
Sustainable Development, the Hartwick Rule 
and Optimal Growth 

KIRK HAMILTON 
Environment Department, The Worm Bank, 1818 H St. NW, Washington D.C. 20433, U.S.A. 

Abstract. Defining sustainable development as non-declining utility, the consistency of this 
concept with the Hartwick rule and optimal growth is explored when resources are exhaustible. 
A simple proof that a generalized Hartwick rule is necessary and sufficient for constant 
consumption is derived. The existence of a maximal constant consumption path is shown to 
depend critically on the elasticity of substitution; if this is less than 1, consumption declines; 
if it is greater than 1 then consumption is not maximal; if it is equal to 1 (the Cobb-Douglas 
case) then existence is proved. Consumption can increase along an optimal path if the pure 
rate of time preference is 0; if it is non-zero then consumption declines. 
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1. Introduct ion  

Concern about damage to the environment and depletion of resources has made 
sustainable economic development a concept with both wide currency and wide 
interpretation, as Pezzey 's  (1989) exposition demonstrates. Although various 
criticisms have been levelled at the notion of sustainable development (see, 
for instance, Nordhaus, 1992a), it is the goal of  this paper to explore a par- 
ticularly simple definition, that per capita utility be non-declining, owing to 
Pezzey. Given that the sustainability criterion is, in effect, an ethical constraint 
on the classic economic problem of intertemporal  optimization,  the key 
question to be answered is whether, or under what conditions, sustainable 
development so defined is consistent with optimal growth and finite resources. 

I f  sustainable development  means non-declining utility, this leads to two 
distinct cases to be examined. Minimal  sustainabili ty is defined to be constant 
utility over time. I f  the utility function is a continuous and non-decreasing 
function of consumption only, then minimal sustainability is equivalent to 
constant consumption.  Str ic t  sus ta inabi l i ty  is defined as increasing utility 
over time. For the same characteristics of  the utility function, this is equiva- 
lent to increasing consumption. The analysis that follows therefore breaks down 
into constant consumption and increasing consumption components. 

The initial problem to be examined in this paper  is that of  finding a 
development path with maximal  consumption that is minimally sustainable 
in the face of finite resources. Stated this way, it is clear that this is equiva- 
lent to a maximin  programme, which has been widely studied in the literature. 
The starting ethical position in the preceding work was different, essentially 
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a Rawlsian framework in which welfare across time is equal to that of the least 
well-off generation, but the end goal was the same: maximal constant con- 
sumption. 

Solow (1974) proved the existence of a path with maximal constant con- 
sumption and finite resources, and this was elaborated in Dasgupta and Heal 
(1979, ch. 7). Both of these results required a Cobb-Douglas production 
function with the elasticity of output with respect to produced capital being 
greater than that of natural resources. The famous result in this literature is 
Hartwick (1977), who showed that the 'Hartwick rule', to invest resource rents, 
is a sufficient condition for a maximin programme for general production 
functions. Hartwick (1978) explored the Hartwick rule for several resources 
and raised unanswered questions about the existence of a maximin path (in 
particular the path for output) for different values of the elasticity of substi- 
tution between capital and resources in a constant elasticity of substitution 
(CES) production function. Finally Dixit, Hammond and Hoel (hereafter DHH) 
(1980) showed in a very general framework that an extended Hartwick rule, 
in which capital accumulation equals unit resource rent times the quantity of 
resources used plus an arbitrary constant, was necessary and sufficient for 
the existence of a maximin path. 

The substitution possibilities between capital and resources are clearly 
important in determining whether a maximin path exists. A substantial portion 
of this paper therefore deals with characterizing the behaviour of both the 
standard and generalized Hartwick rules under varying values of the elas- 
ticity of substitution in a CES production function; this has not been resolved 
in the literature to date. The first section begins with a simple proof, for general 
production functions, that the generalized Hartwick rule combined with the 
Hotelling rule is necessary and sufficient for maximal constant consumption. 
It ends by tying together the various approaches to the maximin problem in 
the literature, including the derivation of a weaker condition for maximal 
consumption under the generalized Hartwick rule than that in DHH (1980) 
for CES production functions. 

