
GRAVITATIONAL POTENTIAL HARMONICS FROM THE SHAPE OF 

AN HOMOGENEOUS BODY 

GEORGES BALMINO 
Department of  Terrestrial and Planetary Geodesy, Centre National d'Etudes Spatiales, 18 Av. Ed. 

BeIin, F-31055 Toulouse Cedex, France 

(Received 27 April 1993; accepted 6 June 1994) 

Abstract.  The spherical harmonic coefficients of the gravitational potential of an homogeneous body 
are analytically derived from the harmonics describing its shape. General formulas are given as well 
as detailed expressions up to the fifth order of the topography harmonics. The volume, surface and 
inertia tensor of the body are obtained as by-products. The case of a triaxial ellipsoid is given as 
example and used for numerical checking. Another numerical scheme for verification is provided. 
The application to Phobos is made and the convergence of the expressions for the harmonics is 
numerically established. 

Rrsum& Les harmoniques du champ de gravitation d'un corps homog~ne de forme donnre sont 
calculrs analytiquement i~ partir des harmoniques du drveloppement en srrie du rayon vecteur 
exprimant la forme de la surface du corps. Outre la formule grnrrale, des expressions drtaillres, au 
cinqui~me ordre des harmoniques du rayon vecteur, sont donnres sous une forme bien adaptre ~ la 
programmation. Le volume, la surface et le tenseur d'inertie du corps sont calculrs analytiquement/~ 
partir des formules grnrrales. Le cas de l'ellipsoide triaxial est pris comme test des formules 6tablies. 
Un autre test numrrique est fourni dans le cas le plus grnrral. Ceci est appliqu6 ~ Phobos, et la 
convergence des expressions fournissant les harmoniques est numrriquement drmontrre. 
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1. Introduction 

The problem of computing the spherical harmonics of the gravity field expansion 
of an homogeneous body of known shape and density may look very theoretical 
since, in many cases, the first order theory is sufficient for geodetic and geophysical 
investigations. However, in the case of bodies such as the small natural satellites 
of the solar system, or the asteroids, refined expressions are needed to represent 
the gravitational potential with enough accuracy for application to navigation of 
spacecraft flying by or orbiting these bodies. Planetary missions such as VIKING 
at Mars (where the orbiter came very close to Phobos) and, soon to come, NEAR 
with a rendez-vous with Asteroid 433 Eros planned for december 1998, are cases 
which need a fine gravity field representation of the body under investigation. Even 
in the case of the Earth, the linear theory may be too crude, for instance to compute 
the global isostatic potential coefficients (Rummel et aI., 1988). 

We start from the integral expression of the complex gravity harmonics, we 
then expand the radius vector of the integrand as given by a spherical harmonics 
expansion, we use the product-sum conversion formulas for spherical functions 
and we perform the integration term by term. The obtained expressions, which 
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become more complicated as the order of the expansion increases, must then be 
carefully checked, which is done numerically by two methods: (I) the triaxial 
ellipsoid case is considered, for which we derive ad hoc formulas, not found in the 
literature, for the radius vector and gravity coefficients in their spherical harmonic 
expansions; (II) an alternative form of the gravitational harmonics, best suited for 
direct numerical evaluation, is given. We finally study the case of Phobos for which 
the difference between the analytical and the numerical techniques is investigated; 
the convergence of the formula giving the gravitational potential coefficients is 
also shown numerically. 

2. Complex Forms of the Spherical Harmonic Expansion 

The gravitational potential, U, of the body in a reference frame {X} attached to it 
is taken in the form (Balmino and Borderies, 1978) 

E KlmYtm(g~,A) (1) 
T l=O m=-l  

with 

r, ~p, A = spherical coordinates in {X}, respectively the radius vector, 
latitude and longitude 

G = gravitational constant 
M = mass ofbody 
R = reference length 
Klm = complex dimensionless coefficient of degree 1 and order m 
)~m = complex surface harmonic function of degree 1 and order m. 

The Ylm functions are related to the usual Legendre polynomials (m = 0) and 
associated functions (m ~ 0) by 

Ylm(~, A) = Pl.~(sin ~) e im)~ (2) 

where, for m > O: 

Ptm(U) - (1 - u2) m/2 d/+'~ 
2If! du'+ m [( u2 - 1)/] 

( l  - 
Pl , -m(U)  = (--1)m(l ; -~.~ Plm(U). 

With these definitions, the Ktm coefficients are expressed as 

( - 1 )  m [ [ [  ,z , , 

-- J J J v r  YZ,-m(~ ,A ) dM' (3) M R  t 

the integral being extended to the volume V of the body; C, gd, A~ are the spherical 
coordinates of the current point in V and d M  ~ is the mass element. 
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The series (1) is uniformly convergent for r > R* where R* is the radius of the 
sphere centered at the origin of coordinates and including all masses. The question 
of its convergence inside this sphere and especially down to the surface of the body 
in the general case is quite delicate. An account of the modem developments and 
results on this matter can be found in Moritz (1980). 

The complex harmonics are related to the usual real coefficients, Czm and Stm, 
by 

(2 - (50m)Klm = Ct,~ - iSzm 

(l + m)! (_1)  m (4) 
(2 - (50,~)Kl,-,~ = (Ctm + iStm)(l - m)! 

for m _> 0 and with (5 being the Kronecker symbol. 
It is commonplace in geodesy to use the following normalized Legendre func- 

tions and harmonics 

8 m  = Yl~Nlm 

(5) 

where (Heiskanen and Moritz, 1967) 

Xlm = [(2 - (50m)(2/+ 1 ) ( / -  m)!/(1 + ?7/,)[] 1/2 (6) 

is defined for any m, -1  _< m _< +l. 
Of course, we have, for m _> 0: 

(2 - (50m)/?~m = 0~m -- i ~ m  (7) 

where Cl,~, Sire are the usual, real and normalized coefficients, and 

/(Z,-m = ( -1) '~R[m (8) 

where (. . .)* is the complex conjugate of ( . . . ) .  Also 

~,-m = ( -  m - *  1) Yt.~. (9) 

It must be noted that, over the unit sphere o.1 

'£  - -  YlmY//'*m' do" = (2 - (50m)(sU'(5~m'. (10) 
47r 

Because of the factors @r and (2 - di0m) in this scalar product, it is most advan- 
tageous, for further computation, to define another set of normalized spherical 
functions by 

( - 1 )  m [ ( 2 / +  1)(l - m)!]  1/2 
[ 
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or  

yt m -  

GEORGES BALMINO 

( - 1 )  '~ 1 
~m. (12) 

, / ~  ~ -  ~0.~ 
These are of commun use in quantum physics. The interesting properties for our 
purpose are 

Cirri 

Szm 

with 

yz -m = ( -1 )myt  m* (13) 

and 

f f ~  frb ~Tt, t* Yt Yt, d0- = 6WSmr~'. (14) 
1 

Also, the Legendre addition formula writes 

47r +t 
I (~a,A)Y l (~ ,A ' )  (15) P,(cos ~ ) -  21 + 1 ~ ~m m. , 

rn=--l 

(~  is the angular distance between the points (% A) and (~',/V) on o-1). 
The harmonic coefficients which go with the y/m functions are naturally 

K/n = ( - 1 ) r e x / ~  V ~ -  5ore Ktm (16) 

which satisfy 

K[ -m = (-1) '~K/~*. (17) 

Combining (7) and (16) we find, for m > 0: 

= (--1)m[(2--50m/47r] 1/2 Re K/~ 

= (-1)m[(2 - 5Om/4~r] 1/2 Im K/~ (18) 

47r 1 J / I v  rty~m* (% ~) dM K[n -- 21+1 M R  z 

(the primes have been dropped since there is no ambiguity). 

