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Abstract. We derive the most general equations of motion for the electrons and the 
electromagnetic field in a free-electron laser including the effects of diffraction and pulse 
propagation. The field evolution is expressed in terms of the amplitudes and phases of a 
complete set of transverse modes. The analytic solution is given in the small-signal regime, 
where the theory is shown to be in excellent agreement with a recent experiment at Orsay. 

PACS: 42.60, 42.20, 42.55 

Stimulated by the original free-electron-laser experi- 
ments [1] in 1977, a number of authors have contri- 
buted to the development of a purely classical theory 
for the electron dynamics and the electromagnetic 
wave growth in these devices. The initial work as- 
sumed the light could be represented by a single- 
frequency plane wave [2, 3]. The first generalization 
was required to explain the extremely short pulse 
phenomena observed at Stanford [4, 5]. The inclusion 
of the longitudinal modes in the theory [6-8] per- 
mitted the explanation of the cavity detuning curve, 
and predicted a range of phenomena in the pulse 
structure which have yet to be observed. More re- 
cently, the theory has been broadened to include the 
transverse-mode structure of the optical beam [9-15]. 
Until our work at Orsay [16], no experimental infor- 
mation has been available to test the validity of these 
so-called 3D theories. 
In this paper, we present a new approach to calculating 
the three-dimensional effects operative in free-electron 
lasers. The previously mentioned approaches consider 
the growth of the field 8(r, t) along the propagation or 

axis by evaluating its change at each point (x, y), and 
integrating numerically through the interaction region 
in the time domain [%14] or in the frequency domain 
[15]. These techniques all demand long computer runs 
if they are to be applied to a real experimental 
situation. Our approach decomposes the problem into 

the minimum number of physically observable quan- 
tities : the transverse optical modes of the system. The 
field evolution is expressed in terms of a complete set of 
orthogonal transverse modes; equations are developed 
for the propagation of the amplitude and phase of each 
mode. In physical systems which operate on a few of 
the lowest-order modes, this approach greatly in- 
creases the accuracy, and may reduce the required 
computer time for the calculation by working in a 
vector space well matched to the solution of the 
problem. For the oscillator case, the appropriate 
choice of modes is the set of eigenmodes of the cavity. 
For the amplifier, the vector space of modes is de- 
termined by the characteristics of the input mode, 
which is presumably a TEMo0 Gaussian mode. In 
either device, an optimum design would result in the 
excitation of as few of the higher-order modes as 
possible. The modal decomposition method is there- 
fore well adapted to the prediction and optimization of 
the operation of the free-electron laser (FEL). 
In the first section, we derive, in their most general 
form, the equations governing the dynamics of the 
complex mode amplitudes. The subsequent sections 
reduce these equations to the familiar case of the small 
signal, low-gain result (Sect. 2). Here, the problem 
becomes linear, the mode evolution can be described 
by a matrix transformation, and we retrieve the well 
known gain equation complete with filling factor. The 
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theory is then applied to the case of the Orsay experi- 
ment, where the results are in excellent agreement with 
an experiment [16] performed recently which exhibits 
the off-diagonal terms of the gain matrix. 

1. Theoretical  Development  
of  the Fundamental  Equations 

The FEL system is properly described by the coupled 
Maxwell and Lorentz force equations. From these, we 
shall derive a self-consistent set of equations describing 
the electron and the transverse optical mode dynamics. 
We use the dimensionless notation originally deve- 
loped by Colson (in fact this work is a generalization of 
Colson's work to include transverse modes and we 
shall stay as close as possible to his original notation). 
Let us recall his main equations describing the field 
and electron dynamics in the slowly varying phase and 
amplitude approximation [18]: 

dv = a' cos(( + qS), (1) 
dr 

d~ v (2) 
dr 

d a  I 
- r'(e-ir162 , (3) 

d'c 

where 

~(t) = (k + ko) z(t) - cot 

is the dimensionless electron phase, 

v(t) = L[(k + k o ) / U t ) -  1,3 

the dimensionless resonance parameter, 

(4) 

(5) 

c t  
r = - -  (6) 

L 

the dimensionless interaction time, 

4 g e N L K E ( z ,  t)e i~ (7) 
a'(z, t) = ~2rnc2 

the dimensionless complex field amplitude, and 

8~2e2 N L  2KZ o(z(t)) (8) 
r'(z(t)) - 7amc 2 

the dimensionless gain parameter. 