The behaviour of a Hartwick-Hotelling programme under varying values 
of the elasticity of substitution, o, is related to the debate concerning 'strong' 
versus 'weak' sustainability (Pearce et al., 1989). The proponents of weak sus- 
tainability argue that capital and resources are substitutable, and so identify 
sustainable development with maintaining total assets (produced capital and 
natural resources) constant or increasing. The strong sustainability position 
is that there is a critical quantity of at least some natural resources that must 
be maintained intact if utility is not to decline in the future - in the limit 
this would imply a zero elasticity of substitution for these resources. Without 
doing too much violence to the basic elements of this debate, it is possible 
to equate 'weaker' sustainability with substitution possibilities that are elastic 
(o > 1), and 'stronger' sustainability with inelastic substitution possibilities 
(o < 1). The result derived below, that constant consumption is not attain- 
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able for o < 1, therefore implies that the Hartwick rule will not yield constant 
consumption if you subscribe to the 'stronger' sustainability position. 

The second part of the paper examines the conditions under which utility 
increases in a programme of optimal growth with finite resources, as addressed 
by Dasgupta and Heal (1979, ch. 10). This paper derives their result in the 
somewhat more modern garb of optimal control and highlights the critical 
link between the pure rate of time preference and the possibility of strict 
sustainability. Optimal control has recently been applied by Hartwick (1990) 
and M~iler (1991) to elucidate the treatment of natural resources and the 
environment in national accounting. However, neither of these papers goes 
on to examine the dynamic behaviour of the system, which is the essential 
element in this paper. 

2. Maximal Constant Consumption Paths 

While this section is primarily concerned with the behaviour of the Hartwick 
rule under different assumptions about the elasticity of substitution of capital 
and resources, the starting point is a simple proof that a generalized Hartwick 
rule, to use the terminology of DHH (1980), combined with the Hotelling 
rule, is necessary and sufficient for constant consumption. 

We assume that there is constant population (so that labour can be treated 
implicitly in the production function), and no disembodied technological 
growth. The initial endowment is a stock S o of resources and K0 of capital. 
Output F is produced from capital K and resources R according to the pro- 
duction function, 

F = F(K,  R) 

such that F K, F R > O, FKK, FRR < O. 

Consumption C is defined by the following set of differential equations: 

C = F - K  
= - R .  (1 )  

Any efficient programme of production, investment and consumption must 
satisfy two criteria: 

I~R = FK, (2) 
FR 

and 

l i  E s,-- 0. (3) 

The first of these is the familiar Hotelling rule; in the economy postulated, 
holders of natural resource stocks must be indifferent between holding 
resources or the alternative asset, capital, which yields F K. Any programme 
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that left unexploited natural resources would clearly be inefficient, hence 
expression (3) which says that the programme must exhaust the initial resource 
stock. 

The generalized Hartwick rule is given by: 

--- FR(R + v),  v constant, (4) 

where the return to resources, FR, is the resource rental rate. 
Sufficiency of the generalized Hartwick-Hotelling programme for constant 

consumption is proved as follows. Applying expressions (2) and (4) we have: 

d d = ~-i ( F - / < )  

_ d ( F - F R ( R + v ) )  
d t  

= F - FR(R + v) - FRR 

= F" - FKFR(R + v) - FRI~ 

= 1 # -  FxI42- FRI~ 

=0.  

Necessity of the programme for constant consumption is shown by assuming 
C = 0. We have, 

K=/~-C 

= FRI~ + FKI(2 

= FRI~ + ~-;R 

FR (I (  - FRR ). = FRI~ + FRR + -~e 

Now define Z = I (  - FRR,  so that Z = / (  - FRR - /~RR, and therefore the 
preceding expression f o r / (  can be written as Z = (FR/FR)Z .  This equation 
has solution Z = v F  R for constant v, and there fore / (  = FR(R + v). 

Having established that the Hotelling rule and the generalized Hartwick rule 
are together necessary and sufficient for constant consumption, the next 
question to be examined is the behaviour of the system under different assump- 
tions about v. For v # 0 we will explore the generalized Hartwick rule, while 
the case v = 0 will be explored in a sub-section on the standard Hartwick rule. 

2.1. THE GENERALIZED HARTWICK RULE 

We wish to derive the path for output and consumption under the general- 
ized Hartwick rule. It is clear from the foregoing derivation that the parameter 
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v is simply a constant of integration - it has no obvious economic interpre- 
tation, and it would be disturbing if constant consumption were feasible for 
any programme that added an arbitrary amount to the quantity of  resource 
extracted. 

The first case to be considered is v < 0. The eff iciency condition that 
S --+ 0 implies that R --+ 0. If  v < 0, eventually R < 0, and therefore, assuming 
capital can be consumed and given the fixed initial endowment  K0, both R 
and K will tend to 0; assuming that no output is produced purely by labour, 
constant consumption is impossible. 

