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According to the standard interpretation of quantum mechanics (QM), no 
meaning can be assigned to the statement that a particle has a precise value 
of any one of the variables describing its physical propertes before having 
interacted with a suitable measuring instrument. On the other hand, it is 
well known that QM tends to classical statistical mechanics (CSM) when a 
suitable classical limit is performed. One may ask therefore how is it that in 
this limit, the statement, meaningless in QM, that a given variable has 
always a precise value independently of having been measured, gradually 
becomes meaningful. In other words, one may ask how can it be that QM, 
which is a theory describing the intrinsically probabilistic properties of a 
quantum object, becomes a statistical theory describing a probabilistic 
knowledge of intrinsically well determined properties of classical objects. 

In the present paper we try to answer to this question and show that an 
inconsistency arises between the conventional interpretation of CSM 
which presupposes objectively existing Newtonian trajectories, and the 
standard interpretation of QM. We conclude that the latter needs revisiting 
unnless we wish to adopt a strictly subjective conception of the world 
around us, implying that macroscopic objects as well are not localized 
anywhere before we look at them. 
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There was a young man who said,'God 
Must think it exceedingly odd 

If he finds that this tree 
Continues to be 

When there's no one about in the Quad.' 
REPLY 
Dear Sir: 

your astonishment's odd: 
I am always about in the Quad. 

And that's why the tree 
Will continue to be, 
Since observed by 
Yours faithfully 

GOD. 

(Richard Knox. quoted by Bertrand RusseU .) 

1. I N T R O D U C T I O N  

Before the conceptual revolution introduced by quantum mechanics 
(QM), physical reality was conceived as a collection of objects each one 
endowed with properties completely determined by its physical state. In 
fact, one could define the latter by giving the values of all the independent 
variables required by its degrees of freedom. The time evolution of the 
state was determined completely with absolute precision by the universal 
laws of motion, once the initial conditions and the external forces were 
given. 

Only imperfect knowledge of these data could lead to uncertainties in 
the future (or past) evolution of a given system. Therefore the introduction 
of a probabilistic description for this evolution was invented as a means of 
obtaining the maximum information about a given system compatible with 
an incomplete knowledge of all the conditions which specify its state, In 
other words, statistical mechanics does not deny that a given particle in a 
gas actually has at any moment a well determined position and velocity, but 
simply works with quantities which do not depend on the detailed values 
of the variables of each particle. 

Quantum mechanics had however to face two new facts: the occurrence 
of different events in spite of apparently identical initial and external 
conditions, and the impossibility of assigning simultaneously precise 
values to all the variables of  a given system. The solution was found by 
loosening the connection between the state of  a system and its variables, 
The former was still considered to be completely determined by the initial 
conditions and the laws of motion, but the latter were allowed to acquire, 
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with different probabilities depending on the given state, any value within a 
set of values typical of the variable in question. 

Furthermore, it was found that the mathematical entity describing the 
state was not a probability density of the type introduced in classical 
probabilistic descriptions, because no joint probability distributions exist 
for the variables whose precise determination is not simultaneously 
possible. 

All this has led to the standard interpretation of QM which not only 
denies that a particle may have a precise, although unknown, value of both 
position and momentum, but moreover affirms that, generally speaking, no 
physical meaning can be assigned to the statement that a particle has a 
precise value of the position (or momentum, or any other variable) before 
having interacted with a suitable measuring instrument. More precisely, a 
basic axiom of QM is that, if the state of a particle is the superposition of 
two states belonging to different values of a given dynamical variable, it is 
only in the act of measurement that the variable acquires, at random, one of 
these two values. 

These conceptual premises of QM are part of the cultural background of 
the great maj.'ority of physicists, which is transmitted by textbooks to each 
new generation. They are not only a common belief, however, because 
direct experimental  evidence of  the impossibi l i ty of  assigning 
simultaneously precise values to different components of the spin seems to 
be provided by the experiments which also confirm the validity of QM in 
tests of the EPR paradox. 

