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Abstract. An analytic model for third-body perturbations and for the second zonal harmonic of the 
central body's gravitational field is presented. A simplified version of this model applied to the Earth- 
Moon-Sun system indicates the existence of high-altitude and highly-inclined orbits with their apsides 
in the equator plane, for which the apsidal as well as the nodal motion ceases. For special positions 
of the node, secular changes of eccentricity and inclination disappear too ("balanced" orbits). For an 
ascending node at vernal equinox, the inclination of balanced orbits is 94.56 °, for a node at autumnal 
equinox 85.44 °, independent of the eccentricity of the orbit. For a node perpendicular to the equinox, 
there exist circular balanced orbits at 90 ° inclination. By slightly adjusting the initial inclination as 
suggested by the simplified model, orbits can be found - calculated by the full model or by different 
methods - that show only minor variations in eccentricity, inclination, argument of perigee, and 
longitude of the ascending node for 105 revolutions and more. Orbits near the unstable equilibria at 
94.56 ° and 85.44 ° inclination show very long periodic librations and oscillations between retrogade 
and prograde motion. 
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1. Introduction 

As early as 1805 ES. Laplace treated the problem of the gravitational effects of 
an oblate central body together with third body perturbations on circular satellite 
orbits - the moons of Jupiter and the rings and moons of Saturn. 

With the advent of artificial satellites the interest in this field exploded. Luni- 
solar perturbations of Earth satellite orbits have been analysed by many authors, 
but sometimes without considering the oblateness of the Earth, for example, Lorell 
(1965), Roy (1969), or by treating luni-solar effects as of second order only, 
for example, Hough (1981). Hough made it very clear that "For semimajor axes 
between 3 and 6 Earth radii . . . .  Earth oblateness and lunisolar gravity must both 
be treated as first-order effects". General models including both effects have been 
published by Lidov (1961), Cook (1962), Shapiro (1962) and others. When looking 
for resonance effects, especially Cook (1962) and Hughes (1980) were very useful 
for the author's understanding of the long-periodic behaviour of satellites (OSCAR 
10 and AO-13) in high-altitude orbits (semi-major axes around 4 Earth radii) at 
somewhat unusual inclinations (around 26 and 57 degrees), which are very near to 
5 : 3 and 1 : 2 resonances of apsidal to nodal motion. 

Almost all of today's highly-inclined, high-altitude orbits like Molniya, Tundra, 
M-HEO, etc., see, for example, Solari and Viola (1992), are positioned near the 
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"critical" inclination of 63.43 ° and with an argument of perigee of around 270 ° , 
in order to serve primarily the northern hemisphere. These orbits are all very well 
researched. When looking for other orbits useful for world-wide communications, 
a general overview is still missing in the open literature. 

The intention of this paper is to present: 

(1) a complete model of third body perturbations affecting orbits around an oblate 
central body, following Cook's approach (1962), and 

(2) a few unexpected properties of special high-altitude, highly-inclined Earth 
satellite orbits with their apsides in the equator plane. 

To verify the results, the orbits have been calculated also in rectangular coordinates 
with an extended version of the K. Stumpff-E.H. Weiss method (Stumpffand Weiss, 
1968a, b). 

2. First Order Perturbation Equations for an Oblate Central Body and One 
or More "Third" Bodies (Model A) 

From the Lagrange planetary equations, Cook (1962) has derived expressions for 
the rates of change of the orbital elements, due to perturbations caused by a third 
body, under the following simplifying assumptions: 

(1) during one revolution of the satellite the third body is not moving, and 
(2) the distance of the satellite from the central body is small, compared to the 

distance of the third body. 
From the first assumption, it follows that the semi-major axis is not changing at 
all, and from the second, that, in the Earth-Moon system, the validity of the model 
is restricted to orbits with semi-major axes of up to about 7 Earth radii. 

In a further step, Cook substituted in the equation for the rate of change of 
eccentricity the direction cosines, so that it became a function of 15 different 
angles, which are linear combinations of argument of perigee, longitude of the 
node and longitude of the perturbing body. Cook stopped here and discussed the 
possible occurrence of resonance for eccentricity only. 