Here we consider an N-period helical undulator of 
length L, magnetic period 2 o = 2r(k  o, peak magnetic 
field B, and deflection parameter K=93 .4B  
[Gauss] 2 o [cm]. An electron beam of energy 7me 2, 
and number density O travels along the axis of the 
undulator; an individual electron has longitudinal 
coordinate z(t) and longitudinal velocity cfl~(t) at time 

t. A helically polarized plane wave of wavelength 
2 = 2~z/k, frequency co, and electric field g(z,  t )= E(z, t) 
exp {i[kz-  cot + q~(z, t)] } interacts with the electrons. In 
(3), ( )~o~0 is the average over the initial phase ~o and 
resonance parameter v o of the electron population at 
the position z. 
Equations (1, 2) are derived directly from the Lorentz 
force equation and describe the effect of the radiation 
field on the electrons. The work done by the longitu- 
dinal field on the electrons is neglected here, which is a 
good approximation provided that the modes are not 
too  divergent [14] 2 /coo~2~2KN/7 .  Equation (3) is 
derived from the Maxwell equations and describes the 
effect of the electron on the radiation field. The set (1), 
(2), and (3) is self-consistent. Indeed, those equations 
are very close to being the most general classical 
equations describing the FEL dynamics. They apply to 
high and low gain devices (r '> 1 or r ' ~ l ) ,  high field 
and low field cases (a' >> 1 or a' ~ 1), and include the 
effects of multiple longitudinal modes (laser lethargy 
effects) through the } dependence of r', E, and qS. Slight 
modifications allow their extension to the cases of: 
- the planar undulator [19], 
- the tapered undulator [18], 
- the optical ktystron [14], and 
- space charge effects [19]. 
However, the plane-wave approximation cannot ac- 
curately describe the transverse effects produced by the 
finite transverse extent of the optical mode and the 
electron beam. A filling factor calculated with an 
ad-hoc overlap integral can be added to the results of 
this calculation, and gives satisfactory results in the 
small signal regime only so long as one is not interested 
in the exact transverse field profile. 
To relieve this last restriction on the theory, we assume 
the field to be described in free space by the paraxial 
wave equation [20]: 

~5x2 + ~-~ - 2ik E(r, t)e ir =0 .  (9) 

This equation is derived from the wave equat ion  
(V 2 -  c-202 /3 t2 )g  =0  in the slowly varying amplitude 
and phase approximation, and has been widely used in 
laser field calculations [17, 20]. The general solution of 
(9) can be expressed as a linear combination of a 
complete set of orthogonal modes. If we define these 
modes by the complex amplitude Emexp(i~p,,), where 
E m is real and m is the generalized index of the mode (in 
the two-dimensional transverse space we consider, m 
represents two integer numbers), the most general 
expression for the field is 

E(r, t)e i~(~'~ = ~ %(0 E,,(r) e~=(r) , (10) 

where % is complex and time-independent in free 
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space. The orthogonality relation reads 

~dxdy i~,, -i~, r 
~w2 E,~e E,e = % , ,  (11) 

where we have chosen a convenient normalization 
which makes the E,, dimensionless. The modes can be 
chosen in a variety of symmetries, but it is useful to 
exhibit their specific form in cylindrical symmetry: 