In spite of this general consensus, which has never been seriously 
challenged by the many attempts made to restore a more "realistic" picture 
of the atomic world, the answers that the standard interpretation gives to 
some questions still remain controversial. A typical issue is, from this 
point of view, the problem of the wave packet collapse in the act of 
measurement, where no solution has gained as yet unanimous support. 
One of the reasons of this situation is, in our opinion, that a proper and 
exhaustive understanding of the relation between quantum mechanics and 
classical statistical mechanics (CSM) is still lacking. 

We will therefore try to contribute to this understanding by asking a 
very simple question. One may ask how is it that, in the limit when QM 
tends to CSM, the statement that a given variable of a physical system has 
always a precise value independently of having been measured or not - a 
meaningless statement in QM - gradually becomes meaningful. In other 
words, how can it be that QM, which is a theory describing the 
intrinsically probabilistic properties of quantum objects, becomes, in this 
limit, a statistical theory describing a probabilistic knowledge of  
intrinsically well determined properties of classical objects? To be fair these 
questions have been asked in a particularly challenging manner by 
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Schroedinger in his famous 1935 paper.(1) Our answer, however, as we 
shall see, is different from his one. 

The first thing to do, of course, is to define properly what we mean by 
the "limit when QM tends to CSM." This procedure is not as simple as 
letting h go to zero. In fact, h is a constant of nature and one should rather 
take the correct limit for the appropriate dynamical variables when they 
become large compared with the relevant atomic units. For this purpose, 
however, one should realize that there are at least two different cases in 
which one expects that QM should approach CSM. 

The first one refers to the limit of large "quantum numbers" for a given 
quantum system, in the sense of Bohr's correspondence principle. This is 

the limit in which the variation AS of the phase of the wave function within 
the region where it is substantially different from zero is much larger than 
h, or, if the state is stationary, the energy E n is much larger than the 
ground state energy E o. The question is now: When the particle is driven in 
a state of this kind, can one still maintain that its variables are not defined 
before they have been measured? Or, more precisely, if the state vector of 
the particle is a superposition of  two states corresponding to 
macroscopically different values of a given variable, can one still maintain 
that this variable acquires, at random, one of these values only when it is 
measured? This would be in contrast with the classical statistical picture 
which supposes that the macroscopic variable does have one of the two 
possible values independently of whether it has been measured or not. 

The second case to be considered, namely the case of a macroscopic 
body, is even more puzzling. The system is now made up of an enormous 
number N of elementary quantum systems and has a correspondingly large 
number of degrees of freedom. For such a system it is generally possible 
to define at least a pair of collective (pseudo)conjugate variables (e.g., the 
center of mass coordinate and its velocity) that satisfy two conditions: (a) 
the commutator of these collective variables vanishes as N goes to infinity; 
(b) they are decoupled from the variables of the individual particles, and 
their Heisenberg equations of motion tend, in this limit, to the classical 
equations of motion. 

One might therefore think that, in this case, property (b) gives an 
answer to our question. Since the classical equations of motion can be 
solved with precisely given initial values for both these variables, their 
value is completely determined at all later times. This means that these 
variables "have" precisely determined values whether they are measured or 
not. 

This statement is, however, only a partial answer, because it is true 
only for the particular choice of initial conditions just considered. In fact, a 
quantum mechanical state corresponds, as we shall see in more detail in a 
moment, to a statistical distribution in the phase space of the collective 
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variables that does not generally reduce to a single point. It may happen, 
for example, that it yields a limiting classical statistical distribution, having 
the form of  two delta functions centered on two different classical 
trajectories. Do we have, here again, to assume that our macroscopic body 
choses, at random, one of the two possible trajectories (on each of which 
the center of mass position and velocity are defined at any time), only 
when a measurement is performed on it? Should we not rather assume, in 
view of the fact that the body is macroscopic, that the right description is 
given by CSM, and that the double delta function simply reflects our 
ignorance? 

In this paper we will discuss this puzzling question showing that if we 
choose the second answer, consistently with the commonly accepted 
physical content of  CSM, we are led also to admit that the widely spread 
belief in the current interpretation of QM needs revisiting. If we do not 
wish to do so we have to adopt a strictly subjective conception of the 
classical world outside us, implying that also macroscopic objects are not 
localized anywhere before we look at them. 

