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Abstract, The scope of the present paper is to provide analytic solutions to the problem of the attitude 
evolution of a symmetric gyrostat about a fixed point in a central Newtonian force field when the 
potential function is V (2). 

We assume that the center of mass and the gyrostatic moment are on the axis of symmetry and that 
the initial conditions are the following: ¢(to) = ¢o, O(to) : 0o, ¢(to) = ¢o, 031(t0) = O, W2($0) = 0 
and w3(to) = co °. 

The problem is integrated when the third component of the total angular momentum is different 
from zero (B1 ¢ 0). There now appear equilibrium solutions that did not exist in the case B1 = 0, 
which can be determined in function of the value of l; (the third component of the gyrostatic 
momentum). 

The possible types of solutions (elliptic, trigonometric, stationary) depend upon the nature of the 
roots of the function 9(u). The solutions for Euler angles are given in terms of functions of the time 
t. If we cancel the third component of the gyrostatic momentum (l; = 0), the obtained solutions are 
valid for rigid bodies. 

Key words: Dynamics of rigid bodies and gyrostats, analogous case to that of Lagrange and Poisson, 
analytic solutions. 

1. Introduction 

The problem of the rotatory motion of a rigid body about a fixed point, subject to 
external moments, has been studied in numerous articles, by authors such as Euler, 
Jacobi, Poinsot, Lagrange, Poisson, Kowalesky, only to mention a few of the most 
classic ones; analytical solutions were found in certain cases. 

So as to make apparent the influence of intemal motions of the bodies, that do 
not vary their mass distribution, on the rotation of the bodies, the rotatory motion 
of gyrostats about a fixed point has also been studied. In particular, of stationary 
gyrostats, which are those whose relative angular momentum of its mobile part 
with respect to its rigid part (also known as gyrostatic momentum) is constant in 
the mobile system (fixed in its rigid part). The problem of the rotatory motion of 
a gyrostat about a fixed point is more general than that of the rigid body (which 
is what it is reduced to if the gyrostatic moment cancels itself). It has been dealt 
with, amongst other authors, by G. Peano, V. Volterra, V. A. Steklov, U. Cassina, 
M. T. Vacca, in works dedicated above all to the study of the motion of the Earth's 
poles and the variation of the latitude on the surface of the Earth. These and others 
are mentioned in E. Leimanis's book (1965). 
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Just like the problem of rotational motion of a heavy rigid body about a fixed 
point and of the rigid body with a fixed point in a central Newtonian force field, 
of potential V (2) (this is achieved by taking only up to the main term of the non 
Keplerian potential, that is to say up to second order harmonics), the problem 
is reduced to the obtention of a fourth integral of the motion, besides the three 
classical integrals. In the case of a heavy rigid body there is a fourth integral 
of the motion which, moreover, is algebric in the classical cases: of Euler and 
Poinsot (where the external torque vanishes), Lagrange and Poisson (/1 = /2, 
z ° = z ° = 0) and Kovalevskaya (I1 = I2 = 2•3; z30 = 0). In the problem of the 
rigid body with a fixed point in a central Newtonian force field with a potential 
V (2), Arkhangelskii (1962, 1963) has proven that, in general, there exists a fourth 
algebraic first integral of the equations of the motion only in cases of sphericity, 
analogous to that of Lagrange-Poisson and that of Euler-Poinsot. 

The problem of the heavy gyrostat with a fixed point has been considered by 
Keis (1964), who confirms the validity of the Poincar6 theorem for this case; and 
by Vigueras (1983) who analytically integrates a similar case to that of Lagrange- 
Poisson, for gyrostats. Where the problem of the motion of a gyrostat with a fixed 
point in a central Newtonian force field with a potential V (2) in Andoyer variables, 
is concerned, it has been considered in Tsopa (1979, 1981) and integrated into quasi 
regular cases, by perturbations methods. More general problems, such as that of 
the roto-translatory motion of n gyrostats, or that of the roto-translatory motion of 
a gyrostat in a central Newtonian force field, the Earth's rotation using as model of 
the Earth a symmetric gyrostat, have been considered by R. Cid and A. Vigueras 
(1985, 1990) and M. E. Sansaturio and A. Vigueras (1988), and they have given 
qualitative results and approximate integrations. 

Returning to the problem of a gyrostat with a fixed point in a central Newtonian 
force field with a potential V (2), Vigueras (1987) puts to the test the Liouville 
integrability in three cases, which are reduced to those given by Arkhangelskii if 
the gyrostatic moment  cancels itself. 