Evz(r) = [/ (p + ~ ( ( ] ~  6ol ) w(z) \w(z)J [sin 10 J 

/ 2r 2 \ 
�9 LplW~)))e-r2/wZ(~) , (12) 

kr2 ( 2 p + / +  1)tan - l z ~  (13) 
ppt(r) = 2R(z~ - z o ' 

where r is the radial and 0 is the azimuthal coordinate, 
w 0 is the beam waist, L~(2rZ/w 2) is the associated 
Laguerre polynomial, and 

wZ(z)=w 2 1+ , (14) 

R(z)=z(l+Zf--f~ (15) 

~w~ (16) 
Z O - -  ,~, 

These modes are very useful for the case of a cylindri- 
cal electron beam aligned to the axis of the light beam. 
For an ellipsoidal electron beam profile, or off-axis 
electron injection, the rectangular eigenmodes are 
more appropriate. Although we will use the cylindrical 
modes in the examples, we proceed with the general 
theoretical development which makes no assumptions 
on the specific form of the modes. 
In FEL, the coefficients in (10) become time dependent. 
We wish to calculate the evolution of the amplitude 
and phase of these mode coefficients. Proceeding 
through the derivation of (1-3), making only the slowly 
varying amplitude and phase approximation, but now 
using (10) and (11), we find 
~v 
& ~[amlE,.c~ , 

rn 

~ =v, 

aa.~_ i~rErne_itpm<e_i~)~v ' 
OT 7 [ W  0 ~o o 

where we have made the new definitions 

4~zeNLK 
a,.(z, t)= ~2mc 2 c,.(z, t), 

87~2e2NL2K2 
r(r, t)=- y3mc2 0(r, t ) ,  

%(z, 0 = [%(z, t)l e i~(z'r . 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

As before, (17) and (18) describe the effect of the 
radiation field on the electrons, and (19) describes the 
growth or decay of the radiation field due to its 
interaction with the electrons. The change in (17) is 
quite straightforward. Equation (19) shows clearly the 
fact that the growth in the rn th mode amplitude and 
phase is given by the operlap integral of the inphase 
and out-of-phase components of the charge density 
with the complex conjugate of that mode, as one would 
expect. We note that the only assumptions made on 
the modes E,~exp(i%~) used in (17-19) are orthogo- 
nality and completeness. This means these equations 
are also valid for the cases of waveguide modes and 
dielectrically loaded cavities. In this case, w 0 is no 
longer the mode waist in the usual Gaussian sense, but 
is defined by (11). As before, these equations are self- 
consistent. An example of this fact is the energy 
conservation equation 

~Z ~m ,am] 2 .. rdxdy / 3 v \  = - z J ~ r ( - - ~  (23) 
~w0 \&/~o,o 

which is derived from (17) and (19). The left-hand side 
of (23), the total energy gained by all the modes, is 
equal to the energy loss integrated over all of the 
electrons in the beam. 
Equations (17-19) retain all of the generality of (1-3). 
They are valid for high and low fields, and high and 
low gain systems. They take into account the evolution 
of the transverse modes explicitly, and the evolution of 
the longitudinal modes implicitly, by keeping track of 
the ~ dependence of the charge density r(r, t) and of the 
mode amplitudes a(z, O. For simplicity in the following 
development, we drop the explicit ~ dependence which 
has been thoroughly discussed by Colson [18], and 
concentrate on the transverse phenomena. 
As discussed in [19], the generalization to the case of 
the planar undulator is no more than a change in the 
definition of the two parameters 

a~n_ 2neNLK[JJ]  
y2mc2 %(0, (24) 

rU. 4zcZe2NL2KZEJJ] 2 
= 73mc 2 ~o(r, t), (25) 

where 

K 2 K 2 

Equations (17-19) can be integrated numerically to 
find the evolution of the optical wave in any Compton 
regime FEL. In a high-field experiment, (18) and (19) 
are nonlinear in a, and the wave evolution can only be 
obtained numerically. In this case, (17-19) provide a 
precise and efficient technique for solving the general 
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problem. In a low-field situation such as we find at 
Orsay, however, the problem becomes linear, and can 
be solved analytically. We proceed with the low field 
case in the next section. 