Following Cook's approach and performing for the other orbital elements what 
he has called "considerable trigonometric manipulation", we get a system of four 
first order non-linear differential equations for third body perturbations. Adding 
the terms for the influence of J2 on h and/), which have been derived by many 
authors, for example, Orlov (1954), King-Hele (1958), Kozai (1959), yields the 
formulae as outlined in Table I. 

The full model (model A), as presented in Tables I and II, contains 82 terms 
(8 : 15, i : 21,]z : 23,~ : 23) per disturbing body plus two terms for the oblate 
central body. 

We notice secular terms in (3) and (4), and, most important, in (1) and (2) sine 
functions of ~r only, and in (3) and (4) cosine functions of ~p~ only. For qb~ = 0 for 
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TABLE I 

Outline of the first-order perturbation equations for an oblate central body and 
one or more "third" bodies (model A) 

15 

d r = l  

21 

i _  1 e ~ nl E Kd E fi~(J,i ,  id) sin ~ (2) 
d r = l  

22 

h-  ~/1 1 ¢~ -~1 Ed I(d[fhO(e2'i'id)'[- Er=l fh~(e2'i'id) c o s  ~ 1 -  (3) 

3_ j2n0 cos  
2 ' ,no , '  (1 -- e2) 2 

22 

1 ~ K~[I~o(~, ~1 + ~ s~(~, ~) cos ~1-  (4) 
d r = l  

22 

I 1 E Ka cos i[fho(e2, i, ia) + E fm,(e:,i, id) cos ~ ,1+  
4 1 2  e: ~ e ~=1 

(5 ; .  , 1 
4 (1 -- ¢2)2 

The following notation is used: 
Orbital elements of the satellite Elements of the disturbing body 
a semi-major axis ra distance from central body 

e eccentricity Ud angle between node and body 
i inclination id inclination 
h longitude of ascending node hd longitude of ascending node 

9 argument of perigee md mass 
n angular mean motion nd angular mean motion 

Other 
ma 
R 
Yz 
b = h - h d  
Ka = Gme/r 3 

mass of central body 

radius of central body 
2 nd zonal harmonic (central body) 

difference of the nodes 
constant of disturbing body 

Kd "~ (rod~me) n 2 constant for circular orbit of disturbing body 
no angular mean motion of satellite for a = R 
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TABLE II 
Details of model A: A list of the 22 angles ~ *  in Equa- 
tions (1) through (4). The left column contains the angles 
occurring in the secular and long-periodic terms (models C 
and D) 

2Ud 22 
29 1 29 4- 2Ud 6,7 
b 16 b -4- 2Ud 18,19 

2b 17 2b 4- 2Ud 20,21 
b4-29 2,3 bi29ztz2ud 8,9,10,11 

2b 4- 29 4,5 2b 4- 29 -4- 2ud 12,13,14,15 

one or more r we get, except for special cases, non-zero secular terms for ~ and i. 

3. Simplifications for Restricted Ranges of Orbits (Models B and C) and 
Circular Orbits (Model D) 

If  we restrict ourselves in the Earth-Moon-Sun system to orbits with semi-major 
axes larger than 3R, the motion of the Moon and the Sun is much faster than 
the changes of  the longitude of  the node and of  the argument of perigee of the 

satellite: 

?Zsun, ~moon >> J~, 

When considering long-term perturbations only, that is, significantly longer than 
one year, we can average over the mean anomaly of  the Moon and of  the Sun 
respectively and ignore all terms containing Ud in the third body perturbation 
formulae, since these will provide periodic terms at or near double the period of  
revolution of  the disturbing body. We will call this model B. It contains 28 terms 
(~ • 5, i " 7, h : 8, ~ " 8) per disturbing body plus the two terms for the oblate 
central body. For the Earth-Moon-Sun system we have a total of 58 terms. 