(19) 

3. The Description of the Body Shape 

We assume that the surface limiting the body can be described by the following 
spherical harmonic expansion 

r(~, ~) = Ro(l + S) 
j 

S -- ~ ~(f i~jk  cos kA + BjksinkA)Pjk(sin~) (20) 
j > l  k----0 
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where R0 is a given reference length (may be different from R). Such an expansion, 
infinite in principle, may be truncated in practice depending on the degree of 
knowledge of the body surface. Recent models for the Earth, Venus and Mars 
shapes, complete to degree 1080, 720, and 720 respectively, have been recently 
determined (Balmino, 1993); a model of degree 12 exists for the Moon (Bills 
and Ferrari, 1977) and a model of degree 8 has been established for Phobos by 
Duxbury (1991). Equation (20) implies that a single determination of r is found 
for any (qo, A), and that R0 is the mean of r over the unit sphere. 

We first convert the A's and/3's coefficients into complex ones according to 
(18) for q > 0: 

Tj q = (-1)q[4rr/(2 - ~50q)]l/Z(Ajq n t- i B j q )  (21) 

and then we use (17) to define T f  q. To simplify the analytic expression to come, 
we then order the coefficients T ] and Legendre functions Yjq by increasing j from 
zero to, in practice, a maximum value J, and for each j by increasing order q, from 
- j  to + j .  Renaming the coefficient T of rank n as D,,, and the function Yjq(~, A) 
of same rank as Zn(g), A), we simply have 

N N 

S = ~_, DnZn(~o,A)= ~ Tq~Yj~ (~, A) (22) 
n = l  n : l  

w i t h  _/V = ( J  + 1) 2 - 1 a n d  where, f o r  a given n, w e  h a v e  

jn = int{v/~} 

qn = n --  j n ( j n  + 1). (23)  

4. Derivation of the Ki n Harmonics from the T q's 

Writing the mass element dM as pr 2 dr da with p constant, integrating with respect 
to r from 0 to its surface value r(~, A) as given by (20) and (22), we find 

K/'z = (2 /+  1)( /+  3) M \ lgJJJ , , - -  ~ (1 + S)Z+3ytm* do-. (24) 

We now expand (1 + S)z+3: 

l+3 ( ) ( l + 3 ) ( I + 2 )  (l+S) z+3=  l+3 s 2+...(25) 
H 2 

H = 0  

which tells us that a term of order H in S (assumed to have a norm smaller than 1) 
does not contribute to gravity harmonics of degree smaller than H - 3. Also, it is 
clear that we may have non vanishing K ~  coefficients for any degree 1 even if the 
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series S is finite. The contribution of the terms of order H to K ~  will be denoted 
K[~(H). 

In order to show how the general term of order H in S, that is of order H in 
any T q, can be obtained, we will proceed by step. Formulas up to the fifth order in 

any T q will be given explicitly, since we found that this was sufficient in the case 
of the celestial bodies afore mentioned. The same approach was used by Chao and 
Rubincam (1989), was limited to third order and applied to Phobos. More recently, 
this procedure was also applied by Martinec (1991) but not published in a very 
explicit way suited for verification. We feel that the presentation below is easier to 
understand and to program, especially when using our recursive formulas on the 
product-sum coefficients for spherical harmonics (annex A). 

H = 0  

Since we have the integral of Yt m* over Crl, the only non zero term is obtained for 

I = m = 0 (the integral is v ~ ) .  So 

4 7rR3 p = K°(0) 

K2(0) 
H = l  

= 0 if 17 ~ 0 o r m # 0 .  (26) 

We write S in its usual form with coefficients T] and we use (14). We then find the 
classical linear relationship 

K/n(1) -- ( 2 / +  1)M - -  Tz'~ (27) 

which, in the case of a body close to a sphere of mean density Po with superimposed 
topography Tz "~ reduces to the usual form 

3 P Tz "~ (28) 
K / ~ ( 1 ) -  21 + 1 p0 

H = 2  

We need S 2 which may be written as 

J j N - 1  N 

j = l  q = - j  h = l  k = h + l  

and we have to integrate products of three surface harmonics, that is 

f f ~  v q y q ' v ~ * d c r : ( _ l ) ' ~ / f ~  vqvq ' v - '~  1.t j jt -L l 1,~ j .L j, x l dm 

Such integrals will be denoted Tqq'm being understood that the last function, of "~jj'l 
degree 1 and order m, comes in as its complex conjugate. Their evaluation requires 
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to transform the product YjqYff into a summation, which involves the Clebsch- 
Gordan coefficients. This and formulas for the product of any number of spherical 
functions and their corresponding integrals are given in Annex A. Therefore we 
find 

K/~(2) - M(21 + 1) 2 

q 2 qqm (29) × E ( T J )  I)j t + 2 E  E Tqh~vqkr%qk~ Jh 'Jk Uhjkt " 
j = l  q = - j  h = l  k = h + l  

H = 3  

There are three groups of terms 

4rcpR3o (~_~o) t ( /+ l ) ( /+  2) 
K/~(3) - M(21 + 1) 6 

( 'T'q'~ 3 rqqqm + 3 X-" K-" { Tqi ~ 2Tqh xqi qi qh m X ~,~-j ] l j j j l  Z.~ =/__~_j Z~, \ jl ] Jh jijijhl 
j = l q - -  i=1 h = l  

h¢i 

N--2 N - 1  N 
+ 6 ~ ~ ~ Tq'TqhTqkIqlqhqkm 

Ji Jh Jk jljhJkl [" (30) 
i=1 h=i+l k=h+l 

H = 4  

The expansion of S 4 using multinomial coefficients produces 5 groups of terms 

K~(4) - 47rpR~ ( ~ )  l l(l + l)(l + 2) 
M(21 + 1) 24 

j [ J  j N N  
~ {rq~4Iqqqqm 4 E ~-'~(rqi~3"FqhT qiqiqiqhm 

X 1~=1 /_..,, \ j ]  [ =--J j j j j l  + Z...~k j l ]  "~jhlj~jljljhl 
q i=1 h = l  

h#i 

N - 1  N 
+ 6 E E ( Tq'~21Tqh'21q~qiqhqhm 

J ~ Jh J jljljhJhl 
i=1 h=i+l 

N N - l - d  N - d  
+ 12 E E E (Tqi'2Tqht-I~qkrqiqiqhqkm 

Ji ] "~Jh ~'Jk "~ijljhjkl 
i=1 h = l  k = h + l  

N--3 N - 2  N - 1  N )t 

+ 24 ~ ~ ~ ~ T?~TqhTqkTq.'~Iq~qh?kq~, '~} (31) 
34 Jh 3k 3n 313h3k3nt " 

i----1 h - - - i + l k = h + l n = k + l  

In this formula, d = GiN. 
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H = 5  

There are seven groups of terms 

47rpR3o ( ~ )Z l(12 1)(l + 2) 
K/n(5) - m(21+ 1) - -  120 

q 5 qqqqq.~ 5 ~ g'(Tqi)4TqhI q~aia~qiqhm 
× j j j j l  "-F Z . .~  j l  " Ju j i j i j l j l jh l  

q i = l  h = l  
h~£i 

N N 
-4- 10 E E(TYl ~)3(Tqh ~21qiqlqiqhqhm 

" " Jh j J~J~jljujh l 
i----1 h.=l 

h¢i  

N N - l - d  N - d  
E E {'-Dqi~3TqhTqkIqiqiqlqhqkm 

kJ-Ji ] Jh Jk j i j i j l jh jk l  
i=1 h----1 k=-h+l  

h#i  k# i  

N N - l - d  N - d  
E E Tqi(Tqh)2(rqk~2Iqiqhqhqkqkm 

j i  " Jh " " Jk ) j i jhJhjkjkl  
i----1 h----1 k=h+l 

h~£i k# i  

N N - 2 - d N - l - d  N - d  
~ Z(Tq~)2Tq:Tq:Tq:e~q~q2q;q~ m 

i = l  h = l  k=h.-[-1 n=k+l  
h#i  ks~i ns~i 

N - 4  N - 3  N - 2  N - 1  N ] 

+ 1 2 0 E  E E E E Tq'TqhTqkTq'~Tq'Iq'qhqkq'~q'mi .(32) ji  Jh Jk jn js j l jh jk jn j s l  
i = i  h=i+i k = h + l  n = k + l  s = n + l  

+ 2 0 ~  

+ 

+ 6 0 ~  

As in (31), d is defined as 6~N. 