To take the argument  further requires more structure for the production 
function. Since it is clearly the degree of substitutability between capital and 
resources that is of  key importance in models with exhaustible resources, the 
important functional form to consider is the class of  constant elasticity of  
substitution (CES) product ion functions. Defining, as before,  o to be the 
elasticity of  substitution, we have, assuming constant labour force and 
normalizing per unit of  labour, 

o - 1  o - 1  

F = (ctK --6- + I3R --a- + 1 - a - 13) b-~-°l , 

Ct, 13>0,  a + [ 3 < l ,  o > 0 ,  o ¢ : 1 .  

Note that F, K, and R are all functions of  time, while ~, [3 and o are fixed para- 
meters. For the case o = 1 this reduces to the familiar Cobb-Douglas  form. 

It will be convenient in what follows to define the following expressions: 

and 

o - 1  o - 1  

X = (C£K---~- + [3R-8- + 1 - ot - ~), (5) 

o - 1  

~R--~- 
Y = X < 1. (6) 

With these definitions we can derive. 

The examination of the behavior of the system for v > 0 will be divided into 
three parts, according to the assumptions about the elasticity of substitution. 
For the Cobb-Douglas  function (or = 1) we have, 

C = F -  ERR - F R v  

_ [ 3 v  

Therefore C becomes negative as R --) O, contradicting ~ = O. 
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I f o <  1 then, 

C = F - FRR - FRy 

f 1 
= r - v F  - v l ~ y R - - ~  

( ) = F  l - y -  o-I I l • 
o tK- -~  R -~ + [~R + (1 , c t -  [3)R -~ 

Again,  C becomes  negat ive  as R .9  0 (note that 7 . 9  1-), contradict ing C = 
0. 

I f  o > 1 then resources  are not essential  for product ion.  For  large a ,  i.e. 
as o -9  ~ ,  F R -9  [~ and F r  -9  ct, so that the Hotel l ing rule is violated.  Efficient  
p roduc t ion  is the re fore  imposs ib le  when  capi ta l  and resources  are per fec t  
substitutes. As derived in the Appendix ,  the growth rate of  output  for  general  
c can be shown to be given by: 

( R ( ° -  L)-  v ~ (7) 

This express ion reduces to the fol lowing for  the case v = 0: 

p = KR ( o -  1) (8) 
R ( o  7 )  

As o -9  1 +, 3' -9  [3 and, f rom express ion (7), 

R /~ - v  
F - 9  -RT-vv ( R ( l --  -~) - [~ v ) " 

We distinguish two cases according to the initial condit ions in the preceding 
expression. I f  in the initial period R0(1 - ]3) - ]3v > 0, then for some t ime beyond 
this period,  

R =  13 
1 - ]3  v' 

at which point  output is infinite (since the growth rate is posi t ive and infinite 
- recall  tha t /~  < 0 because  of  e f f ic iency condi t ion (3)). The  p r o g r a m m e  is 
not  feasible.  

Alternatively,  if  R0(1 - 13) - [3v < 0 in the initial period,  t hen /5  < 0. Note  
that 

F 
R 

o-1 o-1 ) ....~o -1 
_ ~ K - e - + ] 3 R - 0 -  + 1 _ O ¢ _ [ 3  o-1R 
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is unbounded as R --9 0. Consumption is given by, 

C = F -  FR(R + v) 

Therefore if R0(1 - [3) - ]3v < 0, consumption becomes negative as R -4 0. 
These results for the generalized Hartwick rule are summarized in Table 

I. Any non-zero choice of v, roughly speaking, leads to declining consump- 
tion, infinite output or a violation of the Hotelling rule, depending on the value 
of the elasticity of substitution o. 

T a b l e  I. Resu l t s  fo r  the G e n e r a l i z e d  H a r t w i c k  Ru le  8" = FR(R + v). 

o <  1 o = ' 1  o >  1 o---->oo 

o = 1  

v < 0 F ---> 0 F --9 0 F - 9  0 H o t e l l i n g  

C --9 0 C --4 0 C --9 0 R u l e  
as t --~ oo as t --4 co as t --~ oo v io l a t ed  

v > 0 CT < 0 CT < 0 E i t h e r  H o t e l l i n g  

f o r  T < oo f o r  T < oo F(KT, Rr)  = co R u l e  

f o r  T < co v io l a t ed  

o r  

C r <  0 
f o r  T <  oo 

2.2.  T H E  S T A N D A R D  H A R T W I C K  R U L E  

Having shown the generalized Hartwick rule to be infeasible, at least for 
CES production functions, in what follows we employ the widely known 
form of the Hartwick rule, 

I(  = ERR (9) 

i.e., that investment equal resource rents. Now the question to be explored is 
the behaviour of  output, consumption and investment, under the standard 
Hartwick-Hotelling programme, for different values of the elasticity of sub- 
stitution. We proceed by considering three cases, according to whether this 
elasticity is less than, equal to, or greater than 1. 