The work is organized in three steps. In the first one, we recall that QM 
tends, when a proper classical limit is performed, to classical statistical 
mechanics. This is a result which is independent of any particular 
"interpretation" of QM. In the second step we show that the uncertainties in 
position and momentum predicted by QM lead always to an uncertainty 

product Ax Ap which is the sum of the minimum quantum value h /2  and 
a term which has the same form of the corresponding classical term of 
statistical origin. We interpret this fact as an indication that the former 
reflects an intrinsic indeterminacy of the quantum variables, while the latter 
reflects our ignorance of the state of the individual particles. This is also 
confirmed by the fact that the first one disappears in the classical limit, 
while the second does not. One would therefore expect that, in the classical 
limit, individual systems, while being collectively described by statistical 
mechanics, should tend to follow classical trajectories. In the third step, we 
show that this expectation is contradicted by the standard interpretation of 
QM. Finally, we shall try to find out the consequences of this contradiction 
on the microscopic world. 

Section 2 is devoted to the first step for the case of large values of the 
action-variable of a single quantum system, while Appendix 1 deals with 
the same problem for a macroscopic object. Section 3 is devoted to the 
discussion of the second step. Section 4 is dedicated to the third step and 
Section 5 to the consequences of  the preceding chain of reasoning. In 
Section 6 we discuss the relevance of our proposal for some open 
questions in the foundations of quantum mechanics. 



134 Cini and Serva 

2. THE CLASSICAL LIMIT OF THE WIGNER FUNCTION 

We shall now briefly recall some more or less known facts about the 
statistical properties of a quantum state in the classical limit. As is well 
known, Wigner(2) has defined a quantum mechanical function W(x,p) by 
means of the relation (for simplicity we put h = 1, but we shall later 
introduce, when necessary, h explicitly): 

W(x,p) = x "1 ~ ~g*(x+y ) ~(x-y ) exp(2ipy) dy.  (1) 

This function may be used to compute the expectation value of any 
quantum variable A(x,p) function of the operators x and p, by means of 
an expression: 

<A> = S ~g*(x ) A(x,-i 3/Dx ) ~t(x ) dx = S~ W(x,p) l~(x,p) dx dp, (2) 

provided one takes 

~(x,p) = 2 ~ <x+zlAIx-z> exp(-2ipz) dz. (3) 

W(x,p) corresponds to the classical distribution function f(x,p) in phase 
space, because Eq. (2) is formally identical with the classical expression 

<A> = ~Sdx dp A(x,p) f(x,p), (4) 

where A(x,p) is the classical variable corresponding to A(x,p). 
Of course, W(x,p) is not everywhere positive as the classical fix,p) and 

therefore can not be interpreted as a distribution function. Nevertheless, 
Eq.(2) reduces, generally, to Eq.(4) in the classical limit. In the second 
part of this section we will show with a few examples that this limit 
consists essentialy in considering large quantum numbers. 

On a formal level, one can simply suppose that h is negligibly small 
(h--~ 0)(3) In this case ~ (x,p) ~ A(x,p), when the quantum variable 
A(x,p) has the same form as the classical variable A(x,p), because its 
matrix elements <xlAIp> differ from it only by terms of order h arising 
from the reordering of the operators x and p .  On the other hand, it is well 
known that the time evolution of W(x,p;t) reduces to the Liouville equation 

bW(x,p;t)/bt = -(p/m) bW(x,p;t)/~x +(bV(x)/bx)(~W(x,p;t)/bp) (5) 

when V(x) is slowly variable compared to the oscillations of the 
exponential. 
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This reduction is a necessary step in order to obtain the classical 

distribution in the limit h ---> 0. One needs in fact: 

J'AdX dp W(x,p) --> J'AdX dp fix,p) (6) 

for any finite region A of the phase space > h. This limit obviously holds 
when W(x,p) tends to the corresponding f(x,p). One can easily see that 
this last limit can be obtained by means of a smoothing procedure when 
W(x,p) is substantially a large bump in phase space .  Introducing the 
representation 