GENERAL FORM 

For any H, we expand the single indexed form of S by the multinomial theorem, 
that is 

sH = ~ H! 
oqq_ot2q_...q_V~N= H C¢1 !C¢2!... EgN [ 

]lOll l~oL2 O~N t~ N x ~1 ~2 • . . . . .  D N Z~'(qo, A)Z;Z(~,A) Z u (qo, /~). 

The general expression for K~(H) follows 

4 3 ( _ ~ ) t  ( l + 3 )  
K[~(H) = -3 7rpR3(1 + 3)(2l + 1) - -  H 
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H! N ~x 1 ~x 2 c~ N X--' 1-[(Tqi~a~iq~ q2 ""qN m × (33) 11,  j , ,  j lag2. .4Nz 
E i c ~ i = H  i = 1  

where 

al ex2 C~N J~I(YJl ) (YJ2) Iq'll q'~2 ""q.N; ra = ql oq q2 oz2 [ yq .N  ~o~ N y l m *  
Jl J2 ""iN I " ' "  ~, JN J t do'. (34) 

There are H such terms. 

Formulas (29) to (32) are peculiar cases of (33), in which the summations have 
been arranged in an efficient way for programming. 

5. Some Applications of  the General  Formulas  

VOLUME AND AREA OF THE BODY 

The volume corn )utation is straightforward since it is 

V :- RA3/~1 (1 ~- S)3 do- 

that is 

(35) 

V -  K°° M (36) 

From Equations (24) and (25) and from the remark which followed, we exactly 
have 

M 
V -- p ~  [Ko°(0) + Ko°(1) + K°(2) + Ko°(3)]. 

Using (26) and the fact that Ko ° (1) = 0, we find 

,4 7fRo 3 + M [KO(2) + Ko(3)]" (37) 

The area A is of course 

A = R ~  f f  ( 1 + 2 S + S  2) do-. 
J I G  1 

Noting that the integrals of all terms in S are zero and that only terms in S 2 with 
the same degree and the same order do not vanish, we find 

1 q q _q 
A = 47fRo 2 1 + ~ ( - 1 )  . (38) 

q 
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INERTIA TENSOR 

Let {Ijk} be the inertia integrals of the body in the reference frame {X} defined 
as 

Ijk = [ [ [  zjxkp dv (39) 
Jddv 

where 

Xl q- ix2 

X3 

= r Y n @ ,  

= rYl0@,  

We compute these integrals from the following relations 

Il l  + I22 = pffJ  r2ynYI*I dv 

1"11 - -  / 2 2  -q- 2ii12 = p f f f ~  r2Y 2 dv 

/33 = P f f fv r2y2 dv 

'//1 I13 + ii23 = -~ r2Y21 dr. (40) 

We proceed as before, we expand r 2 as R02 (1 + 2S + S 2) and transform the products 
of Legendre functions into summations. For example 

87F pR 5 / ~  (1 q- S)5(Yll) 2 do. /11 - - / 22  q- 2i/12 = ~ 1 

We write (Y11 )2 = ~ y2 (from formula A2, Annex 2), and finally 

5 
I11- I22-+- 2iI12 = ~ 3f~pR~ Z ( SH ) f f~ sHg22* dcr. 

V 375 ~7=0 1 

The other relations are treated in a similar way. For many applications in plane- 
tology, it suffices to have the inertia tensor as a function of the shape coefficients 
up to degree and order 2. In real form, using the unnormalized harmonics Ajk and 
Bjk, we find, up to the square of the A's and B's: 

[ A20 3A22 + 4(A120 +/321) + 2A21 + ~ A20 A = I 2 2 q - I 3 3 = / z  1--[----~--- 

36 ~ 144 24 1 + T A21 + B2' + --if-- (A22 + B22) + - -  A22A20 

[ A20 4(A2 ° A21) q_ + 1 6  B = I n  + I33 = # 1 + - -~  + 3A22 + + 2B21 - -  A~0 
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C = 

54 
-[- ~ A21-t- B~I + 

I l l  ~-/22 = / z  [1 
A2o 

2 k 

144 24 ] 
(A222 + B222) - ~ A22A20 

_ _ _  + 2A~o + 4(A21 + BI21 ) -~ .10 A22o 

36 216 2 7 
+ -7- (AZl + B21) + --7- (Az2z + B22)] 

36 (A22B21 - A21B22) + ff A20B21 D = -I23 = # B21 + 2A loB l l  - 

36 (A22A21 + B22B21) + ~ A20A21 E = - h i  = # A21 + 2A10A11 + 

[ 18 24 ] 
F = --/-12 = # 3B22 + 2AliBI1 + -~- A21B21 + -~- A20B22 • (41) 

The inertia tensor I has been written 

Ii A 
I =  - F  B - D  and # = ~  

- E  - D  C 

GRAVITY HARMONICS OF A MULTILAYERED BODY 

Let us assume that the body is now composed of one part of density p = p0 still 
limited by the surface of Equation (20), plus another part, inside the first one, of 
density Pl limited by another surface of equation 

'r(~,/~) = ~1(1 -I- S1) (42) 

For instance, this surface could be a triaxial ellipsoid (see Section 6). 
We will denote the S-series of the outer surface by So, for sake of homogeneity. 

Equation (24) now becomes 

1 47rp [ / f~ i (1  o~l+3vm* ( 2 / +  1 ) ( /+  3) M R  l P°R~+3 + ooj ~l d~ 

-- p0R/1 +3 -J- ol)  ~l do" + plR] +3 (1 + ~1) ~t do" 
1 

that is 

1 4rrR°3 (~--~°) z -Po )~ I  kt {1}] (43) K / ~ =  ( 2 / + 1 ) ( l + 3 )  M [pok?{0}+(p l  t+3 m 

where we have introduced (u = 0, 1) 

k ? ( u ) =  ( 1 +  ~,j t do- and ~I R 1 / ~  0 (< 1). 
1 
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Introducing further 

A P u  = P u  - -  P u - 1  

~o = 1 

(and 1)-1 = 0) 

(44) 

this expression can be generalized to any number of layers of constant density Pv 

-- - -  Ap~,{. k z {v}.  (45) K ~ -  (21 + 1 ) ( / +  3) M ~ lq-3 r a  

/2 

6. Example and Cheek of  Our Formulas: The Triaxial Ellipsoid 

To check all our formulas, we chose a figure of reference for which the shape 
could be easily expanded in spherical harmonics and which gravity coefficients 
of the corresponding volume could be derived exactly. The triaxial ellipsoid is an 
interesting figure for it is often used as an approximate model of the real shape of 
asteroids and satellites. We give below an elementary derivation of the two classes 
of harmonics. 