We first consider the case o < 1. In this instance the marginal product of 
resources is bounded since, 

c - I  c~-I I 1 
F R = [3(aK --a- + ~R --6- + 1 - a - 13) O-1 R ~ 

l - o -  
= + + 
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Thus, since K is non-decreasing under the Hartwick rule. 

Fe---~[3~-r-I as R---~0. 

This in turn implies that K is bounded because 

K r = K  o+ FRRdt and Io Rdt = So. 

Consumption is given by, 

C =  F - FRR 

= X o - 5 :  ~ : _ [$X-g~-IR-:R 

1 o - 1  

= x ~  ( x  - 13R-S- ) 

o - 1  o - 1  1 o - 1  

= ((/.K --a- + [~R -¢- + 1 - et - ~3)~-~-: ( e tK-~  + 1 - oc - [~). 

(11) 

Therefore, since K is bounded, consumption tends to 0 as R tends to 0 when 
a < l .  

This derivation can be compared with Dasgupta and Heal (1979, Ch. 7), 
who show that if the elasticity of substitution is less than 1, then F/R is 
bounded, implying total input is bounded, and therefore that constant con- 
sumption is impossible. 

The preceding derivation and the result from Dasgupta and Heal (1979) 
contradict Theorem 3 from Hartwick (1978). One component of this theorem 
implies that F > 0 iff o < 1. Recalling expression (8), note that Y --~ 1- as 
R ~ 0, so that, while F may initially be increasing (i.e. for Y < c < 1), 
eventually it must decrease. In fact, since K is bounded, even tua l ly / (  --~ 0, 
so that/~ ---) 0-, contradicting the first part of the theorem. Because total output 
is bounded, we know that F ~ 0 in the long run. 

Next we consider the case o > 1. Since resources are not essential in this 
instance, both Solow (1974) and Dasgupta and Heal (1979) dismiss this case. 
The behaviour of the Hartwick-Hotelling programme under these conditions 
needs to be clarified. 

Since o > 1 and Y < 1, expression (8) implies that/~ < 0. Because con- 
sumption is constant, this in turn implies that FRR --~ 0 as R ~ 0, since 

O - 1  
F ~ ( a g  -w- +1 -e~-[~)o-°-I as R ~ 0 .  

A further conclusion from the preceding expression is that K must be bounded 
since ~" < 0. This is in spite of F R being unbounded as R --~ 0, as is obvious 
from expression (10). 

What value of o maximizes consumption? Because F --~ etK + [~R + 1 - 
et - ~ as o ~ ~,  the Hotelling rule is violated as capital and resources 
become perfect substitutes. For finite values of the elasticity of substitution we 
have, following from expression (11): 
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3 C  _ Xo~---r_~ l n (X)  )2 (ctK z ~  + 1 - ct - [3) 
3o ( 

o-1  o - I  l 
+ X--if- otK---6- In(K) ~-~ 

= X ;'-~- 1 (Or/C-q-6) ( ln(K) o2 In(X) In(X) ) 
((~ "~_ ]-)2 ) -- (1 -- Gt -- [3) (C~ ---- ~)2 • 

The critical issue is therefore the behaviour of In(X) 
( O -  1) 2 .  

Using l 'H6pital 's rules, we take the derivatives of numerator and denom- 

31n(X) __3X o-I 
30 3o 3X ~K--6- In(K) 

inator with respect to o, 2 ( o -  1) - 2 X ( o -  1 ) ' N ° w  3 o -  02 

O - 1  

+ [3R ~ In(R) 0" 2 --~ ln(K~R ~) as 0" ~ 1 +. Consumption is therefore a declining 

function of o > 1. Constant consumption under the Hartwick rule is conse- 
quently maximized as 0. --~ 1 +. The Cobb-Douglas production function yields 
maximal consumption. 

Because resources are not essential for elasticities of substitution greater 
than 1, one strategy for achieving maximal consumption might be to consume 
all of the resource in the initial period. The derivation in the Appendix shows, 
however, that such a strategy will not yield constant consumption under the 
Hartwick rule. 