2.  T h e  L o w - F i e l d  S o l u t i o n  

The low-field case is defined by lap] ~ 1 for every mode. 
In other words, the electrons do not become over- 
bunched. Experiments which operate in this domain 
include the low-field amplifier experiments, and sto- 
rage ring FEL oscillators which saturate by mecha- 
nisms other than overbunching. The ignition of any 
FEL oscillator also occurs in this domain. 

2.1. The Gain Matrix  

Equations (17-19) can be solved by integrating (17) 
and (18) to lowest order in the fields am and inserting 
the result for ~ into (19). If the electrons are uniformly 
distributed initially in phase, we find 

Dam(z) - dz' ~ dz"Mm,(% V')a,(z"), (27) 
8z o o 

where 

i . dx dy z 
= ] r(x, y) Era(x, y, ) E . (x ,  y, 

- e - l t ( w ~ ( x ' Y ' o - t ~ - ( x ' r ' ~ " ) ) l ( e - i V ~  o . (28) 

Equation (27) describes a linear evolution of the mode 
amplitudes, and upon integration, gives the relation 

am(~ = 1)= (I + G)~,a,,(z = 0), (29) 

where I is the identity matrix, and G, which is generally 
not Hermitian, has elements 

0 0 0 

1 Z l  "C2 

-[- ~ dTl I dT'2 ~ dT'3Mml(TX' Z3) 
0 0 0 

~3 "C4 ~5 

�9 S . . . .  (30)  
0 0 0 

The higher-order terms in g~n~ are proportional to r 2 
and higher powers of r, and are negligible in the low 
gain case. 
Evidently this matrix is of great interest since multiple 
passes of the electron beam will result in multiple 
products of this matrix, greatly simplifying the calcu- 
lation of the modes' growth. We shall discuss the 
consequences for an oscillation experiment in 
Sect. 2.2. 

Let us note that this gain matrix is generally complex 
and defines the growth of the amplitude of the field. 
Sometimes people speak of the gain in a mode "m" as 
the energy gained by this mode in a pass through the 
undulator. This gain is simply 2 Re {gram} + Igmmt 2. Of 
course, one must keep in mind that energy is radiated 
into other modes, and that cross terms will mix a 
multiple mode input. If the input beam is truly mo- 
nomode, the power radiated into the n th mode is lower 
than that into the mth mode by the ratio 
[9m,lZ/2Re{gmm} which is small for low gain ( r ~ l )  
systems. It is only in this case that it makes sense to 
speak of the gain of a mode. In high-gain systems, 
however, the off-diagonal terms can lead to substantial 
emission of energy into the higher-order transverse 
modes. If the input beam is multimode, of course, 
mode mixing occurs at all power levels. 
Let us calculate 9m. in the simple case of experimental 
interest where the electron beam is cylindrical, and a 
good choice of modes is the cylindrical cavity eigen- 
modes (12) and (13). We restrict ourselves to the 
weakly diverging case nw~ >> 2L where the gain takes 
on its most familiar form. The mode amplitudes and 
phases in (28) become independent of ~, and we can 
integrate the first term in (30) to find the gain�9 The 
average over the resonance parameter in (28) becomes, 
under the assumption of a Gaussian distribution of 
centroid v c and deviation o-~ 

(e-i~o(~- ~")) ~o = e-�89 ~(~ ~")2 e- i~o(~- ~"). (31) 

Under the weak-divergence approximation, and as- 
suming negligible pulse slippage effects (long electron 
bunch length o-z>N2 ), the only time-dependence in 
(28) is that of (31). For small spread o-~ ~ 1 the integral 
gives the well known gain spectrum 