HARMONIC EXPANSION OF THE RADIUS VECTOR 

Let us start from the equation of the ellipsoid (E), here written as 

x 2 y2 z 2 
a-- 5 - + ~ - + ~ - g = l  with a > b > c .  (46) 

The meridian plane of longitude A intersects (E) along an ellipse (Ea) of semi- 
major axis a(A) and semi-minor axis c, with 

where 

e / 

= a(1 + e '2 sin 2/~)-1/2 

OO 

= a a k  s i n  2k 

k=0 

cO 

g2k 

Then, the radius vector at latitude ~ on (E~) is 

Oo 

r(~o, A) = a(A) ~_, eznE 12n sin 2'~ ~0 
n = 0  

(47) 

= second eccentricity of the equuatorial ellipse = (a 2/b  2 - 1) 1/2. If 
a < bye ,  we have e / < 1 which ensures the uniform convergence 
of the series. 

= 1  
= - g 2 k - 2 ( 2 k -  1)/2k,  k >_ 1. 

(48) 
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with E t2 = a(A)2/c 2 - 1. This series is uniformly convergent provided that E/2 < 1 
for any A that is max{a(A)}2/c 2 - 1 < 1 or, since max{a(A)} = a 

a < cx/2 (49) 

which implies a < bx/2, the condition for the convergence of (47). We write E t2n 
as  

E '2n = (1 - 7 sin2 A)n( 1 + e '2  sin2 ,~)--n 

with 

Oe = c 2 / a  2 

/~ = c 2 / b  2 

/3 -o~  . y -  
1 - c t  

and one has 

O <  - - < 1  
Ct 

1 
< o ~ < f l <  1. 

Expanding the two last factors of E '2n we have 

( ~_~_  ) n ~_~. et2k s in 2k A a A _ E  ) = a g2k 
k=O 

j=O j sin 2j A t=OE e'2t -nt sin 2t A. 

Keeping the indices k, j and putting p = k + j + t, we find 

a(A)E '2n = a E Rp s in  2p A 

p=0 
(5o) 

where 

n - -TL  Rp = '~--~'(-1) j n "7 j e,2(p_j) e2~ 
j = 0  J k=0 p -- k - j 

(51) 

We now transform sin 2p A as 

P 
sin 2v A = ~ S p c o s ( 2 p -  2#)A 

/*=0 
(52) 
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with 

S;=(2_5pp)(-1)P+#2 2p (2p)# 

and we obtain 

r (~,A) = a ~ c~ cos2k~ sin2'~ ~o 
n=O k=0 

where the coefficients o-~ are given by 

Z n p = - -  R;S;_k 
p=k 

and verify (conditions on the equator for/~ = 0, 7r/2 and condition at the poles) 

O~ 

0 1 E O -  k 
k=0 

oO 

E ( _  k 0 1) cr k = b/a 

(53) 

(54) 

(55) 

k=O 

oO 

k=O 

We can now write the a priori expansion (for reasons of symmetry) 

r(qo, )~ ) = a E E A2I, 2m cos 2m/~P21,2m (sin ~o) (56) 
1 m 

where 

Y l m / f ~  r A21,2m = (2 - 5o~) ~ i aP2l'2m (sin ~) cos 2m~ dcr. (57) 

Taking (54) into account easily yields 

oo f0 1 2n A21,2m = Zqm E an u P21,2m (u) du. (58) 
n = O  

In (57) and (58), we have uzm = ( 4 / +  1)(21 - 2m)!/(21 -Jr- 2m)! 
When m = 0, it is known that the integral vanishes if n < 1. We then find 

~r~ (59) 
A 0 , 0 = ~ 2 n + l  

n : 0  
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For the zonal terms, we use the decomposition formula 

[N/2] 

uN= Z ZN-2jPN-2j(U) 
j = 0  

with 

N!(N - j ) !  
ZN-aj ----- 2 N - 2 J ( 2 N -  4j + 1) j ! (2N _ 2j + 1)! " 

Taking N = 2n, then n - j = I and integrating, we have 

oo (2n)!(n + 1)! 
A2l,O = 22/(4/+ 1) ~ a~ (n - - / ) ! (2n + 21 + 1)I 

n ~ l  • 

When m > 0, we have to use the following expression of P2z,2,~ 

(60) 

(61) 

P2t,2m(U) = (1 - u ) ~ 
7?=0 ~1" 

x ( 4 / -  2r/)! u2/_2m_2r/. (62) 
( 2 / -  r / ) ! (2 / -  2m - 2~7)! 

Expanding (1 - u2) m, multiplying by u 2n and integrating we find 

OO ~ l - - g r b  

n=0 j=0 J ,7=o 

x f(-~)~ (4l - 2~)' { 2 ( l + n + j _ m _ ~ ) + l } _ l l . ( 6 3  ) 
(21- 77)!(21- 2m-  2r~)! 

These formulas, for which the summations on n in (59) and (61) and on p in 
(55) have in practice to be truncated, have been checked numerically against the 
exact value of the radius vector. It is interesting to note that there exist simple 
approximate formulas which may be sufficient in practical cases; they are given 
in Annex B. When condition (49) is not fulfilled (or if a is smaller but close to 
cv~),  it is necessary (or more advantageous) to compute the coefficients A21,2m by 
harmonic analysis - as shown in Section 7. 

HARMONIC EXPANSION OF THE GRAVITATIONAL POTENTIAL 

Due to symmetries, the expansion of the potential has a form analogous to (56) and 
can be a priori written as 

U= GM 1 + ~ ~ C2t,2mCOS2mAP2z,2m(sin~ (64) 
T l= l  m = l  
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where 

C21,2m = # I r a / f f  r21p21,2m cos  2mA dv (65) 

with 

_ ( 2 l  - 2 m ) '  
P (2 - 5Om) " (66) tZlm M R 2 t  (2l + 2m)! " 

R may here be taken equal to Ro as defined by (B2) in annex B. 
We start from the expression (62) of P21,2m. We multiply it by r 2l e2imA; 

(x + iy)  2m gets formed, which we expand. Taking the real part, and introducing 

Tt~  = ( - 1 ) k + S ( 2 m ) ! ( 4 / -  2 k ) ! /  

[(2s)!(2m - 2 s ) ! ( 2 / -  k ) ! ( 2 / -  2 m -  2k)!]/22z, 

we find 

lmTg~ Trb 

r21p21,2 m COS 2mA = ~ ~ p atlm~'7~ks~2m-2s~'2s~2(1-m--k)y ~ \a~(~2 q_ y2 .q_ z2)k 
k=0 s=0 

We now expand the last factor 

(67) 

k P ( k )  (Pq) x2qy2p-2qz2k-2p" (X 2 -t- y2 -t- Z2) k = E E p 
p=0 q=0 

To compute the integral, we make the transformation x / a = X ,  y / b = Y ,  z / c = Z; 
so dx dy dz = a b c  d X  d Y  dZ .  We now replace the new coordinates by the spherical 
coordinates r*, ~*, A* such that X = r* cos qo* cos A*, Y = r* cos ~* sin A*, 
Z = r* sin ~* and integrate with dX dY dZ  = r .2 dr* cos q)* dA*. We find 

= ram/21+2 .2s   -2e C21,2m o2C+l-tX2Q (68) 
k,s,p,q 

f0 1 = 1 r .2/+2 dr* -- 21--+ 3 

2S = f+rr/2 
J2c+l a-~r/2 sin2S ~* c°s2C+l g)* d~* = 2 (2C)!!(2S(2:9 + 2C +- 1)!!1)![ 

f0 /£22~ = s in2P/~*  cos2Q/~  * dA* = 27r (2P - 1)!!(2Q - 1)!! 
(2P + 20)!!  

andwith S = l - m - p ,  C = re+p,  P = s + p - q ,  62 = m - s + q .  We haveusedthe  
double factorial symbol, with (2v) !! = 2 .4 .6 . . .  2v, 2(v - 1)!! = 1 .3 .5 . . .  (2v - 1), 
and ( -1 ) ! !  = 0!! = 1. 

where 

12/+2 
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Putting everything together and introducing the mass M = %rabcp, we arrive 

3 l!(2m)! . ( 2 / -  2m)! 
C2t,2m - R21 22z(2/+ 3 ) ( 2 / +  1)! (2 - 60m)~-~ + 2 m ) !  