In this study, a problem that generalizes that of Lagrange-Poisson and deals 
with gyrostats under the potential V (2), is integrated analytically; concretely, let us 
suppose that the center of mass and the gyrostatic momentum are on the axis of 
symmetry and that the initial conditions, in the terms of Euler angles and angular 
velocities, are the following: 

 (to) --  O(to) = O , ( t o )  = 

 l(t0) = 0  2(t0) = 0  3(t0) = 

In the particular case of the previous one, in which the third component of 
the total angular momentum cancels itself (this could be achieved by judiciously 
choosing the third component of the gyrostatic momentum, artificial satellites 
equipped with symmetrical rotors, come to mind as an exampl); has been dealt 
with by Cavas and Vigueras (1992), taking into consideration all the possible 
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subcases, that are characterised in function of the distance r from the centre of 
attraction P to the fixed point O, as well as the geometry of the body and the 
initial conditions, stating the explicit analytical expression of the solution in each 
one of them. Independently from the equilibrium solutions, more possibilities of 
motion become apparent than in the similar case of a heavy gyrostat, which is due 
to the effects derived from the corresponding gravitational moment of the new term 
included in the V (2) potential. 

Presently, the general case will be studied, that in which the third component of 
the total angular momentum does not cancel itself (/31 • 0), all subcases which 
are characterised in function of the discriminant A of the equation S' (u) = 0, will 
be considered, and the corresponding solution in each subcase will be indicated. 
There now appear equilibrium solutions that did not exist in the case B1 = 0. 

Obviously the obtained results are valid for rigid bodies without having to do 
more than l~ = 0 in the corresponding expressions. Thus, the rigid body, similar to 
that of Lagrange and Poisson, in a central Newtonian force field of potential V (2), 
has been integrated, as a particular case of the problem dealt with. 

However, for a rigid body, whether A is positive, negative or zero, depends on 
the geometry of the body and the initial conditions; on the other hand, for a gyrostat 
for which l~ can be chosen, the sign of the factor A can be determined in function 
of the value of l~. 

2. Presentation of the Problem 

The problem faced consists in obtaining the equations of the motion of a gyrostat S 
fixed in one of its points O belonging to its rigid part, submitted to the Newtonian 
attraction of another point P (or to a rigid body with a spherical distribution of 
masses), when the relative motion of its mobile part with respect to its rigid part 
is supposedly known and the mutual potential V is approximated by V (2). With 
the origin in the fixed point O, two systems of reference are considered: a fixed 
one OX~X2X3, in such a way that the point P lies in the negative part of the axis 
OX3, at a constant distance r = [OP[ and another mobile one Ozlx2w3, fixed 
in the body, and whose axes are directed along the principal axes of inertia of the 
gyrostat at O. Thus, supposing that the gyrostat is symmetrical and that not only 
the gyrostatic moment but also the position vector of its center of mass, expressed 
in the mobile system, I~ = (l~, If, 1~) and ro = (x °, x2 °, x °) are constant vectors 
lying on the axis of symmetry (Ox3), that is to say: 

according to the angular momentum theorem and the kinematic equations of Pois- 
son, the equations of the motion in the mobile system are: 

/1do1 + (I3 - I1)c02c03 + c021~ = rrtox°k2 + rr~l(/3 - I1)k2k3 

1r1~2 + ( f l  - -  -/3)(-01603 --  COll~ = -mox°k l  + ml(I1 - I3)klk3 ( 2 . 1 )  
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I3~b3 = 0 

k l  + co2k3 - co3k2 = 0 

k2 + co3k3 - colk3 = 0 

1~3 q- col k2 -- CO2kl = 0 

where m0 = rag, ml  = 39/r, m = mass of the gyrostat, 9 = G M / r  2, G = 
gravitational constant, M = mass of the fixed point P ,  I1 = /2 and/3  are the 
principal moments of inertia of S at O, w = (wl, w2, w3) the instantaneous 
angular velocity of rotation of the mobile system with respect to the fixed one and 
k = (kl, k2, k3), the unitary vector of the OX3 axis expressed in the mobile 
system. The afore mentioned equations admit the following first integrals: 

+ kl + = 1 

k(1 + lr) = c (cte) (2.2) 

~(/lcoll  2 ~_ I2CO2 2 -~- /3CO 2) -t- Tng(xOkl ~- xOk2 --~ xOk3)n t- 

+~ g ( I l k  2 + I2k~ + I3k 2) = h (cte) 

co3 = coo (cte) . 