9m. = ~ ~ r(x, y) E,.(x, y) E.(x, y) e-i~(~, y) ei~.(~,,) 
7CW o 

t l  vc . v~ v . [ - c o s v ~ -  ~slnv~ 2 2 cOsvc+sanvr 

�9 3 + i  

(32) 

In the usual experimental case (unfortunately), Igm, I ~ 1 
and the energy gain G m on the mode m becomes 

rdxdy ~ ~z 1 - c o s v ~ -  ~-sinv~ 

3 " " G m = 2 Re {gram} = J ~Wo 2 zrLm Vc 

(33) 

This is exactly the gain one calculates by using the 
filling factor obtained by integrating the mode profile 
overlap with the gain profile. Specializing to the 
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TEMoo case with a Gaussian electron beam of width cr, 
we find v) 

1 - c osy  - ~-sin vc 1 

Goo = 2r o v 3 - w~ a (34) 

c 1 -  - -  
4~r 2 

complete with the familiar filling factor. 
The v~ dependence of G" is the well known spectral 
dependence. The imaginary part of g,,, is not new. It 
describes the phase shift of the radiation field as 
described by Colson [18]. The inhomogeneous 
broadening term in (31) clearly distorts and reduces the 
magnitude of the gain spectrum if it is present in the 
integral of (30). 
The effect of the divergence of the beam on the 
diagonal terms in G is, to f irs t  order, and for a 
filamentary electron beam, the addition of a time- 
varying phase which shifts the resonance curve in (32) 
by a constant depending on the mode 

v ~ v ~ -  ~ ( 2 p + / +  1). (35) 
7~W 0 

Equation (35) means that the gain curves of the modes 
are shifted with respect to each other. This effect has 
been calculated for the fundamental TEM0o mode in 
the energy loss approximation [14], and has recently 
been observed experimentally at Orsay [21]. It should 
be noted that for many practical situations where the 
cavity is optimized for gain on the TEMoo mode, this 
expression is valid for only the lowest-order mode. The 
higher modes become distorted in form as well as 
simply shifted in resonance parameter by (35). 

2.2. The  Low-Fie ld  Oscillator 

We now discuss some consequence of the linearity of 
the low-field problem on the optimization of an optical 
cavity for an FEL oscillator experiment. In such an 
experiment the light pulses reflect n times on the cavity 
mirrors (n > 2) between interactions with electrons in 
the undulator. The matrix governing the mode evolu- 
tion from one amplification to the next is 

(1+ G) C, (36) 

where G in the gain matrix defined previously, and C is 
the cavity matrix describing the n reflections on the 
mirrors. In a set of cavity eigenmodes, C is diagonat 

C x  i = l.tix i , (37) 

with cjj=/_tj=0jexp(iei) , where 1 - ~  2 are the total 
losses on the n reflections, including transmission, 
absorption, scattering, and diffraction. If diffrac- 
tion is negligible, the eigenvectors x ~ become the 

Gaussian TEMp~ modes, and the phase shift per round 
trip cq becomes, for n = 2  reflections per amplifica- 
tion and identical radius of curvature mirrors, 
C~pl =4(2p + I+  1) tan-  ~(LJ2zo) , where L c is the optical 
cavity length. 
The matrix (36) is the fundamental matrix of the 
problem. Its diagonalization allows the calculation of 
the mode evolution up to the onset of saturation: 

(I + G) C = P A P -  1, (38) 

[(I + G) c]m = p A m p -  1, (39) 

where the columns of P are composed of the eigenvec- 
tors of (I + G)C, and A is diagonal. The fastest mode 
growth will be obtained with the eigenmode having the 
highest eigenvalue modulus. Optimization of the FEL 
oscillator will then consist of maximizing the desired 
eigenvalue of (I + G) C. 
If the gain is low (as it is, unfortunately, for our system 
on ACO), one can diagonalize the evolution matrix 
(36) 

(I + G) Cz  i = 2iz i (40) 

using the cavity eigenmodes x ~ as the basis for a 
perturbation expansion of the new modes z( To first 
order in the non-degenerate case, the result is 