X 
1-m ( - 1 ) k ( 4 / -  2k)! 

(2/--- k)) !(-~ - -2m ~-- 2k) ' k=0 

(-1)* p~o (2/- 2m- 2p)! 
x (2s)!(-~m -- 2s)! (l : r r T : ~ k - - - - - p ) !  

X 

× 

For example, 

P (2s + 2p - 2q)!(2m - 2s + 2q)! 

q=O 
a2(m-s+q) b2( s+p-q) c2( l -m-p)  . 

we find 

(69) 

1 ( a 2 b 2 ) 
C 2 0 -  5/~ 2 c2 +2 

1 
622 - -  20R2 (a 2 -- b 2) 

15 
C40 : T (C20 -1- 2C22) 

5 
C42 : ff C2oC22 

5 
= (70) 

Relationships (70) were quoted by Borderies and Yoder (1989) with some errors 
for C40, C42, C44. In particular C40 is not proportional to C220 if a ¢ b. For an 
ellipsoid of revolution, we indeed find (Levallois, 1970) 

3 _ d )  l ( - 1 /  
c2l,o = ~ (a 2 (2l + 1)(2l + 3) " (71) 

and, for instance: C40 = !~C~0. 
Finally, let us note that the convergence of series (64) with the harmonics given 

by (69) is uniformly convergent for a < c v ~  (Pick et al., 1973) and down to the 
surface of the ellipsoid, as a consequence of a theorem by Laplace. This is the same 
condition found for the uniform convergence of the radius vector series. 
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NUMERICAL TESTS 

With this set of results for the triaxial ellipsoid, we performed the numerical veri- 
2m fication of formulas (26) to (32). We first transformed A2z,2m into A21 , computed 

the K~(H)  quantities, summed up the results and went back to the C21,2m(A) 
coefficients which we compared with those directly derived from formula (69). 
The agreement was found to be at the 10 -13 level (in relative values) for flattenings 
(a - b)/a and (a - c)/a of the order of 0.001, and at the 10 -6 level for flattenings 
of the order of 0.1. This check is however limited because of symmetry. 

7. General Verification by Harmonic Analysis 

The most convincing verification of our set of formulas must be made with a 
general kind of body, that is of S series (provided that they converge). One scheme 
is to take a sphere with superimposed topography h(~, A), so that 

= RoS( ,A) (72) 

as this is available in the case of the terrestrial planets, and to evaluate numerically 
the integrals defining K[~(H) for H >_ 2. We write: 

4 
K/~(H)  = ~ 7r--~-- - -  (2l + 1)(l + 3) H (73) 

where 

k'~(H) = f f~ sHyI m* dcr. 
1 

(74) 

The computation of these integrals is done by a technique of fast harmonic analysis 
on the sphere which we have implemented as follows. 

We first generate a grid of mean values of S H, say fkj = (sH(¢Pk, Aj)) over 
bins of regular size A~. AA, where A~  = 7r/L, L being the maximum degree 
of the harmonic expansion of h(~, A). Then either AA = A~  as it is done in the 
algorithm here described, or AA is made a function of ~ if a pseudo-equal area 
decomposition of the sphere is adopted (the formulas given hereafter remain the 
same). The generation of those grids is efficiently made by a synthesis scheme, 
dual of the analysis one (see annex C). We used the usual normalized form, and 
then: 

j 

klm(H) = __0"~ ilm(k) ~ c~k" ~ 
qt k=l j = l  

(75) 

is an approximation of the integral (74) using mean values. 
In this formula, evaluated up to degree and order L, we have 
K = 7 r /A~(=  L), J = 27r/AA (may be a function of ~, that is of k). 
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0m = (2 /m)  s in(mAA/2) if m > 0, 0.~ = AA if m = 0. 
ql is a de-smoothing coefficient to account for the smoothing of the (S H) 

functions, at wave-number l, with respect to S H. According to Colombo (1981) 
we take: qt = /32 if 0 < l < L/3 ,  qz = /3t if L / 3  < l <_ L, where the/3t's are 
coefficients (Meissl, 1971) defined by 

80 = 1 

/31 = [Pl_a(COS ~)  - Pl+l(COS ~ ) ] / ( 2 / +  1)/(1 - cos ~I,) (76) 

(the Pz's are the usual Legendre polynomials and cos • = 1 - A ~ .  AA/27r). 
fz,~(k) = integral of ~ m  (sin ~) between the limiting latitudes ~1 = ~k - A ~ / 2  

and ~2 = ~k + A ~ / 2  where ~k = 7r/2 - (k - 1 /2)A~.  Stable formulas for the 
Pl.~'s and - ' Itm s, carefully tested up to degree and order 1200, are given in annex 
D. 

a~'~ = array computed from the mean values fkj by recursion. We start from 

= f k j  

ozlkj = fkj  e -i~j (77) 

where Aj = Ao + (J - 1/2)AA, Ao = 0 or 7r (origin of the grid in longitude); then 

cek" ) 2 cos Aj oL~j -1 ,~-2 = - o~kj . (78) 

Numerical tests were carried up to H = 5 and up to degree and order 100 with 
the Martian topography. Comparisons with the analytic expressions (27) to (32) 
showed agreement in the individual harmonics to the fourth to seventh decimal 
places. 

8. Application to Phobos 

Bodies that are close to spherical provide a limited verification because of the lack 
of r dependence. A body with a complex shape, such as Phobos, provides a much 
better test. 

We started from the spherical harmonics model of the topography of this body 
given by Duxbury (ibid), which is complete to degree and order 8. The coefficients 
were first normalized by (5), R0 was taken equal to the initial A00 coefficient (= 
11 040.045 m), and all the other harmonies were divided by R0 to obtain the S 
series as in (20). 

Although the individual uncertainties are not quoted by the author, we believe 
that they may be at the 1% level since an r.m.s, residual of 150 m is reported when 
using the expansion. 

We computed the gravity harmonics up to degree and order 16 in order to have 
an idea of the contribution of the topographic harmonics to those coefficients above 
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degree 8 although the numerical values may be far from reality due to lack of rep- 
resentation of the topography between the degrees 8 and 16. The computations 
were carried out analytically by formulas (33) and (34), yielding values K ~  (ana- 
lyt.), and by numerical integration as explained in the previous paragraph, yielding 
values K/~ (numer.). 

To evaluate the results we introduce the degree variances -rj, "/t of the topography 
(1 < j < 8) and of the gravitational potential (1 < l < 16) respectively, by 

+j 
47r(2j + 1)T 2 = E TqTY 

q = - j  
(79) 

+l 

47r(2/+ 1)Tt 2 = ~ KINK[ ~*. (80) 

Similarly, we have 

47r(2/+ 1)6 2 = 

with 

+l 

m~---I 

(81) 

6K/~ = K ~ ( a n a l y t . ) -  K/~(numer.) (82) 

by which we define the relative accuracy Et of our formulas 

Et =- 6t/'Yt. (83) 

The quantities introduced are intrinsic in the sense that they are invariant by 
rotation (Moritz, ibid). Figure 1 shows the relative agreement of the analytical and 
of the numerical techniques for such a complex body, which is at the 10 -5 level. 
This is satisfactory for the applications considering the uncertainties on the initial 
coefficients T q - to which the uncertainties on the K/~ (1) are directly proportional 
according to (27), also in view of the total power of the disturbing potential (central 
part omitted) 

V = y ~ ( 2 / +  1)3, 2 (84) 
l>l  

from which the norm p1/2 is found to be 3.7 × 10 -2 (at this resolution). 
Also of interest is the speed of convergence of the K~(H), with H,  which 

depends on the S H series. On Figure 2, we see that the convergence, measured 
by the total power F (H)  of the K~(H) coefficients, is fairly fast and reaches a 
satisfactory level of 10 -5 (compatible with the level of accuracy of our formulas 
as demonstrated above) for H -- 9. 
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Fig. 1. Relative degree variances Et showing the agreement between the analytical and the numerical 
techniques. 