When considering very long-term perturbations only, that is, significantly longer 
than twenty years, we can make a further simplification. Since the Moon 's  orbit 
is only slightly inclined to the ecliptic, the longitude of the node of  its orbit with 
respect to the equatorial plane is oscillating by ±13 ° around the direction of 
equinox, as Cook (1962) already observed. If  we average over this oscillation with 

* The somewhat irregular assignment of the indices is due to the fact that d is not dependent on 
all ~ ,  especially not on b and 2b 
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a period of 18.6 y and assume circular orbits of the disturbing bodies, we can merge 
the perturbations caused by the Moon and the Sun into the formulae for just one 
single third body. We will call this model C (see appendix A). It contains 28 terms 
(b : 5, ~ : 7, h : 8, ~) : 8) for Moon and Sun together plus the two terms for the 
oblateness of the Earth. 

For circular orbits (e = 0), where ~ = 0 and 9 is no longer relevant, model C 
turns into model D (see appendix B). Model D contains just 5 terms (i : 2, ]z : 3) 
for Moon and Sun together plus one term for the oblateness of the Earth. 

In the formulae of models C and D we have used the following abbreviations: 

3 Kmoon +/(sun 
( 5 )  ¢ 1 ~ 6 - 4  n 

3 (n )  7/3 
c2 --= - :  J 2 n 0  - -  

4 k n 0 /  
(6) 

Kmoon \27 .3216J  81_45 K~un= 36-5-.25 

J2 = 0.001083 n 0 = 2 ~ 1 7 . 0 4 3  

One further restriction of all the models must be mentioned. Since the formulae 
for ]~ and ~) contain csc(i) and cot(i) as factors, these formulae are not valid at or 
very near i = 0 ° and i = 180 °. 

4. "Balanced" Earth Satellite Orbits 

For orbits with semi-major axes of about 7 Earth radii, the perturbing effects of  
the Moon and the Sun and those of the second zonal harmonic of the Earth's field 
are of equal size, (Roy, 1969). In the region, where the influence of the second 
harmonic is predominant, that is, for orbits with semi-major axes of up to about 4 
Earth radii, the inclinations, where the equilibria of apsides and nodes occur, do 
not deviate substantially from their values at lower height. 

For orbits with a semi-major axis of 7 Earth radii, this property is true only for 
a restricted range of arguments of perigee (40 ° < 9 < 140°, 220° < g < 320°). 
The left part of Figure 1 gives an example for this range (g = 90° or 270°). 

For orbits with their apsides near or in the equator plane, the curves for the 
equilibria of the argument of perigee are bending towards i = 90 ° and are even 
closing, depending on a and e. The right part of Figure 1 presents this situation for 
g = 0° or 180 ° . 

For orbits with a/R = 7 and e < 0.7 the equilibria of 9 are closed curves, when 
the line of apsides is within approximately +30 ° of the equator plane ( - 3 0  ° < 
g < 30°, 150° < g < 210°) • 
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Fig. 1. Secular apsidal and nodal equlibria for the ascending node at vernal equinox (h = 0 °) and 
different arguments of perigee (model C). 
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Fig. 2. Inclination, semi-major axis, and eccentricity of simultaneous secular equilibria of apsides 
and nodes for nodes in the equator plane (model C). 

There exist crossing points of the lines for g -- 0 with the lines for J~ = 0. While 
Figure 1 presents the case for the ascending node at vernal equinox (.h = 0 °) only, 
Figure 2 shows the positions of the crossing points of ~ = 0 and h = 0 for the 
whole range of nodal positions. Figure 3 shows the secular changes of inclination 
and eccentricity at these crossing points. 
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Fig. 3. Secular changes per year of inclination and eccentricity at the simultaneous secular equilibria 
of apsides and nodes of Figure 2 (model C). 
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Fig. 4. Equilibria for circular orbits: Prograde and retrograde motion in the Laplacian plane and in 
the orthogonal Laplacian plane. 

F rom Equations (13) and (14) o f  model  C (see appendix A), we can formulate  
the fol lowing assertions about  secular equilibria of  eccentricity and inclination, 

valid within the range of  model  C: 

A s s e r t i o n  1 : I f 9  = j x 90 ° and b = h -  hd = k x 180° for  j ,  k = 0 , 1 , 2 , 3  
then ~ = ~ = 0 independent o f  e, i, and ia. 