2j = ~jei~J(1 + e j j), (41) 

ictm 
x-' Qrn e ,n 

ZJ = XJ + L ei~J e ~  g"ix . (42) 
m*j~j --~m 

Under these conditions, the FEL design is optimized 
by maximizing the diagonal term gjj corresponding to 
the desired mode. From (33) and (12) it is clear that the 
beam size w 0 must be reduced down to the order of the 
electron-beam size in order to optimize the coupling, 
but if the mode becomes too divergent, the time 
dependent terms in E" and E, of (28) begin to reduce 
the gain. The optimal situation lies between these two 
extremes, and has been calculated in detail (using the 
energy loss approximation) by Colson and Elleaume 
E14]. 
The optimization procedure must also be limited by 
the stability condition [17] on the cavity. For the 
Orsay experiment, the radius of curvature chosen to 
optimize the small-signal gain was R = 3 m, which is 
acceptably close to the stability limit of 2.75 m. There 
are cavity designs in which C is degenerate for which 
the optimization procedure is not necessary. For these 
designs, qj is a constant independent of the index. In 
these cavities, any combination of modes reproduces 
itself after n reflections. If n = 2 as in the Stanford and 
the Orsay experiments, the concentric and the plane- 
parallel cavities are degenerate, and the confocal cavity 
is degenerate on the p modes (quasi-degenerate). These 
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ARGON LASER I 

MODE MATCHIN5 
. CHOPPER TELESCOPE 

TO ~ ~  ~x'~ 7//.~ *//.~ 4 ,: ~ ..................... 2 "  
Ei'ORAGERIN5 I@-. 1001-17 

UNDULATOR 

RESONANT ( > 
RF DEMODULATOR DETECTOR 

L ~  DELAY~'I'<'~I)13'6 l 
~ t ~  I0 1 &--T ~- 

TOTAL POWER 

201-FZISOOHZ ~ LF ~_~ ~ BAND PASS LOCK-IN FILTER AMPLIFIER 

Fig. 1. Simplified schematic diagram of the gain-measurement ap- 
paratus [23] showing the argon-laser focussing system, the collimat- 
ing iris, and the double demodulation detection system 

/ GAIN 1.5 ~ GAIN(iris open) 
/ !IZ '-2 

0.5 

Iris diameter 
W(z) 

I I I I ,~ I 
1 2 3 4 17 

Fig. 2. The measured gain as a function of the iris diameter [16] 
normalized to the measured beam waist at the iris. The solid points 
were taken closing the iris and the open points while opening it. The 
error bars are the one sigma statistical errors. All points have the 
same horizontal error bar which is shown for the point at 2.7. The 
solid curve is calculated using the measured values for the electron 
and laser beam sizes. The effect of each higher-order mode is shown 
by the dashed curves 

cavity designs, however, are useless since they stand 
critically on the stability boundary. The tolerance on 
the mirror radius of curvature is on the order of Igool 
(obtained from the perturbation expansion) which is 
difficult to meet if the gain is low. For  two-mirror 
devices where n >  2, such as the Novosibirsk experi- 
ment where n = 8, in general for mirrors of equal radius 
of curvature there exist n/2+ 1 cavity designs with a 
degenerate C matrix:  

z o = Lc (43) 
mT~ 

2 t a n - -  
n 

and n/2 with a quasi-degenerate C matrix in which the 
odd I modes change sign on every amplification. Only 
two of the degenerate and one of the quasi-degenerate 
cavities correspond to the unstable cavities ; the others 
are potentially useable in an experiment. The value of a 
degenerate C matrix is that the eigenvectors of the 
amplifier plus cavity matrix (36) are equal to those of 
the gain matrix alone, multiplied by a constant. This 
degeneracy allows the cavity to oscillate on the most  
favorable combination of modes which best fits the 
electron beam shape. In this manner, the gain can be 
increased by factors of two or three over the gain of an 
optimized TEMoo mode, particularly if the electron 
beam size is smaller than the TEMo0 mode. The 
tolerance on the mirror radius for the degeneracy of C 

will still be tight, and the experimental utility of these 
cavities remains to be investigated. 