The operation of the standard Hartwick-Hotelling programme, where invest- 
ment is precisely equal to current resource rents, is summarized for CES 
production functions in Table II. Only the Cobb-Douglas production function, 
for which the elasticity of substitution is equal to 1, yields minimal sustain- 
ability at the maximum rate of consumption. 

Table  II. Resu l t s  for the S tandard  H a r t w i c k  Rule / ( "  = FRR. 

o < 1  o = 1  o > 1  o---> oo 

F ~ 0 P = 0 ~" < 0 Hote l l ing  

C --) 0 C = 0 C" = 0 Ru le  
as t --~ 0o C is C is not vio la ted  

maximal maximal 
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2.3. LINKS TO THE LITERATURE 

As noted in the introduction, the literature on the Hartwick rule has several 
strands to it. This section identifies the common threads in the literature and 
provides a generalization of one result in DHH (1980). 

The solution of the system for a Hartwick-Hoteiling programme is remark- 
ably simple in the Cobb-Douglas case, for constant consumption Co: 

F =  K~R ~, o~,[~>0,  o t + [ ~ < l ,  
= FRR = ~F, 

implying, 

Co = (1 - [3)F constant ~ F constant ~ ~- = -Fx  

from Appendix (A-l),  

so that K = K  0+ ~ t, a n d  

/ therefore, R = g K 0 + t 

The condition for the ex is tence  of a solution to the system is therefore 
et > [3, i.e. the elasticity of output with respect to capital must be greater 
than that with respect to resources, since R must have a finite integral equalling 
So. Performing the integration yields the value for maximal consumption, 

Co = (1 - [3) (or - [3) ~--~ S o ~ - K o  ~ -  . (12) 

To tie the literature together, it is worth describing the solutions of Solow 
(1974) and Dasgupta and Heal (1979) to the maximin problem, which did 
not use the Hartwick rule explicitly. Both choose the Cobb-Douglas produc- 
tion function after rejecting CES functions where total output is bounded 
(¢r < 1) and where resources are not essential (o > 1). For this production 
function maintaining constant consumption Co implies that, 

K =  Ko + mt  

1 ~ ( 1 3 )  

R = (Co + m) g (K o + mt)--g 

where m = /¢ is a constant. Both point out that efficiency requires that the 
integral of the above expression for R exist and be equal to So, so that the 
condition ct > [3 is required. Performing this integration yields: 

Co = m ~ So Ko ~-l~ - m. 

Dasgupta and Heal then maximize this expression with respect to m to yield 
the optimal constant consumption. 
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which simplifies to expression (12). 
Solow (1974) takes a different approach to deriving the optimum. By con- 

structing phase diagrams for the problem, the following expression for the 
parameter m in the system of Equations (13) is arrived at directly, 

m = / ( - -  [3C0 
1 - 13 '  (14) 

for some fixed Co. The equation for R in expression (13) is then integrated, 
and set equal to So to arrive at the maximal level of consumption, as given 
by expression (12). 

Hartwick's (1977) key insight, that expression (14) embodies the rule 'invest 
resource rents', is not derived explicitly in the paper. Instead the sufficiency 
of this rule for a programme of constant consumption is proved for a general 
production function. 

It is also worth linking what has been presented so far to the much more 
general framework employed by DHH (1980). 2 If  we assume the existence 
of a competitive output price path p and a positive constant exhaustion rent 
g (i.e. assuming efficient resource extraction), then expression (4) may be 
re-written as, 

pI(  = pFR(R + v) 
= Ix (R + v)  

= -Ix~S + gv, 

where gv is constant. Rearranging terms then gives the analog of the 'gener- 
alized Hartwick rule' of DHH: 

p K  + Ix~ = gv. 

The authors prove that this rule is necessary and sufficient for constant utility 
in their general framework. They go on to show that any path with v < 0 is 
infeasible. 