A s s e r t i o n  2: I f i  -- 90 ° a n d g  = j x 90 ° a n d b  = h - h a  = k x 90 ° for  
j ,  k = 0, 1,2, 3 then ~ = 0 independentof  e and ia. 

A s s e r t i o n  3: I f  e = 0 then ~ = 0 independent ofb, 9, i and ia. 
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In order to find analytical solutions for simultaneous equilibria of  e, i, 9, and 
h, we consider, first of all, the eases of Assertion 1. We derive from model C the 
equations for h = 90 ° q= 90 ° and the four cases where 9 is a multiple of  90 °, that 
is, sin(29) = 0. We investigate first the two eases, where cos(29) = +1,  that is, 
9 = 90° T 90 °. When we look for the equilibria conditions h = 0 and ) = 0, the 
results are identical for the two values of  9 and differ in some signs only for the 
two cases of  h (h = 90 ° T 90°). The expressions for Jz = 0 and ~ = 0 can be 
transformed into explicit equations for ~ (7] = x/1 - eZ): 

= 0 ---+ ~15 __ C2 sin(2i) 
8cl sin(2(i T id)) (7) 

c2 1 -- 5 cos(i) 2 

: 0 ---+ 7] 5 = 8C1 3 + sin(i :F 2id)/sin(i) " (8) 

When seeking simultaneous equilibria of h and g, we eliminate 7] and obtain an 
implicit equation for the inclination, depending on i d only: 

h = 9 = 0 --+ (1 - 5 cos(i) 2) sin(2(i ~: id)) + sin(i T 2id) + 3 = 0 .  (9) 
sin(2i) sin(i) 

For id = e = 23.44 °, the inclination of the ecliptic, we get two specific solutions 
for h = 90 ° T 90 °: 

iro,1 = 90 4- 4.56 ° (10) 

These two solutions are the retrograde and the prograde motion in the same physical 
plane. We substitute now the results for the inclination in the equation for 7]. Since 
s in (2 i~0) / s in (2 .  (i~0 - id)) = sin(2i~ 1) /s in(2 • (ir l + in)), the following relation 
holds for the both cases: 

a ( - sin(2ir0) 2Jzn2o ~ 1/5 
~7 ~ = s i ~ ( ~ ~ )  ) (Kmo-~nT--Ksun)] = 5.841.  (11) 

Equation (9) has two more solutions at i = T18.08 °, but when we substitute 
these values in one of  the equations for 7]5, we get for 7] x a i r  a complex number 
(fifth root of a negative number). When considering the other two values of  9, 
where sin(29) = 0 and cos(29) = - 1 ,  that is, 9 = 180° q: 90°, we get solutions 
at i = 90 ° T 61.64 ° and i = 270 ° T 61.64 °, but for 7] x a i r  also a complex 
number. 

When we search for equilibria of circular orbits - considering Assertion 3 - 
and since 9 is no longer relevant, we simply analyse the cases h = 90 ° T 900 and 
h = 180 ° T 90 ° of  Assertion 1. 

For h = 90 ° ~: 90 ° we obtain h = 0 

sin(2(i T ia)) c2 26270 
- sin(2i) -- 8cl -- ( a / R )  5 " (12) 
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Fig. 5. i - h curves for circular orbits with a i r  = 5.841. Equations of model D integrated with 
function "NDSolve" of Mathematica (Wolfram, 1988). 

TABLE III 

Kepler elements of orbits with simultaneous, very long-term equilibria of e, i, 
9, and h ("Balanced" orbits), derived from model C. 

g = 0 ° , 1 8 0  ° 

e = 0  e ¢ 0  

h i a / R  h i ~ / 1  - -  e 2 X a / R  

900,270 ° 90 ° 6.415 

0 ° 94.56 ° 5.841 0 ° 94.56 ° 5.841 

180 ° 85.44 ° 5.841 180 ° 85.44 ° 5.841 

Solutions are prograde and retrograde motion in the Laplacian plane, see, for 
example,  Allan and Cook (1964), and prograde and retrograde motion in a plane 

perpendicular  to the Laplacian plane. One instance of  the solutions in the plane 
perpendicular  to the Laplacian is the balanced orbit at air = 5.841 and i = 94.56 °, 
see equations (10) and (11). 