Particularly the third equation (Jacobi's integral) and the second (an integral that 
expresses the constant character of the projection of the total angular momentum 
on the third fixed axis) can be expressed as follows: 

w~ + co~ = A t  + A,  k3 + A2k 2 

COlkl -t-C02k2 = B0 - t31k3 (2.3) 

A0, A1, A2, B0 and B1 being constant, given by the following formulae: 

= (2ho - I3(co°)z)/I1, A1 = ( - 2 m o x ° ) / I i ,  A2 = 3g(I1 - I3)/rI1 A t  
\ / 

. 0  : 4 ± 1 ,  B ,  : " -(±3co  + (2.4) 

Using the expressions of the components of w and k in Euler variables, the integrals 
(2.2) can be reduced to the equations: 

~2 sen 2 0 + 02 = A0 + AI cos 0 + A2 COS 2 0 

sen 2 0 = B0 - Ba cos 0 .  (2.5) 
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The change of the variable u = cos 0, allows the separation of variables, thus 
giving: 

~2 = (Ao + Alu + A2/t  2) (1 - u 2) - (Bo  - B1 / t )  2 = 9(7£) 

= (t30- BlU)/(1 - 7£2) (2.6) 

= CO3 0 -- ( B  0 - B 1 7 £ ) / t / ( 1  - u 2 ) .  

2 .1 .  ADDITIONAL HYPOTHESES 

Before continuing, let us suppose that the initial conditions are as follows: 

 (to)=40 O(to)=Oo ¢ ( t o ) = ¢ o  

Wl(t0) = 0 w2(t0) = 0 co3(t0) = w3 (2.7) 

(being u0 = cos 00 different from 1 and - 1 ,  because these values correspond to 
two equilibrium configurations of the problem). 

Thus, we are going to procede to the analytical integration of the problem 
considering when the gyrostat (its rigid part) turns, in the initial instant, around the 
axis of symmetry at a constant angular velocity w°; the orientation of the gyrostat 
being arbitrary. 

However, for a rigid body, whether A is positive, negative or zero, depends on 
the geometry of the body and the initial conditions; on the other hand, for a gyrostat 
for which l~ can be chosen, the sign of the factor A can be determined in function 
of the value of l~. Therefore from (2.3) and (2.7), it can be deduced: 

A0 = - ( A l u 0  + A27£ 2) , B0 = BlU0. (2.8) 

Furthermore, if we suppose that the center of mass is situated on top of the fixed 
point or coincides with it x ° >_ 0 (in the case B1 = 0, the hypothesis was x3 ° > 0) 
and that I1 > / 3 ;  therefore the equations of the motion would be as follows: 

~2 = (7£__ 7 £ 0 ) [ ( A 1  _{_A2(/t + / t o ) ) ( 1 -  u 2) - B 2 ( / t - 7 £ 0 ) ]  : g(7£) 

= BI(7£ 0 - / t ) / ( 1  - u 2) 

= _ B i (7£o  - 7£) / t / (1  - 7 £ 2 )  (2.9) 

3. Analytical Resolution of the General Case B~ ~ 0 

So as to obtain the Euler variables in function of time, by integration of the 
differential Equations (2.9), we can procede to the study of the roots of g(u) = 0; 
for this purpose, let use define 



322 J.A. CAVAS AND A. VIGUERAS 

S(U) ----- (1 -- u 2) (A1 qu Azuo + A2u) - BZ(u - uo) 

with which we can write 

(3.1) 

when studying the behaviour of the function s(u), it is obvious that 

s ( - 1 ) = B 2 ( l + u o ) > O  s ( 1 ) = - B 2 1 ( 1 - u o ) < O  

(3.2) 

st(u) = - 3 A 2  u2 - 2(A1 -1- A2uo)u q- A2 - B 2 (3.3) 

s"(u) = - 6 A 2 u  - 2(A1 + A2u0) • 

By virtue of (3.3) we know that s(u) admits at least one root in ( - 1 ,  1), let us 
call al the smallest of the roots of s(u) in the mentioned interval. 