A point of particular interest in the Dixit, Hammond and Hoel paper is 
their proof that, given any efficient path such that v -- 0, any other path with 
v > 0 and a larger capital stock for all t > 0 will yield a lower level of utility 
under the generalized Hartwick rule. Expressing their proposition in terms 
of the CES production function analysis presented so far, we can say that 

FR,o(R'o + v) > FRoR o for v > O, 

is a necessary condition for C'0 < Co, where the 'unprimed' variables repre- 
sent their values for v = 0 (this is a necessary condition because the capital 
stock can only be greater than its previous value for all t > 0 if its rate of 
change in the initial period is greater). 
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Changes in v will clearly affect R 0, because the capital stock level will be 
altered under the generalized Hartwick rule, and the efficient path must both 
exhaust the resource and satisfy the Hotelling rule. For infinitesimal changes 
in v it is shown in the Appendix that the DHH condition for maximal utility 
is equivalent to 

~R____a0 < o (15) 
0v 1 - ~ , -  o ' 

while a more direct derivation of this condition, using the machinery of CES 
production functions presented so far, yields 

0R° < ---0--° (16) 
~v 1 - y 

Recalling that the case o > 1 was the most problematic in terms of analyzing 
its behaviour with respect to changes in v, and noting that y < 1, we can 
conclude that the DHH condition is stronger than necessary for this case, since 
expression (15) is negative and expression (16) is positive. At least for 
infinitesimal changes in v the weaker condition (16) yields maximal con- 
sumption under the Hartwick-Hotel l ing programme when the elasticity of 
substitution is greater than 1. 

This concludes the derivation of results concerning constant consumption. 
We now turn to the consideration of the conditions governing rising con- 
sumption and utility, i.e. strict sustainability. 

3. Optimal Paths with Rising Consumption 

Given two programmes for which 0 > 0, it would be rational to prefer the 
programme for which the sum (or, in continuous time, the integral) of utility 
over time is the greater. Thus, at least for the purposes of exploring some simple 
models, we will assume that sustainabilffy is consistent with a Utilitarian 
ethic as applied to current and future generations. The interesting question, 
it turns out, is whether there is a pure rate of time preference in the models. 
If there is, the Utilitarian ethic would suggest that we wish to maximize the 
present value of utility, where future utility is discounted at some rate r. 

In what follows we will assume an explicit form of the utility function, 

U(C) =-C -(11 - l ) ,  ]1 > 1. (17) 

This is one of the class of functions for which the elasticity of the marginal 
utility of consumption, 11, is constant. 

In the analysis that follows the Cobb-Douglas  production function will 
be used (for reasons not just of tractability, but bearing in mind the results 
of the previous section as well) and the efficiency of any programme will again 
require that the resource be exhausted, as given in expression (3). 
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Finding the opt imal  p r o g r a m m e  can now be expressed  as an opt imal  control 
problem:  

Io v Max (C)e-r'dt, 
C,R 

subject to:/¢ = F - C, S = -R .  
The  present  value Hami l ton ian  funct ion for  this p rob lem is, 

= Ue -r' + TlIi2 + "~2 ~ 
= Ue-r t  + ~ I ( F  - C) - '~2 R ,  

where % and '/2 are the co-state variables.  The op t imum programme must  satisfy 
the fol lowing first order conditions: 

d ~  
dC - U'e-r '  - T~ = 0, (18) 

d ~  
dR - T1FR - Y2 = 0, (19)  

d ~  
d K  - y jFK = -71 (20) 

d ~  
dS - 0 = -?2  (21) 

F rom express ion (19) we see that % = y J F  R. By substituting this into expres-  
sion (20) we obtain y2(FK/FR) = - d / d t  (7JFR) Since express ion (21) implies  that 
T2 is constant,  this s implif ies  to, 

FK _'/2_ FR, or, FK FR 
Y2 ~-~R = F 2 : F-~- " 

This  is just  the Hote l l ing rule. It is der ived direct ly as an ef f ic iency condi-  
t ion for  the opt imal  control  problem.  

It is easily ver if ied that, f rom express ion  (17), U"/U'  = - r l /C .  From expres-  
sion (18) we see that U'  = %e r'. Different ia t ing this express ion  with respect  
to t ime gives,  

U"C = ?ler' + 7ire ~' 

= --~/IFKer' + 71rer' ( f rom (20)) 
= Tjer'(r _ FK) 
= U ' ( r  - F x ) .  

We therefore have the eff ic iency condi t ion 

r + T1 -~  = FK. (22) 

This  is the ' R a m s e y  rule '  (after R a m s e y  (1928)). Eff ic iency requires that the 



406 Kirk Hamilton 

social rate of return on investment equal the marginal product of capital. For 
the Cobb-Douglas production function the percentage rate of change in 
consumption is therefore given by, 

C ~1_1(~ R e r )  (23) 
. 