Considering Assertions 2 and 3, we have all polar, circular orbits (e = 0, i ----- 
90 °) at h, = 180 ° qz 90 ° in an equilibrium. 

For  circular orbits we can draw i - h curves. Figure 5 shows these curves for 
the near polar region for aiR = 5.841. We can see around the equilibria at i = 90 ° 
and h = 180 ° qz 90 ° librating orbits up to a separatrix. The hyperbolic points at 
i = 90 ° -3= 4.56 ° and h = 90 ° :F 90 ° are the unstable equilibria of  balanced circular 
orbits. 

A summary of  the orbits, for which simultaneous equilibria of  e, i, 9, and h 
have been found, is shown in Table III. 
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Fig. 6. Variation of Kepler elements of a balanced orbit with a semi-major axis of 6.4087 R and an 
eccentricity of 0.41147 in the Earth-Satellite-Moon-Sun system over a period of 300 y, corresponding 
to 1.14 × 105 revolutions. Initial inclination on 1996-04-01 is 94.7139 ° (model A). 
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Fig. 7. Variation of the longitude of the node of two orbits with initial inclinations differing by only 
1 x 10 -4 degrees (model A). The left diagram shows h of the orbit of Figure 6. 

5. Comparison of Results With Full Model 

We can now compare the predictions of model C, where the inclination of the 
Moon's orbit to the ecliptic and therefore the motion of the Moon's node is ignored, 
with the results of model A. Model A treats Moon and Sun separately, but considers 
circular orbits of the perturbing bodies only. Integration of the system of differential 
equations of model A is done with the Euler-Cauchy method with intervals of one 
day. We find orbits at inclinations within a few tenths of a degree of the values 
predicted by model C, which show a quite regular behaviour over 105 orbits or 
more. Figure 6 presents such an example. The semi-major axis is 6.41 Earth radii, 
the period is 22,85 hours, and 105 orbits correspond to 261 y. The nearly periodic 
fluctuations of the Kepler elements reflect primarily the motion of the Moon's node. 
We can see the 18.6 y period perfectly in i and h, whereas in g a period of 3 • 18.6 y 
is dominating, and in e both periods are obvious. When looking at Figure 6, we 
would not expect significant changes in this nearly periodic behaviour. 

But after a little more than 300 years the quasi-periodic behaviour is no longer 
preserved. The left part of Figure 7 shows, for a period of 500 years, the longitude 
of the node (h) of the example of Figure 6. The right part of Figure 7 shows h of an 
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Fig. 8. Variation of Kepler elements of nearly balanced orbits (initial inclination differing by about 0.2 
degrees from the unstable equilibrium). Alternate prograde ( h  = 180 ° , i = 85.44 ° )  and retrograde 
( h  = 0 ° , i = 94 .56  ° )  motion (model A). 

orbit with the initial inclination differing by only 1 • 10 -4 degrees from that one to 
the left. We are confronted with a chaotic behaviour in the immediate vicinity of  the 
equilibrium. A very similar behaviour can be demonstrated also for the retrograde 
motion. 

Extending the evaluation even further, we can see a flip-over of  the rotational 
axis of  the orbit to the opposite direction. Figure 8 shows two examples, where 
the initial inclination differs by about 0.2 degrees from the equilibrium. We can 
observe the motion of  the node, which in one example is librating first and then 
oscillating, while in the second example oscillation starts immediately. 