When studying the roots of the equation of second grade, st(u) = 0, we can 
find the possible maxima and minima of 8(u), which will depend on the value of 
their discriminant 

A = (A1 + A2uo) 2 + 3A2(A2 - B2) .  (3.4) 

Likewise, from s" (u) we can see that s (u) presents an inflexion in u = - ( u 0  + 

A1/A2)/3. 
Next, we will study the behaviour of s(u) according to the distinct values of the 

discriminant A, and three cases appear: 

3.1. CASEA < 0  

The s(u) function is strictly decreasing and presents a unique simple real root al, 
in the interval ( -  1, 1), and a pair of  complex conjugate roots. Now, depending on 
the relative position of al and u0, the following possibilities become apparent: 

u0 < al 

u0 > al 

uo --- al 

QX 

Fig. 1. 
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3.2. CASE A > 0 

The equation s'(u) = 0 presents two real solutions, and we can distinguish the 
following subcases: 
3.2-1. The s(u) admits a unique simple real root al ,  in the interval ( - 1 ,  1), and 
a pair of  complex conjugate roots. We can consider the same possible relative 
positions of  u0 and al :  

uo < al  

uo > al 

uo = al • 

% % % 

\ 

Fig. 2. 

OX 

3.2-2. That s(u) admits one simple real root aj  and one double root b2. Then we 
can distinguish the following unique possible relative positions of  uo, al  and b2: 

% % % 

u0 < al  < b2 

al  < u0 < b2 

al  < b2 < uo • 

b 2 
f L ~  _ 

Fig. 3. 

0X 

3.2-3. That s(u) admits three different real roots al < a2 < a3. In this subcase we 
can consider the following possibilities: 
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uo < a l  < a 2  < a3 

a l  < UO < a2 < a3 

a l  < a2 < u O  < a3 

a l  < a 2  < a 3  < u o  

uO = a l  < a2 < a3 

a l  < ~zO = a 2  < a3 

a l  < a2 < uO ~ a 3 .  

\ 
% 

u 0 u 9 % 

% 

~s(u) 

OX 

Fig. 4. 

3.3. CASE A = 0 

Therefore J(u) would become factorised by 8Z(u) = - 3 A 2 ( u  - dl) 2 let us call 
dl = - ( A 1  + A2uo)/3A2. The following subcases could present themselves: 
3.3-1. That dl = al and we have the following possible relative positions (the 
possibility u0 = al must be rejected): 

?.t O < a l  

uO > a l  

% 

< 
Qx 

Fig. 5. 

3.3-2. That dl 5 & al ,  supposing dl < al (similar for dl > al) we would have the 
following subheadings: 

uO < a l  

uO > a l  

nO = a l  

% < Uo 

Fig. 6. 

OX 
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The analysis of  the previous cases and subcases gives us four generic cases for 
the function 9(u):  

(A) That g(u) admits two different real roots (uo, a l )  and a pair of  complex 
conjugate roots. 

By  assuming that al  < u0 (the case when al > u0 is similar). The motion is 
possible for values of  u situated between al and uo, (al _< u <_ u0), that is to 
say for 0 varying between its initial value 00 and a limit value 01 < ~r (such that 
al  = cos 01). 

From the first of  the equations of  the motion (2.9) it can be deduced that: (Byrd 
and Friedman) 

U 

f dx = 
t 

(t--tO)-.~ u ~ ( U O - - X ) ( X - - a l ) [ ( x - a 2 )  2 q-a2] 

where 

= c~[F({, k ) -  2/C(k)] 

A 2 = (,tt, 0 - a2) 2 -+- a 2 

B 2 =- (al - a 2 )  2 q - a  2 

(3.5) 

(uo - u )B - (u - a l )A 
c o s ~ =  (u0 u)B + (u a l )A (3.6) 

k2 = (U0 -- a l )  2 -- (A - B)  e 

4 A B  

]C = /C(k) = F ( r r /2 ,  k) is the complete elliptic integral of  the first kind with 
modulus k. 

Inverting this integral, we obtain: 

cos ~ = cn (a~0(t - to) + 2/C) = - c n w o ( t  - to) 

being wo = ~ and cn(-)  the cosine amplitude function with the same modulus 
k. 

So as to resolve u, the following expression is reached 

u = cos 0 = alA  + uoB - (alA - uoB) c n w ( t  - to) 
A + B - (A - B)  cnw0(t  - to) (3.7) 

which gives us the nutation 0 as a periodic function of  the time (with the period 
4/C/co0). 