Because resources are essential for production and in finite supply, resource 
use R will tend asymptotically to 0 in an optimal programme. The only way 
that the percentage rate of change in consumption, as given in expression 
(23), can be non-decreasing is if capital stock K eventually tends to 0 as well 
- i.e. eventually capital must be consumed. But if both capital and resources 
are declining, them so is output. Since the initial capital stock is fixed, con- 
sumption must eventually fall. The optimal path is not sustainable. 

By equating the expression for the Hotelling rule and expression (22), it 
is possible to solve the differential equation to give e-r'FRC -n = 8, for constant 
of integration 8, and by rearranging terms, 

C = 8 - { ( e _ r ,  K s ]{  
• 

If the discount rate for utility, r, is 0 then it is clear from this expression 
that consumption will grow indefinitely as resource use R declines. As 
Dasgupta and Heal (1979, Ch. 10) point out, however, the optimum path will 
only exist if the non-discounted integral of utility is finite, which requires 
that, 

n>l-[~ -~_[~" 

The pure rate of time preference is thus a critical element in characterizing 
the sustainability of development with exhaustible resources. Only if this 
rate is 0 can strict sustainability be shown to hold - otherwise, consumption 
eventually falls along the optimum path. 

4 .  C o n c l u s i o n s  

If for reasons of intergenerational equity the desired goal is minimal sustain- 
ability with maximum consumption, then the Hartwick rule, to invest resource 
rents, is the keystone. Solow (1986) refers to it as a 'rule of thumb' for 
growth policy. 

This study has drawn together several strands from a diverse literature on 
the Hartwick rule. The analysis has shown that, given virtually unrestricted 
production functions, the generalized Hartwick rule in combination with the 
Hotelling rule is both necessary and sufficient for consumption to be constant. 
The Cobb-Douglas production function (out of the class of CES production 
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functions), in which the elasticity of substitution between capital and resources 
is exactly 1, yields consumption that is constant, positive and maximal when 
a standard Hartwick programme is followed in combination with two efficiency 
conditions, the Hotelling rule and complete resource exhaustion. 

The generalized Hartwick rule,/£ = FR(R + v) for non-zero v, yields either 
declining consumption or infinite output for finite values of the elasticity of 
substitution. The standard Hartwick rule, where v -- 0, yields either declining 
consumption or non-maximal consumption for finite elasticities of substitution 
that are not equal to 1. The derivations in this paper therefore emphasize the 
'knife edge' role of the Cobb-Douglas production function. Although the 
generalized Hartwick rule promises constant consumption for general pro- 
duction functions, the requirement that a maximal constant consumption path 
exist  places severe limits on the substitution possibilities inherent in the 
production function. 

Turning to the question of strict sustainability (increasing consumption), 
there is a strong inference about optimal growth with finite resources. The 
central issue concerns the discounting of utility: if the pure rate of time 
preference is greater than 0, then the traditional Utilitarian maximand, the 
present value of utility, leads to an optimal programme that is not sustain- 
able. It is worth recalling, therefore, Ramsey's (1928) view of discounting 
utility as 'ethically indefensible'. If, however, the discount rate for utility is 
0 then, under fairly weak restrictions, the Utilitarian maximum yields con- 
tinually increasing utility. 

The latter result could have practical consequences, particularly for ques- 
tions with long time horizons such as greenhouse warming. It is common to 
use the social rate of return on investment as the discount rate in analyses 
such as that of Nordhaus (1992b) of controlling greenhouse gases. If we assume 
a long-run percentage growth rate in per capita consumption of about 2%, 
and an elasticity of marginal utility of consumption of about 1, then the 
choice between a zero pure rate of time preference and a low value of, say, 
2%, can double the discount rate used in the analysis. 

Appendix 

We begin with a basic result for the rate of change of output under the 
generalized Hartwick rule: 

\ F  R + 

(A-l) 
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Recalling the definition of X (expression (5)) and 7 (expression (6)), a few 
results follow directly from the definition of the CES production function: 

F~ = ~ X ~ R - ~  = ~ R - o  = ~ , (a-z) 

i 

FRK = - -  R - ~ K - ~  = F K  = R FK" (A-3) o o X -6 

1 F R 
FRR = o R  ( ~ -  1) <0 .  (A-4) 

and thus, 

so that, 

FR 

From expression 

P'R 1 R  
= --o R (~ - 1) + FRK(R + v) 

1 R  1~_ 
= ~- ~- (y - 1) + -~ (R + v)Fx 

1R 1 T  fi'R 
=--o--R ( T -  1 ) + ~  ( R + v ) ~ ,  

- -  - ~ - d  : : - ~ -  + v ) "  

(A-1) we therefore derive, 

/~ ( (o - 1 )  (R + v) ) 
F =  K y 7 7 v  ~ - 6 ~  + v) + 1 

( R ( o -  l ) -  v ) 
=/(R-+--~v \ R(o - y) - ~ ' 

K±( v ) 
1~--~ R + v  R ( 1 - [ ~ ) - [ ~ v  as cr---> 1 +. 