3. Application to Gain-vs-Aperture Experiment 

3.1. Description of the Experiment 

The gain of the Orsay FEL has recently been measured 
with the optical klystron in place [22] in an amplifier 
experiment using an external argon ion laser to pro- 
vide the coherent mode. A detailed description of the 
apparatus can be found in [23], and a schematic 
description is given in Fig. 1. The laser beam is anal- 
yzed at a distance d from the optical klystron after 
passing through an adjustable collimating iris (Fig. 1), 
which is centered on the laser mode emerging from the 
interaction region. The gain is measured as the ratio of 
the power detected in phase with both the electron 
repetition frequency and the chopper frequency (the 
amplified power) divided by the power in phase with 
the chopper alone (the incident laser power). 
Calibration is performed as in [23]. 
The again is recorded as a function of the iris aperture, 
and large variations are observed ,[16]. One set of data 
points is reproduced in ~ Fig. 2, where the gain is 
normalized to its value for the iris completely open, 
and the iris diameter is normalized to the measured 
beam waist at the iris. The data is taken at maximum 
gain, which means v~ ~ 0  for the optical klystron, and 
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GAIN 
GAIN ( iris open ) 

3 

1.5 1.5 
0.76 ~ 

~- Iris diame__ter 
I- co(z) 
I I i i i I i ~ I t r i i I b ~ i I i i T r [ 

1 2 3 Z, 5 

Fig. 3. Calculated curves for the gain as a function of iris diameter 
under the conditions of the Orsay experiment [16]. The electron 

beam dimension 2: = a ]//rc/2L is varied to show the effects of the 
beam size on the excitation of the higher order modes. The value 
Z - 0 . 7 6  corresponds to a=0 .35  m m  which is very close to the value 
at which the experimental points were recorded 

- GAIN 
-~'GAIN ( iris open ) 

1.5 _ _ 1 . 8  ~ d l k  
2.5 

1 

0.5 

Iris diameter 
CO(z) 

I I I I I I  I r l l l l l [ l l l l l l l l l l  I I I I ] l l f l l l l l l l l l  I I I I I I I  

1 2 3 /, 5 

Fig. 4. Calculated gain as a function of iris diameter for several iris 
positions d, under the conditions of the Orsay experiment [16]. The 
ratio of the iris to optical klystron distance d divided by the optical 
klystron length L is varied through the range 0.5 to oe. The 
experimental points of Fig. 2 were taken for d/L = 9 

the laser beam was carefully aligned to within about 
0.05 mm of the axis of the electron beam. The change in 
the measured gain as the iris is closed means that the 
laser is not uniformly amplified in its transverse profile�9 
In fact, this experiment provides a very sensitive 
technique for measuring the power emitted into the 
higher-order modes even in the small gain limit and for 
a monomode input beam. Clearly a calculation of the 
9,,, is necessary in order to explain these results�9 In the 
next section, we apply the theory we have developed to 
the case at hand, and in Sect. 3.3, precise comparison is 
made between the experimental and the theoretical 
results. 