For the seconde equation of  the motion (2.9), defining 
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R(u) = (uo - u) / (1  - u2), results in 

de B1R(u) 
du V / ~  

and integrating, the following is obtained 

f R(x) dx 
¢ - ¢o = B1 

U 

where A, B, a, k 2, are those given in (3.6), Co is constant and 

(uo - u)B - (u - a , )d  
c n u l - - - c o s ~ =  (uo u ) B - + ( u - a l ) A "  

In general, the integral in (3.8) can be written in the form 

2 Ul 

f oqul + ~ (~i 1 + 7i c n u  
i=1 0 

being oq, (~i, 7/ (i = 1, 2) constants. 
Then (Byrd-Friedman) 

du _ 1 II ul ,  
0 1 + 7i c n u  1 ~  1 : ; , /2 ) - -  " / i f l i  • 

Where 

is the incomplete elliptic integral of the third kind with parameter 

r2 -- @-__ 1 

and the same modulus k, and 

( 
= tan-  1 sd U 1 

(3.8) 

(3.9) 

(3.1o) 

(3.11) 

= sdu l  (~_/2 = k2) (3.12) 



AN INTEGRABLE CASE OF A ROTATIONAL MOTION 327 

1 (  72_ 1 ~  k:~k-/2-72)1/2 [gk2+kt272dn?t l+~- - /2_1snul  ] k t 2 7 2  2 2 In - ~ (~-~ > k 2) 
L ~/]g2 + . d n u l  ~ l s n  

being k' = x / i - -  k 2 the complementary modulus and sn u, cnu,  dn u, sd u are 
Jacobian elliptic functions. 

If we introduce the expressions (3.10), (3.11), and (3.12) in (3.8) gives us 
~b = ~b(Ul) and substituting Ul = Ul(t) by means of the Equation (3.9), we would 
have the explicit form of the precession in function of the time t. 

Similarly, we would obtain ¢ in function of t, in the following terms: 
U 

B1 f xR(x)dx  ¢ ¢o  030(~ to) (3.13) 
uo x/( o - x ) ( x  - - + 

this integral can be expressed in the form 

( i  1 (uoB + alA) + ( a l A -  uoB) c n u  
c~ A +  B + ( A -  B) cnu  

R [(U°B + alA) + (alA - u°B) cnu I d u -  C1} 

where C1 is constant. The last integral can be put in the form 

2 Ul 
du _ 

Oql%l + 81i 
- -  1 + 7i cnu  i=0 0 

} 2 ~ i  II Ul, - -  - 7ifli (3.14) = OqlUl + Z 1 - - 7  2 %2_ 1 
i=0 

being Oql, 81i, 7i (i = O, 1, 2) constants and 

1~ Ul, ,.,/{~ 1 

the incomplete elliptic integral of the third kind with parameter r~ 2 2 = 7~/(7i - 1) 
and modulus k and fli (i = 0, 1,2) are analogous functions to those of (3.12). 

(B) That 9(u) admits either one double real root (which is different from u0) and 
two different real roots (u0, Ul) or one triple real root (which is different from 
u0) and the simple real root u0. 

If 52 is the multiple real root then can be factorised as such g (u) = A2 (x - b2) 2 R(x) 
being R(x) = (u - uo) (u - Ul) (with Ul = b2 or Ul 5 L b2). Then the equations of 
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motion can be integrated by means of elemental integrals. 

(C) That g(u) admits four different real roots u0, al ,  a2 y a3. 

Let us suppose that uo < al < a2 < a3 (the remaining cases are similar). Then 
g(u) = - A i ( u  - uo) (u - al) (u - a2) (u - a3), where g(u) >_ 0 for values of u 
such that uo _< u _< al < a2 < a3; from the first equation of the motion can be 
deduced that: (Byrd and Friedman) 

u 

v ~  (t - to) = f 
zt 0 

dx 

~/ (a  3 -- x ) ( a  2 -- x ) ( a  1 -- x ) ( x  -- ?zO) 

= ~[ l c (k )  - F ( ~ , k ) ]  (3.15) 

where 

2 

, / ( ~ 3  - a~) ( ~ : -  ~o) ' 

]¢2 = ( a3 -- a 2 ) ( a l  -- uo) 

(a3 a l ) ( a 2  uO) 

s e n {  = x'/(a2 - u o ) ( a l  - u) 
V'(al  - ~0) (a2  - ~) ' 

1C = 1C(k) = F(rc/2,  k) . 