The next issue to be considered is the behaviour of the Hartwick-Hotelling 
system when o > 1 and, since resources are not essential for this value of 
the elasticity of substitution, when all of the resource is extracted in the base 
period. C = 0 if and only if, given F = F(K, R), 

F(Ko + FR(Ko, So), O) = F(K o, So) - FR(Ko, So)So. (A-5) 

It will simplify the algebra considerably, without unduly affecting the gener- 

Note as well that y < 1 and that T -4 13 as o --+ 1. 
The first item to be derived is the expression for ,e. We begin with/>R -- 

FRRk + FRxI¢. Therefore, 
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ality of  the argument, if we assume for this derivation that ct + [3 = 1, so 
that 

~-1 o-1 
X = c t g + -  + ~R'-'6-. 

Expression (A-5) may now be re-written as, 

S o ~ ) ° o l  ) a~l  = X ~ - 1  ( X -  [~So ~ ) ,  (c~(Ko + 

which implies that, 

0 [~ 0-1 _ X  I C-I 1 0-1 
) = (ctK0--w), (~a-1 (K0 + So X °-~ 

and therefore that, 

__o__o 1 o-1 
ot ~-' g o = X ~ (aK0 ° ct ~ 13So °----! __ O ). 

For consumption to be constant this latter expression should be an identity. 
However, there are clearly choices of K0 and So for which the right hand side 
is less than or equal to 0, so the identity does not hold. 

Finally, we consider how the level of  consumption varies with v in the 
generalized Hartwick rule. The analysis will be based on infinitesimal positive 
changes dv, to examine the transition from the standard to the generalized 
Hartwick rule - negative values have already been ruled out because they 
lead to declining consumption. In order for the capital stock to be greater 
for all time (after the initial period) in the transition to the generalized rule, 
as DHH (1980) hypothesize, a necessary condition is t ha t / f  be greater under 
the generalized rule. This may be written as, 

C~<C0 i f d v > 0  and FR,o(Rj+dv)>F%Ro. 
However, for infinitesimal dv we may write, 

3FRo ," ~-? 
F % = F R o +  ~ d v ,  and R o = R  o + - d v .  

Therefore 

FRb(R~ + dv) = ( FRo + ~v° dV )( Ro + ( ~ + l ) dv ) 

3FRo = FRoRo + --'o-~Rodv + FRo ( ~-~ + I ) dv, 

where terms in d v  2 have been dropped because they will go to zero in the limit. 
The question is therefore reduced to whether the sum of the second two terms 
in the preceding expression is greater than 0. Note that, since we are dealing 
with the initial period, K o is independent of v, and therefore the relationship 
we wish to test for these terms may be written as, 
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FRRo-~ RodV + FRo (-O-~ + l ) d v > 0 .  

Recalling expression (A-4), this may be written for CES production func- 
tions as, 

o 0v dv + + 1 , 

so that, after dividing by dv, the Dixit, Hammond and Hoel condition reduces 
to 

~R0 > o (A-6) 
0v 1 - y -  o 

Because Ko is given and independent of v, both Co and Ro are functions of v 
under the generalized Hartwick rule. A more direct attack on this problem is 
therefore to evaluate 

OC0 O (F 0 _ F R  o(R 0 + d v ) )  
Ov = Uv 

= -FR% ~ v  ° (R0 + dv) - FRo. 

In order for Co to vary negatively with v we require the latter expression to 
be less than 0, or, again employing expression (A-4) and dividing by FRo, 

y -  1 1 OR 0 (R 0 + d v ) < l .  
O R 0 

Taking the limit as dv tends to 0, this reduces to the condition 

~R___~o < o (A-7) 
~v 1 - ~/" 

For the case o > 1, expression (A-7) is less restrictive than (A-6) because 
its right-hand side is positive, while that of (A-6) is negative. 
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Notes  

t Dasgupta and Mitra (1983) showed that in a discrete time formulation constant maximal 
consumption requires that investment be less than resource rents. However, the standard Hartwick 
result is approached asymptotically as the time step nears 0. 
2 I am grateful to David Ulph for pointing out this connection. 
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