The described behaviour of  orbits near the plane of 94.56 ° inclination can be 
demonstrated also with model B and a multi-step integration method ("NDSolve" 
of Mathematica) as well as with a completely different method, described in the 
next section. 
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TABLE IV 
Initial inclinations for a specific orbit (air  = 6.4078, e : 0.41147, 
g ---- 0°, start date 1996-04-01) where the long-term equilibrium for e, 
i, h, and g has been found experimentally with different numeric methods 
and models 

Stumpff-Weiss Model A Modd B Model C 
reference orbit Euler-Cauchy NDsolve 

h = 0 ° 94.7191 ° 94.7138 ° 94.6075 ° 94.5596 ° 
h=180 ° 85.7093 ° 85.6716 ° 85.5818 ° 85.4404 ° 

6. Ca lcu la t ing  P e r t u r b a t i o n s  in R e c t a n g u l a r  C o o r d i n a t e s  ( S t u m p f f  - W e i s s  
M e t h o d )  

The K. Stumpff-E.H. Weiss method (Stumpff and Weiss, 1968a,b) (Stumpff, 1974) 
handles the n-body problem by solving in suitable intervals n(n  - 1)/2 two-body 
problems in rectangular coordinates and yields a reference orbit from a weighted 
linear combination of the two-body results. This approach yields an improvement of 
two orders of magnitude in precision over the well-known Encke method. Different 
strategies for controlling the step size have been proposed and compared in the 
original paper. For the four-body problem of the Earth-Satellite-Moon-Sun system 
a step size control based on spheres of influence has been implemented. About 50 
to 70 steps per one revolution of the satellite yield very reliable results. 

The original version of the program did not account for the perturbations by the 
oblate Earth. An extended version including these perturbations has been imple- 

mented. 
In order to test the precision of the results, for one specific case (a /R  = 

6.4087, e = 0.41147, start date 1996-04-01) the initial inclinations for achieving 
equilibrium for retrograde and prograde motion have been determined with three 

methods to a precision of four decimal places: 
- an extended version of the Stumpff-Weiss method as described above 

- integrating the system of differential equations of model A with the Euler- 
Cauchy method with stepwidths of one day 

- integrating the system of differential equations of model B with the "NDSolve" 
function of Mathematica 

The calculations of the ephemerides of the Moon and the Sun for models A 
and B assume circular orbits of the disturbing bodies (Cook, 1962). The initial 
ephemerides for the Stumpff-Weiss method are calculated to a much higher pre- 
cision, as available in popular handbooks (Meeus, 1980), (Montenbruck, 1984). 
Despite all these differences, the initial inclinations for achieving equilibrium dif- 
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fer by about only 0.1 degrees. For comparison, the values derived from Model C, 
which averages over the libration of the Moon's node, differ by a maximum of 
0.3 degrees. Table IV lists the actual values of the initial inclinations for achieving 
equilibrium, as determined by using the different numerical methods. 

7. Summary 

An analytic model comprising third body perturbations (based on G.E. Cook's first 
order approach) and the influence of an oblate central body is used in the search for 
non-standard Earth satellite orbits, suitable for world-wide communications and 
with minimal or even no station-keeping requirements. Proper simplifications of the 
equations of motion for a restricted range of a/R yield expressions of reasonable 
length. 

When evaluating special cases, for example orbits with the apsides in the equator 
plane (g = 0 ° or 180 °) and at high inclinations, simultaneous secular equilibria 
of apsides and nodes have been found for a/R >_ 5.841. For certain longitudes of 
the node there exist also secular equilibria of eccentricity and inclination. Orbits, 
where the secular equilibria of the four Kepler elements e, i, 9, and h coincide, have 
been named "balanced". At h = 90 ° or 270 °, i = 90 °, only circular balanced orbits 
exist. At h = 0 °, 9 = 0° or 180 °, i = 94.56 °, and when f f l  - e 2 × air equals 
5.841, unstable equilibria occur. Near these unstable equilibria, very long-term 
oscillations between retrograde and prograde motion can be found. 