~(x) = exp[R(x) + iS(x)/h ] (7) 

into Eq.(1) and expanding R(x_+y), S(x_~_+y) up the second order in y, we 
get, in the limit h ---> 0, 

W(x,p) ---) fix,p) = ~[p-S'(x)] exp[2R(x)] . (8) 

Thus W(x,p) tends to the distribution function in phase space of  a 
Hamiltonian fluid of space density exp[2R(x)] and action function S(x). In 
practice, Eq.(6) holds in more general cases even when W(x,p) does not 
tend to the corresponding f(x,p). We will see a typical example when 
considering in this section a particle between two infinite potential barriers. 
An interesting particular case of (8) is that of a free particle wave packet 
initially concentrated in a Gaussian region: 

~(x,O) = (rc~)-l/4 exp{-(X-Xo)2/2a } (9) 

Since the energy expectation value e is given by 

e = h 2/4am, (10) 

the proper classical limit is provided by the limit e t >> h .  One now has: 

W(x,p;t)---> (4et2/m)-l/2 exp[-m(X-Xo)2/4et2 ] fi[p-(X-Xo)rn/t ] . (11) 

This is the classical distribution function f(x,p;t) in phase space of a free 
Hamiltonian fluid concentrated initially (t=0) at x=x 0. 
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A second example is the stationary state of energy k2/2 of a particle 
between two infinite potential barriers of distance L. An easy calculation 
gives 

W(x,p) = (1/2L){~5(p-k)+ 15(p+k) - ~(p) [exp(2ikx)+ exp(-2ikx)]} (12) 

This function does not become positive in the limit of  large energies. 
However, for a given region A of phase space, when the energy E >> 
(h n/2L)2/2 (ground state energy), one has 

J'AdX dp W(x,p) ---> ~AdX dp f(x,p)=(1/2L)IAdX dp (8[p-k]+ 5[p+k]) (13) 

For a general potential V(x), one can show that 

W(x,p) --~ N pE'l[8(p-pE) + 8(P+PE)] = N ~(H-E), (14) 

where H = (p2/2m) + V(x) and N is the phase space volume on the energy 
shell. In other words, the statistical properties of the quantum mechanical 
density matrix for a given energy E tend to those of the corresponding 
microcanonical ensemble of classical statistical mechanics. 

Let us now see what happens when the state is a superposition 

= Cl~l+ c211t2 • (15) 

The total Wigner function will be the sum of the two Wigner functions of 

• 1 and ~2, weighted with the respective probabilities, plus an interference 
term, whose general features will be better understood by considering two 
complementary cases. 

The first one occurs when the two wave functions are localized in two 
separate space regions. Then the contribution to W(x,p;t) of the 
interference term contains a factor 

cos[p(xl-x2)/h ], 

where xland x 2 are the mean values of x in ~land ~2. The contribution of 
this term to the expectation value of any variable A(x,p) vanishes unless its 
p-dependence shows the same rapidly oscillating behaviour of the cosine 
factor. This is certainly not the case for the quantum variables considered 
here that have a classical limit. 
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The complementary case obtains when the two wave functions are not 
localized in separate space regions, but are labeled with two widely 
different values of the energy El>> E 2 >> E o (ground state energy). Here 
again the interference term gives a vanishing contribution to expectation 
values of variables which have a classical limit. This can be easily seen in 
the simple example of a particle constrained between two fixed boundaries, 
for in which the interference term to the Wigner function oscillates with a 
factor 

cos{ ['4(2m El)- ~/(2m E2)]x/h }. 

Here the contribution of this term to the expectation value of a variable 
A(x,p) is negligibly small unless its x dependence shows the same rapidly 
oscillating behaviour of the cosine factor, a property which we do not 
expect a variable with a classical limit to possess. 

It is therefore clear that the limiting classical statistical ensemble 
corresponding to the quantum state (15) is always simply the union of the 
two classical statistical ensembles corresponding to the individual states, 
weighted with probabilities IC112 and Ic212. 