1 . 0 E - 0 5  

n.," 
w 
~ :  1.0E-10 
0 
rl 

. J  

.<  
I-- 1.0E-15 
0 
i..- 

1 , 0 E - 2 0  

1 . 0 E - 2 5  i ~ i i i i i i i [ ~ i i t i ~ I i 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

ITERATION 

Fig. 2. Speed of convergence of formulas (33) and (73), measured by the total power £ (H)  of the 
coefficients computed from S ~r. 



352 GEORGES BALMINO 

-k [ .  gRaVITY l 

I.OE-02 

W 
0 
Z 

~c 1.OE-O3 
< 
> 

w 
ILl 
n." 
(.9 1.0E-04 
W a 

1.0E-05 

, I 

0 1. 2 3 4- 5 6 7 8 9 10 11 12 13 14- 15 16 

DEGREE 

Fig. 3. Degree variances % 3q of the topography and of the gravitational potential, respectively, as 
a function of the degree l of the harmonics. 

Finally, Figure 3 gives the behaviour of the degree variances of the topography 
and gravitational harmonics. Ignoring the terms of degree one in the gravitational 
potential which reflect an offset between the center of mass and the center of figure 
(which may be real or due to uncertainties in the body shape), we may fit very well 
the gravitational variances by the empirical law 

7t ~ 70 e -~t  (85) 

with 70 = 3.32 × 10 -2 and c~ = 0.6. A fit may also be obtained with more 
conventional power laws, such as those experienced with the terrestrial planets 
(Balmino, 1993); we then find 

7z ~ 0.16//2 

')'l ~ 0.40//4 (86) 

for 1 in the range 2 to 8 (or 16 for the gravitational potential). It would be interested 
to test the validity of  these laws with an improved model of Phobos as it may be 
obtained in future missions, and over a larger range for I. 

With such laws, we may try to answer questions about the approximation due 
to truncation in the topographic and in the gravitational harmonics series. The lack 
of representation in the topographic series may be measured by 

An T = [ T ( ~ ) -  T(n)] '/2 = (21 + 1) (87) 
1 1 
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or, since (21 + 1)7-t 2 is here a positive decreasing function, it may be bounded as: 

A T < 7-0 { f + ~  (2x + 1 ) x  4 dx} 1/2 . 

That is 

- -  ( 8 8 )  
Tb 

Using 7-o = 0.16 and n = 8, we find A T < 2.04 x 10 -2 tO be compared with the 
total norm (0.185 using the law) or to the norm of the (8, 8) model equal to 0.173. 

Similarly for the gravitational potential we may write 

[/7 A N < (2x + 1)% dx 11/2. 

Using the exponential law (85) yields: 

"YO ( 1 1 ~1/2 
e -~n. (89) 

With the adopted constants we find As K < 1.07 x 10 -3, and Al% < 1.2 × 10 -5. 
If we adopt the power law instead, we have: 

"yo [ 1 1 II/2 
AuK < ~ 7 - f -  i- + (2a - 1)n (90) 

That is AsK < 4.6 × 10 -4 and AI~ < 5.7 × 10 -5, to be compared for instance to 
the found norm of the disturbing potential (3.7 × 10-2). Therefore we conclude 
that, the topography harmonics of Phobos being given up to degree 8 (this, apart 
from errors in those harmonics, has a lack of representation of ,~ 12% if we believe 
in a simple power law to represent the topography harmonics behaviour), adopting 
gravitational harmonics derived from them and up to the same degree results in an 
approximation at the 3 % level - taking the worst case with the exponential law. This 
error of representation is small enough, considering the other errors, to accept and 
use the derived (8, 8) gravitational model in subsequent applications. Of course, 
this mathematical error can be reduced below 1% if the degree of the gravitational 
series is increased to 16, but the gravitational harmonics beyond degree 8 are not 
physically significant as said before. 

9. Conclusion 

We have derived exact expressions of the spherical harmonic coefficients of the 
gravity potential of an homogeneous body which shape is also given as a series of 
spherical harmonics. These formulas have been checked by means of the coeffi- 
cients of the shape and potential of a triaxial ellipsoid, independently derived, and 
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by direct numerical harmonic analysis especially in the case of Phobos. One prac- 
tical importance of having these precise expressions for the gravitional harmonics 
is in the navigation of space vehicles visiting small bodies of the solar system such 
as small satellites or asteroids. It also gives the capability of testing whether such 
bodies are of constant density or not, which may give clues to the process of their 
formation. 

Annex A. Product-Sum Conversion for Spherical Harmonics 
and Related Integrals 

Because of the orthogonality of the surface spherical harmonic functions Yz~ (~, A), 
any product of such functions can be transformed into a linear form of the Y's. 
The question has been treated by many authors and notations and conventions vary 
widely. A very useful compendium of results has been compiled by Rotenberg 
et aI. (1959) for the Yt ~ type of functions, where the authors make use of the 
Clebsch-Gordan coefficients with the 3 - j notation of Wigner. A simpler form for 
the product of two non-normalized functions Yz~ was derived by Balmino (1978) 
as 

= QlrajqYk,m+q (A1) 
k 

where k runs from max(Ira + q I, ]l - J I) to l + j and where l + j + k is always even. 
From this work, it was possible to compute the Q's in rational form for products 
of functions up to degree and order 20 (using 128 bit words). Above this degree, a 
more traditional programming yield the coefficients in floating form with sufficient 
accuracy up to about degree 40 for the normalized functions ~m. 

We decided to adopt the Rotenberg form of the decomposition formula, after 
satisfactory numerical experiments. It writes 

[ ( 2 / +  1)(2j + 1)(2k + 1)1 1/2 Z 
k [ 4~ J 

× 
rr~ c 1 - - m - - q  0 0 0 (-1)ra+qg2+q (A2) 

where k runs as in formula (A1) and with 

jl j2 J3 ) = (__l)jl-jz-m3 
fl't 1 T/'t 2 f/'b 3 

[(j,+Jz-j3)!(J,(j, +j2+j3+l)!-Jz+J3)! (-jl-~-j2-~j3)!]'/2~ (-1) ~s! 

8 

[(jl + m l ) ! ( j l  -ml ) ! ( j2+ra2)! ( j2-mz) ! ( j3  +m3)!(j3 -m3)[ ]  1/2 

(A3) 

(jl -'l-j2--j3 --s)!( j l  - -ml  -s)!(jz+ra2-s)!(ja -jz+ral +s)!(j3 -jl  -m2+s)!" 
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This coefficient is the Wigner 3 - j symbol (Wigner, 1958). In (A3), the index s 
runs from max(0, j2 - j 3  - -  Tnl , /7 / '2  q-jl --j3) to min(j l  + j2  --j3, j l  -- rnl, j2 -}- m 2 ) "  

The bracketted term in the summation does not depend on s but is put inside for 
numerical reasons when evaluating the coefficients. To compute them accurately, 
we computed the logarithm of each term (to avoid numerical overflows) and 
properly re-ordered all the terms before summation to reduce the numerical errors. 
A lot of properties exist for the 3 - j coefficients. The most interesting one is that 
they vanish if one of the following conditions is not fulfilled 

j l q - j 2 - - j 3  >---0 
j l  - j 2  + j 3  _> 0 
--jl  -k j2 + j 3  --> 0 
13Z 1 -'}- ft't 2 q- Tn 3 ~-~ 0 
j l  + j2 + j3 even if rnl = rn2 = rn3 = 0. 