Numeric evaluation of orbits, using the full model or a completely different 
method (Stumpff-Weiss reference orbits), confirmed the results of the simplified 
model to within a few tenths of a degree in inclination. Fine-tuning the inclination 
to within 1 x 10 -4 of a degree yields orbits that show only minor fluctuations in 
their Kepler elements for 105 revolutions and more. The fluctuations are caused 
mainly by the motion of the Moon's node. 
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Appendix A. Secular and Long-Periodic Perturbations for 3 < a/R < 7 and 
0 < i < 7r (Model C) 

= Cl e lv/i--S~- e 2 (10(1 + 3 cos(2ia)) sin(i) 2 sin(29)+ (13) 

40 sin(ia) 2 cos sin(2(b + g) ) -  

40 sin(ia) 2 sin s in(2(b-  g ) ) -  

40 sin(2ia) cos sin(i) sin(b + 2 g ) -  

40 sin(2ia) cos(i) sin s in (b -  2g)) 

1 
(5e2(1 + 3 cos(2ia)) sin(2i) sin(2g)-  (14) 

4(2 + 3e 2) sin(2ia) cos(i) sin(b)- 

4(2 + 3e 2) sin(ia) 2 sin(i) sin(2b)- 

20e 2 sin(ia) 2 cos sin(i) sin(2(b + g ) ) -  

20e 2 sin(ia) 2 sin sin(i) s in (2(b-  g ) ) -  

10e 2 sin(2ia) (cos(i) - cos(2i)) sin(b - 2 g ) -  

lOe 2 sin(2id) (cos( i )+  cos (2 i ) ) s in (b+  2g)) 

csc(i) 
J~ = Cl lx/]---S~_ e 2 ( - (2 + 3e 2) (1 + 3 cos(2ia)) sin(Ei)+ (15) 

5e2(1 + 3 cos(2id)) sin(2i) cos(2g)+ 

4(2 + 3e 2) sin(2ia) cos(2i) cos(b)+ 

2(2 + 3e 2) sin(ia) 2 sin(2i) cos(2b)- 



cot(i) 
0 = - -e l  

Cl v i i  - e2 

BALANCED EARTH SATELLITE ORBITS 

20e 2 sin(ia) 2 cos sin(i) cos(2(b + 9))+ 

20e 2 sin(ia) 2 sin sin(i) cos (2 (b-  9 ) ) -  

lOe 2 sin(2ia) (cos(i) + cos(2i)) cos(b + 29)+ 

lOe 2 sin(2ia) (cos(i) - cos(2i)) cos(b - 29)) 

( - (2 + 3e 2) (1 + 3 cos(2ia)) sin(2i)+ 

5e2(1 + 3 cos(2i,t)) sin(2i) cos(29)+ 

4 ( 2 4  3e 2) sin(2id) cos(2i) cos(b)+ 

2(2 + 3e 2) sin(ia) 2 sin(2i) cos(2b)- 

20e 2 sin(ia) 2 cos sin(i) co s (2 (b+9) )+  

20e 2 sin(ia) 2 sin sin(i) cos (2 (b-  9 ) ) -  

10e 2 sin(2ia) (cos(i) + cos(2i)) cos(b + 29)+ 

lOe 2 sin(2ia) (cos(i) - cos(2i)) cos(b - 29 ) )+  

(1 + 3 cos(2id))(1 + 3 cos(2i))+ 

10(1 + 3 cos(2ia)) sin(i) 2 cos(29)+ 

12 sin(2ia) sin(2i) cos(b)+ 

12 sin(ia) 2 sin(i) 2 cos(2b)+ 

( 2 )  4 40 sin(ia) 2 cos cos(2(b + 9))+ 

469 

2C2 COS(i) 
(1 --e2) 2 

(16) 
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40 Sin(id) 2 sin cos(2(b- 9))-  

40 Sin(2id) COS sin(i) cos(b + 29 )4  

40 sin(2id) Cos(i) sin cos(b- 2g)) + 
c 2 ( -  1 + 5 cos(i) 2) 

(1 - e 2 )  2 

B. Secular and Long-Periodic Perturbations for Circular Orbits (Model D) 

4 = --8C1 (sin(2id)  Cos(i) s i n ( b ) -  sin(id) 2 sin(i) sin(2b)) (17) 

]~ = 2Cl csc(i) ( - (1 + 3 cos(2id)) s in(2i)+ (18) 

4 sin(2id) COS(2i) c o s ( b ) +  2 sin(id) 2 Sin(2i) cos(2b)) - 2 c 2  cos ( i ) .  
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