The case of a macroscipic body made of N particles is discussed in 
Appendix 1 by means of a simple model. The result is that there is always 
a one-to-one correspondence between a quantum mechanical state and a 
statistical distribution in phase space of classical statistical mechanics, both 
in the case of a microscopic system and in the case of a macroscopic body. 
The difference is that in the former the classical limit is attained when a 

suitable action variable is >> h, while in the latter the limit N--+oo is 
sufficient to ensure that the macroscopic variables are correctly described 
by means of CSM. We shall now discuss the consequences of this 
correspondence. 

3. THE STATISTICAL PROPERTIES  OF A QUANTUM 
M E C H A N I C A L  STATE 

It is now easy to discuss the statistical properties of a quantum 
mechanical state. It is particularly interesting to see what happens to the 

uncertainty product AxAp. For a free wave packet of average energy e one 
has always: 

(Ap)2 = 2em - <p>2 (16) 
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( ~ ) 2  = (Ap)2t2/m2 + h 2/4(Ap)2 (17) 

(Ax Ap) 2 =(Ap)4t2/mZ+h 2/4-+(Ax AP)cl 2 , for e t >>h (18) 

When a potential is present eq.(18) still holds in the approximation 
when the Wigner function W satisfies the LiouviUe equation. 

Equation (17) resembles closely an old relation which marked a turning 
point in the history of physics: Einstein's formula for the energy 
fluctuation of radiation at thermal equilibrium expressed as the sum of two 
terms of different origin.(4) In the case of radiation, the quantum term 
arises from its particlelike properties and the classical term from the 
wavelike ones. In quantum mechanics the reverse happens. In our case the 
first (particle) term has a classical origin and the second (wave) term a 
quantum one. This separation, however, has been forgotten since the 
adoption of the standard interpretation of QM, which considers the 
fluctuations of the quantum variables as wholly due to their intrinsically 
undetermined nature. What we propose, on the contrary, is to take 
seriously this separation as physically meaningful. From this point of 
view, Eq.(17) means that the spread of a quantum wave packet for large 
values of et does not arise from an ontologically intrinsic delocalization of 
the particle, but, as it happens for classical particles, is a trivial 
consequence of the fact that the region where a particle may be found 
increases with time if its momentum is not precisely determined. 

Stated differently, Eq.(18) indicates that the really intrinsic quantum 
indeterminacy, reflecting the impossibility of simultaneous existence of 
position and momentum, is always the minimum one implied by the 
Heisenberg principle. Higher indeterminacies are instead of statistical 
nature, reflecting the actual displacement in space of particles with different 
momenta, and they survive in the classical limit. On the contrary the 

classical phase space volume available shrinks to a 8 function when the 
uncertainty is of the order of its minimum, as it happens in the case of 
coherent states. This picture is particularly relevant for the interpretation of 
the superposition (15) when the two states are macroscopically different. 
One can no longer say that only when a variable is measured it assumes a 
value corresponding to either V1 or ~2- 

Since the statistical ensemble described by the density matrix of the state 
(15) is, in the limit of large values of the action, the weighted union of two 
disconnected classical phase space distributions, we are almost forced to 
say that the particle belonged to one or the other distribution even before 
the measure has taken place. Of course this statement would be completely 
correct only if the classical limit could be attained. However, it starts being 
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almost correct in the intermediate region between the pure quantum case 

(AxAp = h/2) and the classical region (AxAp >> h/2). We will explain and 
justify this statement in the following sections, showing that it is indeed 
possible to give a more precise meaning to the separation between quantum 
and classical indeterminacy. 

4. INCONSISTENCY BETWEEN INTERPRETATIONS OF 
CSM AND QM 

Assume now that a classical distribution function in phase space is at 
t=0 of the form 

f(q,p;0) = Plfl(q,p;0) + P2 f2(q,P; 0) (19) 

with fl=0, when q,p ~ FlO, and f2=0 when q,p ~ F2O in phase space, 

with FlOnF2O= 0. Call qi o, pi o the mean values of q, p in the distribution 

fi and Aqo, APo their mean square values, which we assume for simplicity 
to be the same for fl and f2- Suppose furthermore that the space distance 

d o between FlO and F2O (do= minlql-q21; ql ~ FlO,q2~ F2O ) is >> Aqo. 