The following relation holds between our Q's and the 3 - j coefficients 

rn q - r n - q  0 0 0 

_ (-1)  m+q [ ( / - m ) ! ( j - q ) ! ( k + m + q ) ! ] l / 2  k 
2k + 1 (l + m)! ( j  + q)!(k - m -  q)!J Ql.~jq. (A4) 

The coefficients of formula (A3) were checked with the identity (A2) up to degree 
100 and the relative accuracy was always better than 10 -25 (in quadruple precision). 
We now introduce the notation 

I ll 12 13 ] 
frt 1 7T~ 2 * 

= (--1)m'+m2[(211 + 1)(212 ~- 1)(213 + 1)/47r11/2 

x ( 11 /2 13 ) ( l l  12 13) 
rnl rn2 - r n l - r n 2  0 0 0 " 

(A5) 

Then, using (A2) and the orthogonality of the Y's we find 

f f 6  y/?,y/m2g/m3 dcr = ( - 1 )  m3 [ Ii I2 
m l  m2 1 

In the case of four functions, we first write 

13. ] ~5(rnl q- rn2 q- rn3,0). 

/1 12 k ]  ~ml+m2y, m3 

k 

rnl m 2 * rnl q-rn2 Tt), 3 * k 

---- s ~ [ / l m l  rn212 rn313 ,8'lY21q-m2Zrm 3 (A6) 
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[ ~ " " ' l : ~ [ "  " ~][ ~ " '1 (A~) T~I m 2  m 3  * TILl Tt)~2 * TO,1 q - T n 2  m3 * " 

In (A6), s runs from Irnl + m2 + rn3l to ll + 12 + 13, ll + 12 + 13 + S must be even 
and triangular inequalities on (/1,12, k) and (k, 13, s) must be satisfied. 

In (A7), k runs from max([m1 +mzl, I11 -/z[) to ll +/2, I1 + / 2 + k  and 13 + k + s  
must be even. In consequence we have 

/ f a  Y1rnl Ern2y~rn3Ern4 do- 
ll ~2 ~3 ~4 

1 

: ( _ _ l ) r n 4  [ l l  12 13 /4 ] (5(rn 1 + TrY2 q_ Tn3 _~_ TI~4,0) .  (18) 
/ ~ t l  Tn 2 TtZ 3 * J 

The general product-sum conversion formula is 

N I l l  12 . . .  1N k ] y M N  (19) 
I I Y , ? ~  : ~ , ? 1 ~ 2  . ~ .  : E ~1 ~ ,  ~ , ,  • 

1 k 

where M N  = ml + m 2 + . . .  +raN,  and k varies between IM[ and /1+/2+ . . .  + l N  = 
L with L + k being even. The Nth order symbol is defined as 

[( li )(N)~] = [ II 12 . . .  IN- 1 IN ~ ]  

m i  ftbl ~'n2 . . .  ~ N - 1  l lbN * 

• 7V~l Ttt2 TrLN--1 * M N - 1  
.7 

with MN-1 = ml + m2 + . . .  + rnN-1. 
The corresponding integral is 

f f ~  I I  Yt~ i do- = (_l)mN mili ( N - l )  1N. 5(MN,O). 
I i = 1  

,-~] (11o) 
Trt N 

As a consequence, the integrals needed in our work are 

.,, 1 1,12,...,[Nl - -  I i Yl do- = 
1 i=1  ~rti * 

(A11) 

Annex B. Approximate Expression in Spherical Harmonics of the Radius 
Vector of a Triaxial Ellipsoid 

We start from the general equation of the surface of a triaxial ellipsoid, taken as 

Ax 2 + By 2 + Cz 2 - 2Dyz - 2Ezx - 2Fyx = 1 (B1) 
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where there are no first degree terms in assuming that the center of the ellipsoid 
has been previously determined and taken as the origin of the coordinates. 

It is more general than the basic form used in the core of this paper, but it has 
the advantage of leading to interesting similarities with the relationships between 
the gravity harmonics and the inertia tensor components of a body. 

We use the following identities 

1 
x 2 1 1 (1 -- P20) q- P22 cos 2A r 2 -- 2 c°s2g)(1 +cos2A)  = ~ 

y2 1 1 ( l - P 2 0 ) -  1 r 2 -- 2 c°s2q°(1 - cos2A) = g g P22sin2A 

r-g = sin 2 ~ = ~ + P20 

xy  1 
r- 5- = g P22 sin 2A 

yz  1 
- -  P 2 1  sin A 

r 2 3 

xz  1 
- -  P2I cos A .  

r 2 3 

Inserting these in (B1) we find 

1 A + B + C  
r 2 3 

2 C - A - B  A - B  
+ P20 + - -  P22 cos 2A 

3 6 

2 DP21 sin A - 2 1 FP22 sin 2A. - E P 2 1  c o s , X  - 5 

Let 

= 

OZ - -  

_ 

C - -  

A + B - 2 C  

A + B + C  

1 B - A  

2 A + B + C  

F 

A + B + C  

2D 

A + B + C  

2E 

A + B + C "  
(B2) 
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Then 

) r=no(1-w)-l/2=Ro 1-t- ~ W +  g + . . .  

with 

W ---- ozP20 q--/~P22 cos 2A + "/P22 sin 2A + (5/°21 sin ~ + eP21 cos ,-~. 

Consequently, we have to the second order in o~,/3, % 6, e 

4 l 
r = Ro Z Z (AzmcosmA + Bzr~sinraA)Plm(sin~). (B3) 

/=0 m=0 

The only contribution of order zero terms is to A00 and obviously 

Aoo(0) = 1. 

The non zero first order terms, as directly coming from W, are 

A 2 0 ( 1 ) -  °~ - R~ ( A + 2 C) 

R 2 B - A  
A 2 2 ( 1 ) -  2 -  3 4 

B22 (1)  - - R°2 F 
2 3 2 

e R°2 E 
A 2 1 ( 1 ) -  2 -  3 

B21(1) = ~ = -~- D. (B4) 

These relations are identical, except the common multiplying factor R2/3, to those 
between the gravity harmonics and the tensor of inertia components of a general 
body. 

The second order terms are obtained by expanding W 2 and transforming the 
products of Legendre functions into sums. We used here our earlier work (Balmino, 
1978, ibid.). 

Useful relations are 

3 6 6 6 72 
Pal = ~ P22 + ,,~, P42 = ~ + ~ P20 - ~-~ P40. 

The first form is to be associated with +(cos 2A)/2 and the second one to 1/2 in 
the decomposition of cos 2 ,~ or sin 2 A into (1 4- cos 2)~)/2. Also 

3 24 48 72 
P22 = ~-~P44--  5 7 P20-t- ~--~P4o 
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1 9 
P20P21 = ~ P21 '1- P41 

2 P22 -I- ~ P42 P2oP22 = - ~  

1 2 18 
*'~o = -g + $ e2o + g P4o. 