Inverting this integral we obtain 

a2(a l  - - u 0 ) s e n 2 ~ - - a l ( a 2  - -U0)  

(a l  - - u o ) s e n 2 ~  - (a2--uo) 
where 

(3.16) 

(3.17) 

sen~ = sn(wo(t - to) + E ) ,  wo = v ' ~ / o z .  (3.18) 

For the second equation of the motion we have 

d o BIR(U)  (uo - u) 
du - ~ ' where R ( u ) -  ( l - u 2 )  " 

Integrating we deduce (Byrd-Friedman) 

U u 

¢ - ¢o = B, f R(X)v/~_v~/dx B1 

u o  uO 

R ( x )  dx 

~/(X -- ~Z0)(a 1 -- Z ) (X  -- a 2 ) ( x  -- g3) 

(3.19) 

X / ~ 9  - - f  R [  l _ o z 2 s n 2  u 
0 

du + C1 ] (3.20) 

where 
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g = 
v/(a3--al)(g2--/tO) 

~: _ (~1 - *,o) 
( g 2 -  lt0) 

(3.21) 

(a2 --/to)(al --/t) 
sn2/tl = s e n 2 ¢ =  (al --/to)(a2 --/t) (3.22) 

C1 = R L 1 - -  O~ 2 s n 2 u  ] 
0 

du .  

The integral in (3.20) can be written in the form 

a l  --  a 2 ~  2 sn  2 / t  d u  

R L i - 7 s ~  j d/t = ~oul + ~ ~/i 1 - 7 2 snZu 
0 i=1 0 

(3.23) 

where ~]i are constants, and 

U l  

d/t  ~_~ i~( / t l  ' 7_2) . 
/ (1 _ r-$sn2 u) 
0 

Similarly we would obtain ¢ in function of t in the following terms: 

¢ -  ¢o = ~ o ( t - t o ) -  - -  
u 

B1 

,a 0 

R1 (z) dx 
V/( x - / t o )  (g l  - x ) ( x  - g 2 ) ( x  - a3)  

(3.24) 

where/~1 (X) ---- X/~(X),  and we would have to substitute u = / t ( t )  given by the 
expression (3.17), so as to obtain the proper rotation ¢ in function of the time ~. In 
a similar way the integral in (3.24) can be put in the form 

U l  
/ 0'1 --  a2tY 2 sn2/t 

1 - -  c~ 2 sn2u 
0 

R [  1-c~2sn2/t  j d u  m= 

2 ul ul 

- -  - -  f / 0 u l  + ~ r/ i  + 6 ~  
z _ ~  1 - -  "7 2 sn 2 u 1 - -  tY 2 sn 2 u 
i=1 0 0 

(3.25) 

being ~0, ~i, o~ constants. The explicit expression of ¢ in function of the time ~ can 
be obtained substituting Ul = ul (t) by means of Equation (3.22). 

(D) That 9(u) admits u0 as a double real root, being u0 either the smallest or the 
biggest of theirs real roots. 

In this case 9(u) <_ 0 and the problem presents a solution of equilibrium: 
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o(t) = Oo ¢( t )  = ¢o ¢(t) = + ¢0. 

For the interest that this solution can have, it must be pointed out that there 
exists this solution if and only if 

u = uO : - A I / 2 A 2  = m x ° r / 3 ( ] l  - / 3 ) .  

4. Conclusions 

We analytically integrate a similar case to that of Lagrange-Poisson, for a gyrostat 
with a fixed point in a central Newtonian force field of potential V(2), when the 
third component of the angular moment is different from 0 (B1 ~ 0) and we give 
the different types of solutions depending on the roots of the function g ( u ) .  This 
study has been carried out according to the distinct values of the discriminant A, 
given by the expression (3.4). 

The solutions arrived at are valid for the case of a rigid body, only having to 
cancel the third component of the gyrostatic momentum (l~ = 0). However, for a 
rigid body the fact A is positive, negative or zero, depends on the geometry of the 
body and the initial conditions; on the other hand, for a gyrostat with a gyrostatic 
momentum I~ = (0, 0, l~), in which it is possible to choose l~, we can determine 
the sign of the discriminant A in function of the values of l~ so as to arrive at the 
desired solution. 

Furthermore, the solutions reached at will be of use in the posterior elaboration 
of analytical theories of the rotational motion of gyrostatic satellites, that can be 
activated by remote control. 
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