Now we measure q with a resolution Aqo and find the particle in S 1 °, the 

space width of FlO. We might as well have measured p with a resolution 

Apo, with the result that we would have found the particle in MlO, the 

momentum width of F l ° .  In classical mechanics, of course, both 
measurements are compatible, but one is sufficient, in this case, to deduce 
from (19) that at t=0 the point in phase space representing the particle's 
state is in FlO. Then we have two possible interpretations of this fact: 

(a) We can say that even before our measurement at an earlier time t the 

phase space point of the system was in FI t (the region which subsequently 

evolved according to Liouville into FlO at t=0) because it has followed a 

trajectory which, starting from a point located within Fit goes through a 

point in FlO. The position of the particle at the earlier time was therefore 

within a distance Aqt << d t from the mean value ql t given by fl(q,p;t), 

with Aqt given by (suppose for simplicity that the particle has propagated 

freely such that APo does not vary with time) 
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Aq t = [(Aqo)2+ (APot/m)2] 1/2. (20) 

It should be stressed at this point that, while the volume of Fl t  is equal to 

the volume of Fl° ,  the uncertainty product Aqt Apt always increases with 
time (both in the backward and in the forward direction) because of (20). 

The probabilities P1 P2 in (19) represent therefore our ignorance about 
the previous localization of the particle and not an actual indetermination of 
its position in space. 

(b) We can say that before the measurement there was no phase space 
point representing the particle's state in Flt  or in F2t and that therefore the 

state has been localized in 171 ° by the measurement. In this case P1 and P2 

are intrinsic probabilities of localizing the particle either in FlO or in 172o. 

There is no trajectory followed by the particle from one point of Fl t  to a 

given point of FlO. 
In both cases, after the measurement the state is no longer represented 

by the distribution function f(q,p) but is reduced to fl(q,P), the new state 
created by the measurement, which evolves successively according to the 
Liouville equation. However, in the fh'st case the state fl(q,P) is the state 
of a new ensemble in which the states of the individual particles are known 
only within the corresponding uncertainties; but in the second case there is 
no difference between the state of the particles and the state of the 
ensemble. Therefore one immediately recognizes that (a) is the usual 
interpretation of  statistical mechanics in terms of classical dynamics, and 
(b) is an interpretation which closely resembles the conventional 
interpretation of quantum mechanics in which the observer has an essential 
role. In spite of the fact that they both lead to the same observable 
consequences, our choice is biased in favour of the first one by our belief 
in the existence of an objective world outside our mind. 

Let us now consider the corresponding situation in quantum 
mechanics. Take a state defined by the wave function 

= (P1) 1/2 ~1 + (P2)l/2exp(if) ~2 (21) 

whose Wigner function tends in the classical limit to (19) 

W(q,p;0) ---> Plfl(q,p;0) + P2f2(q,p;0) = f(q,p;0). (22) 
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The wave functions ~tland ~2 have therefore the same mean values and 

mean square values of q and p as before. Let us assume Aqo to be related 

to APo by the minimum uncertainty 

AqoApo -~ h/2. (23) 

Suppose we measure q with the resolution Aqo and find the particle within 

the space region S1 o, which is the space support of vJ1. We might as well 

have measured p with resolution APo, with the result that we would have 

found the momentum of the particle in MlO, the momentum support of ~1. 
In both cases we deduce that the state of the particle at t=0 is represented 
by ~l ,and evolves subsequently according to the Schr6dinger equation. It 
should be stressed that also in the quantum case the two measurements are 
compatible, because the two resolutions satisfy the uncertainty relation 
(23). Both these measurements, therefore, reduce the state (21) but do not 

change the form of ~t 1. However, according to the conventional 
interpretation of quantum mechanics, we cannot infer, from this fact, that 
the particle was in S1 t (or Mlt) at an earlier time t, because we have to 
accept that the particle has been located in that region by the act of 
measurement, and that any statement about its position (or momentum) 
before the measurement is actually meaningless. Eq.(22), however, forces 
us to extend this interpretation also to classical statistical mechanics and 
therefore to adopt interpretation (b), because SI t (Mlt) is the space 

(momentum) extension of F1 t. We find therefore an inconsistency if we 
insist on accepting the conventional interpretation (a) for classical statistical 
mechanics while retaining the standard interpretation of quantum 
mechanics. 