Finally 

Aoo(2) = 3 [ct2 + 12(/32 -l- 3,2) _}_ 3(62 or E.2)] 

A20(2) = 3 [2oz 2 _ 24(/52 + 3,2) q_ 3(~52 + g2)] 

3 
A21(2) = ~-~ [(a - fl)¢ + 663,1 

3 
B21 (2) --~ ~-~ [(OZ -- /3)6 q- 6e3,] 

3 
A22(2) -- [Stiff -b 3(62 - e'2)] 

112 

B22(2) = 5-~ [--4Oe3, + 36e] 

A 4 0 ( 2 ) -  27 140 [ct2 -+- 2/32 - 2(62 q- c2 - 3,2)] 

A41(2) 
27 

- 140 [ (a  + f l )e  - 63,] 

27 
- 140 [ (a  + / 3 ) 6  - e3,] 

_ 9 [2a/3 - ( 6  2 - c 2 ) ]  
280 

B41 (2) 

A42(2) 

9 
B42(2) = 140 [&3, + 6¢1 

9 
A43(2) = 280 [tic - 63,] 

9 
B43(2)  --  280 [/36 + e3,] 

A 4 4 ( 2 ) -  9 560 [/32 - 3,21 

9 
B44(2) -- 280/33,. (B5) 
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The other terms are zero up to second order in the small parameters. 

Annex C. Fast Harmonic Synthesis over the Sphere 

We want to compute values of a function known by a spherical harmonics approx- 
imation of high degree and order (typically with 10 5 to 10 6 terms) at the nodes 
(~Pi, Aj) of  a regular grid over a sphere (or part of it), or mean values over the cells 
defined by these nodes. 

We have ~ i + 1  - -  ~ i  = A ~ ,  )~j-I-1 - -  /~j = A / ~  (possibly a function of latitude). 
The algorithm given below is in some way equivalent to an FFT in longitude 

over the sphere. It is here written for point values. In the case of mean values, 
one has simply to replace the quantities c o s  mAj or sin mAj by Om c o s  mAj or 
Om sin mAj where 

00 = 1 

sin mAA/2 
0ra  - -  raAA/2 

= (,xj + ,xj+l) /2 

A A  : Aj_t_ 1 - -  A j .  (C1) 

Also the Legendre functions at ~i must be replaced by their integrals taken between 
~i and ~Pi+I. So let us assume that we have to determine a set of grid values of a 
function expanded with real normalized harmonics, as 

L l 

f(r,~p, A ) =  f0 ~-~gt(r,~) ~ (AlmcosmA + BtmsinmA)Ptm(sin~) 
/ = 0  m = O  

where the points (r, ~, A) are the nodes (~i, Aj) of the grid and with r = r (~)  (for 
instance when some function is evaluated on an ellipsoid of revolution). 

We first make the following transformation 

L 

f(r, ~, A) = fo Y~ fm (C2) 
rn=O 

with 

fm= am cos mA +/3m sin mA (c3)  

and where 

L 

tim = ~ gt[r(~),9)]Ptm(sin~)) Blm " 
l = m  

(C4) 



cos m j A A  

sin m j  AA 

we find 
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Introducing Aj = A0 + j AA, denoting fm,j  = fm(/~j), and using the identities 

= 2 c o s m A A c o s m ( j  - 1 ) A A -  c o s m ( j  - 2)AA 

= 2 c o s m A A s i n m ( j  - 1)AA - s inm( j  - 2)AA 

f m , j  = O&n COS mAj q-/3m sin mAj 

= 2 c o s m A A .  fro,j-1 - f r o , j - 2 .  

This recursive relation is initialized with 

fm,o = am cos mAo + tim sin mAo 

fro,1 = fm,o cos mAA + sin m A A ( f l m  cos mAo - o~m sin mAo). 

(c5) 

(C6) 

Annex D. Computation of Legendre Functions and Integrals 

The Legendre polynomials Pl0 of degree I and associated functions Ptm of degree 
1 and order m are fully normalized, so that 

1 rf 4 ~ j  i sin 2mA cosg) dT)dA= 1 (D1) 

(over the unit sphere era). 
Their definite integrals ftm are computed efficiently by stable recursive formu- 

las, for instance according to Gerstl (1980). The set listed below is a variant of 
Gerstl's work, adapted to much higher degree and order than originally studied by 
this author. 

We assume that all computations are to be carried out to a maximum degree 
L and maximum order L, too. The definite integrals are evaluated between two 
latitudes Cpl, ~2 (7)1 < ~2), that is 

hm = f ~ 2  P/m (sin ~) cos ~ d~ (0 < m < l < L). (D2) 
a~ l 

We first define x = sin ~, y = cos p, ~3 = (~1 + ~2)/2,  xi = sin ~i, Yi = cos ~i, 
(i = 1, 2), and the following coefficients 

7"i = [(2l - 1 ) ( 2 / +  1)] 1/2 

W ~  --- [1 + 1/2m] 1/2 for 2 _< m _< L 

W ?  = T z / [ ( / - - m ) ( l + m ) ]  1/2 for l < m < l _ < L .  (D3) 
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The integrals of the Legendre polynomials are computed as follows 

f00 = X2 -- Zl  

ilo = 4 3  iooe 

I lO -'~ { P l + l , O / T l + l  - -  P l - - l , 0 / T 1 } 2 1 ,  (2 < I < L)  (D4) 

where {.. .  }2 is the difference between the values of the expression at ~2 and ~1. 
For these, we need the Legendre polynomials, computed by the sequel 

t51o = v/3x 

t52o = v/5 (3x 2 - 1)/2 

/5/+1,0 = 7"Z+l(XPt0 - 1Pt-l,O/Tt)/(1 + 1), (2 < l < L). (D5) 

For the integrals of the associated functions, we need these functions themselves, 
/Slm, in ~1 and ~2. They are evaluated by the recursive formulas 

P~I = v ~ y  

P m . ~  " ~ P ,  _ _ -~" Y W m  m--l ,m-- i ,  (2 < m < L) 

f fPm+ l ,  m m - - -  - -  = x W ~ + l P ~ , ~  , (1 < r e < L )  

Wi (xPl- l ,m - Pt-2,m/W~-l) ,  (m + 2 < 1 < L). (D6) 

Then, according to 93, we initialize the sectorial integrals with the greatest possible 
accuracy. The critical latitude, qo0, which sets the type of formulas to be used, has 
been empirically determined for L in the range 1 to 1200. We adopted qo0 = 15 °. 

- i f l~ l  <_ Vo"/IS - -  {~P + x Y } 2 V / - 3 / 2  

L~,~ = wz[~w2-_?i~-2 ,~-2  + {xPmm)2]/('~ + 1) 
(D7) 

(2 < m < L) 

-if[~] > ~o: we take M = int {100(100 - ~3)} and 

( 1 7V2 2 M - l y 2 (  1 ) ) ) ] ] ) 2  
x - - +  + . . - +  .. .  

m + 8  8 2-M m + 2 M + 2  1 

(m = L and L - 1) (D8) 

(m ---- L to 4) 

i .  = (~ + xy)2vS/2. (D9) 
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Finally, the tesseral integrals (l ¢ m) are computed via the recursive formulas: 

f m + l , m  = - W m m + l / (  ~n Jr- 2){y2/3mrn} 2, (1 ~ ~ ~ L - 1) 

f l ,m = W[~Z[( l - 2 ) f l - 2 , m / W ~ - i  - { y 2 P l - l , m } 2 ] / ( 1  q- 1) 

( m + 2 < / < L ) .  (D10) 

This set of formulas has been programmed on a CDC Cyber 2000 V computer 
in single precision (~  14 accurate digits in elementary operations). The precision 
was tested: (I) by comparisons with values obtained with a double precision (~  28 
significant figures) version of the program; (II) by evaluating the definite integrals 
numerically, by means of a 16, 32 or 64 knots Gaussian quadrature formula. These 
tests were carried out for L = 1 to 1200, q~ = - 9 0  ° to 90 °, ~2 - -  ~ 1  : 0%1 to 5 °. 

Largest relative 'errors' never exceeded 5 x 10-11 in this range. The program- 
ming itself was optimized for the Cyber vectorized compiler which resulted in very 
short computer times. 
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