Section 6.18- 
20 If we restrict our attention to the case in which all of the vorticity is 
concentrated in the cores of filamentary vortex lines of circulation K, we may 
define the impulse I as 

I = p ~ J ~ ,  (5.1) 

where the integral is taken over a surface or surfaces spanning the vortex 
configuration. If we have a single vortex loop in an unbounded fluid, the 
integral is defined uniquely, if the surface does not run off to infinity, even 
though the surface itself is not unique. However, with boundaries present, I 
defined by Eq. (5.1) is not unique. Consider the situation shown in Fig. 5.1. In 
addition to a surface spanning the vortex ring without contact with the wall, a 
surface may be constructed which also terminates at the wall in an arbitrary 
closed curve. In general, I will differ for these two cases, and in the latter case I 
will depend upon the curve in the wall. If a vortex is present whose core 
terminates at the wall at its two ends, a surface spanning it will necessarily 
also terminate at some closed curve in the wall connecting the end points of the 
core, and, here too, I will depend on that curve. 

Nevertheless, the time rate of change of impulse can be given a unique 
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Fig. 5.1. Two possible surfaces for defining the impulse of a vortex ring in the 
presence of a cylindrical wall. 

meaning as follows. We may write 

d I /d t  = p ~c (d/dt) J dS = p ~:J Vcx dl. (5.2) 

In calculating this time rate of change of impulse we observe the following 
restrictions. If the surface spanning a vortex loop also terminates at the 
boundary, the closed curve of termination in the boundary is assumed to remain 
at rest. If we have a vortex line terminating at two points on the boundary, the 
curve in the boundary connecting these two points and serving as a termination 
for the surface spanning the vortex is also assumed to remain at rest. If the ends 
of the vortex are not pinned at the boundary, an exception must  be made to this 
latter assumption to allow alterations in the curve consisting of portions of the 
paths followed by the ends of the vortex as they move along the boundary,  as 
shown in Fig. 5.Z As a result, the latter integral involves only the vortex cores. 

With the help of Eq. (2.9), the latter integral can be changed into the form 

dI /d t  = p K S ray x dl + p S he dl. (5.3) 

Thus d l / d t  has two sources. The first is convective, that is, a source due to fluid 
flow alone, and may contribute whether or not any ge acts. The second is due to 
the action of g e - I f  ge acts impulsively,  the net  change in I over  the 
infinitesimal period of time during which ge acts is dominated by  the second 
integral (since Vav remains finite) and equals the net impulse supplied by ge- 
Herein lies the justification for the use of the term "impulse" for I. We could 
imagine creating a vortex system from a state with (almost) no vortices by the 
impulsive action of ge, assuming that appropriate vortex "nuclei" exist. (The 
nonuniqueness of I for a given vortex configuration reflects the different ways in 
which the configuration might be created.) 
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/ 

Fig. 5.2. A vortex loop moving along a boundary wall. The heavier dotted lines 
show the new position of the vortex core, and the lighter dotted lines show the 
additions to the contour C in the wall connecting the ends of the core, as in the 

discusssion following Eq. (5.2). 

It is interesting to realize that because of the convective term, the impulse 
of a vortex system is not in general a conserved quantity in the absence of ge, 
even with the restrictions following Eq. (5.2). We see illustrations of 
nonconservation of impulse in such a situation in Examples B, C, and D of 
Section 3. Although Examples B and C involve diverging flows, Example D 
shows that a diverging flow is not necessary for nonconservation of I. 

Another example of nonconservation of impulse in the absence of ge is the 
case of a plane vortex ring encountering head-on a plane wall parallel to its 
own plane. 20-22 The ring expands under the influence of its image, whose flow 
field must be regarded as part of the Vv field in the formalism of this article. 
Here we have another illustration of nonconservation of impulse in the absence 
not only of ge but also of a diverging vp field. As Fetter has shown in detail, 
such an encounter, with change of vortex impulse, involves no net delivery of an 
ordinary impulse to the fluid by the wall. 22 

Since no momentum is involved in the vortex flow field, it is perhaps not 
surprising that the impulse is not in general a conserved quantity in the absence 
of ge. But if some ge force is present, it is natural to ask where the momentum is 
that should be created by it. The answer, of course, is that under the 
assumptions of this article, if the motion of the pistons remains unchanged as ge 
acts, so that the momentum asssociated with Vp remains unchanged, an 
additional net force opposite and equal to that due to ge must act on the fluid at 
the same time. This counter force might be exerted by some combination of 
pressure at the boundaries and the action of some gf~. 



1016 W. Zimmermarm, Jr. 

6. FREE ENERGY OF A VORTEX SYSTEM 

Use is often made of the relationship 

F=E+vs. p (6.1) 

to express the ener~y in the laboratory frame of an elementary excitation in 
flowing superfluid ~He, where E and p are the energy and momentum of the 
excitation (in the frame of the moving superfluid), and Vs is the superfluid 
velocity in the laboratory frame. For example, use of this relationship is made 
in the derivation of the Landau critical velocity. 23 Use is also made of this 
relation in connection with vortex configurations, such as in the ILF theory of 
homogeneous nucleation and growth, where p is taken to be the impulse of the 
vortex system. 13,14 But is this application justified in view of the fact that the 
vortex system possesses no actual momentum? Further, how is this relation to be 
applied when the superfluid velocity varies over an extended vortex system? 

A simple answer to these questions is provided by the earlier discussion of 
this article. The result is an appropriate generalization of Eq. (6.1), at least in 
differential form. From Eqs. (2.6) and (2.10) we have 

dWe/dt = dTv/dt + p lc J Vp • Vc × dl. (6.2) 

From Eq. (5.2), p~v c × dl is just the increment in the time rate of change of the 
impulse coming from element dl of vortex core as it moves. Thus we have 

dW e = dT v + f Vp" ddI, (63) 

where the double d before I denotes the increment both with respect to time and 
path length along the core, and the integral runs along all of the vortex cores in 
the system. 

Equation (6.3) is the generalization of Eq. (6.1) in differential form that 
we seek. We identify the element of work done by an external force dWe as the 
increment in effective energy of the vortex system in the laboratory frame and 
dTv as the increment in energy of the excitation. The integral is the 
generalization of vs.p. It reduces to vp.dI, where dI is the total increment in 
impulse, when Vp is uniform over the vortex system. In so far as we confirm the 
applicability of Eq. (6.1) to vortices in the uniform flow case, we support the 
conclusion reached by Schwarz by a somewhat different derivation. 3 

Equations (6.1) and (6.3) suggest an analogy between the vortex system and 
a thermodynamic system, in which the potential flow system acts as the 
analog of a thermodynamic reservoir. In this analogy, the increment of F in Eq. 
(6.1) or dWe in Eq. (6.3) is the counterpart of an increment in free energy. 
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7. CONCLUDING REMARKS 

In this article we have looked at certain general properties of energy 
transfer in the flowing superfluid component of liquid 4He when quantum 
vortices are present. We have been particularly interested in the application of 
these ideas to phase slip by vortex motion. It must be emphasized, however, 
that in order to understand phase slip in detail, one must go far beyond these 
general considerations. There are two aspects of the problem, both of which are 
currently under  active study. One is the nucleation of quantum vortices by 
thermal and quantum fluctuations to the point where they can undergo 
hydrodynamic growth.24, 25 The second is the detailed hydrodynamic evolution 
of vortex configurations once they are nucleated, using the same classical ideas 
underlying this article.10, 26 The importance of understanding the inverse 
processes leading to vortex annihilation should also be kept in mind. 
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