3.2. Multimode Emission in a Single-Mode 
Amplifier Experiment 

In this subsection, we assume the incident wave is a 
single mode TEMoo beam with a weak field (JaoJ < 1), 
and perfectly aligned onto the electron beam. As 
discussed previously, we take the cylindrical eigen- 
modes based on the form of the input beam. Using 
the notation of Sect. 1, the input laser field reads 

ES(r) = coEo(r) e iv~ , (44) 

where the subscript 0 refers to the TEMoo mode of (12) 

and (13). From (29), the output field ES(r) becomes 

E s = E l-I- c O ~,  g j 0 E j ( r ) e  i~Ar) . (45) 
j=O 

Assuming low gain, the output power passing through 
the iris aperture is 

8~P 
s 2 , . ~  2 2 2 - -  = ~ dSrE r ",~ co ~ dSEo + 2Co Re 

c 

�9 g i o  , ( 4 6 )  
J 

where ~dS covers the iris aperture�9 The gain is 
therefore 

} 2 Re io 0E i(~o-~j) 
G =  J= 

~ dSE~ (47) 

For  purely cylindrical I= 0 modes, G can be written 

. . . .  z ~ Lp(x) e -x  dx 
rn  lzptan- - -  0 

G = 2 R e  900+ 2. 9poe zo ~ , (48) 
p i x = ~e -  dx 

o 
where z 0 is the Rayleigh range of the laser mode, z is 
the distance between the iris and the laser beam waist, 
and X =r2/2w2(z) where r o is the iris diameter�9 There 
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are two interesting limiting cases: 

G = 2 Re {go0} X ~  oe (iris open),  (49) 

i2ptart- 
G = 2 R e  (go0) + gpo e ~o 

p = l  

X---, 0 (iris closed). (50) 

It  is obvious f rom (48-50) that  the gain changes with 
iris diameter in a way which depends on the magni-  
tudes of the off-diagonal terms in the gain matrix. 
The generalization is s traightforward to the case of  the 
mul t imode input  beam, and to imperfect al ignment of  
the laser and electron beams, a l though the calculation 
becomes more  difficult. This calculation also applies to 
high-power input  laser beams (%>> 1) provided one 
keeps in mind that  the gpo are functions of  a o. 

3.3. Application to the Orsay Experiment 

The experimental points shown on Fig. 2 were taken 
under  the following approximate  conditions 

laser 
beam:  

electron 
beam:  

- measured beam waist w o --0.67 m m  
- wavelength -- 5145,~ 
- measured beam waist at iri s w(z) -- 2.7 m m  
- distance from optical klystron to iris 

d = l l . 6 m ,  

- Gaussian and cylindrical with 
o--~0.32 mm, 

optical 
k lys t ron:  - N d =  80 [19, 22, 24] 

- resonance parameter  corresponding to 
max imum gain with iris open. 

The solid curve of  Fig. 2 has been calculated using (27, 
28, and 50) for the planar  configurat ion (24 and 25), 
taking into account  the 10 lowest order l = 0  modes. 
The dashed curves of Fig. 2 show the contr ibut ion of  
each individual mode. These curves are the same 
whether an undula tor  or  optical klystron is used. Very 
similar curves (not shown) were calculated for other  
resonance parameters  indicating that  as expected, the 
diffraction effects do not  change much  as a function of  
detuning parameter  for modes with low divergence. 
Figure 3 shows the calculated effect for several dimen- 
sionless electron beam transverse dimensions 

Z =  ] / ~ / Y L  =0.4, 0.76, 1.5, 3, where L is the length of 
the magnetic  interaction region. Z =0 .76  corresponds 
to the value o-=0 ,35mm,  close to that  used in Fig. 2. 
The flattening of the curves as 2; is increased to ~ = 3 is 
due to the vanishing of  goJgoo for j4=0 as a 
increases. 

Figure 4 shows the calculated effect for various iris 
distances d from the optical klystron center, normal-  
ized to the optical klystron length:  d/L = 0.5, 1, 1.8, 2.5, 
and oe. The experimental points of  Fig. 2 were obtain- 
ed for d/L=9.  The inversion of the effect is due 
primarily to the term exp [i2p tan-l(Z/Zo) ] with p = 1 in 
(50) which switches from + 1 to - 1 as z goes from zero 
to infinity (the mode  p =  1 gives the predominant  
effect). At short  distances the T E M l o  mode  interferes 
constructively on axis 1, and at long distances, it 
changes sign. 
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