5. LOCALIZATION OF PARTICLES IN PHASE SPACE AND 
QUANTUM MECHANICS.  

The standard interpretation of quantum mechanics is therefore 
incompatible with the usual assumption that Newtonian dynamics for 
individual particles underlies the description of classical statistical 
ensembles. This suggests that the introduction of the notion of a sort of 
localization of particles in phase space should implement the conventional 
formulation of quantum mechanics. This localization, of course, should 

13 
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always be consistent with the minimum uncertainty allowed by the 
Heisenberg principle. In other words we believe that one may describe the 
time evolution of a particle's state in terms of a sort of fuzzy trajectory 
which is undefined within the region of minimum uncertainty, but is 
sufficiently localized in phase space to exclude that it may instantaneously 
jump from one small region to another one very far away. 

We are not going to construct explicitly a new theory of this sort. We 
wish however to examine in more detail whether the possibility exists of 
modifying the standard interpretation of quantum mechanics in order to 
save our traditional picture of classical mechanics. 

We have dealt up to here with the problem of giving a meaning to the 
statement that a particle was localized into one or the other of two widely 
separated regions in space even before an actual measurement of its 

position has been made. In this case, the resolution Aqo is given by the 
width of each wave packet at the time of measurement. Suppose now one 

localizes a particle in a space region of extension Aqo around a value qo 
within a wave packet of larger extension. Does it still make sense to ask the 
question: Where was the particle at an earlier time t? 

The answer requires a brief discussion of the analogous classical case. 
Given a distribution function f(q,p,0) in phase space with mean square 

values A~i, A12 of q and p, we can reduce our ignorance by measuring 

both q and p with resolutions Aqo, APo such that their product is much 

smaller than the product A~t At2.. Eq.(20) will therefore again give us the 
uncertainty of the position of the particle (supposed to propagate freely) at 
an earlier time t, in terms of the values chosen for these resolutions. Of 
course, in classical mechanics we may chose these resolutions as small as 
we like (or at least as small as our instruments allow us to do). Therefore 
an ideal measurement with infinite resolutions determines completely the 
classical Newtonian trajectory. 

We may now go back to the quantum case described by a wave function 

whose Wigner function tends to f(q,p;0) in the classical limit. The 

uncertainties in q and p given by ~t are now such that A~i AI2 >> h.  Again 

we may reduce our ignorance by measuring q and p with resolutions Aqo 

Apo such that their product is << Aa AI2, but, of  course, we cannot make 
them as small as we like because of the minimum uncertainty relation (23). 
These ideal measurements however can be performed in such a way as to 
minimize the uncertainty in the position of the particle (again supposed to 
propagate freely) at an earlier time t. We obtain from (20), on making the 

replacement APo= h/2  Aqo, 
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Aqt = rain [(Aqo)2+(h t/2mAqo)2 ] 1/2 h /2  A12 < Aq o < A~l (24) 

where the minimum is taken with respect to Aqo and depends on t. 

For small times one has Aqt --- h /2  A12 ; for intermediate times Aqt = 

(ht/2m) 1/2, and for large times Aqt = h t/2m Agl. 
This result shows that, even if we cannot precisely localize the particle 

on a trajectory as in classical mechanics, it is still possible to give an upper 
limit for the extension of the region where the particle was localized before 
the measurements. This statement, does of course, not conflict in any way 
with the physical predictions of quantum mechanics, but leads to the 
correct Newtonian trajectories when the classical limit is performed. An 
explicit example is discussed in Appendix 2 to better illustrate our point. 

6. FINAL REMARKS.  

We now wish to make a few comments on the relevance of our point of 
view to some of the controversial issues about the counterintuitive aspects 
of quantum mechanics. 

The first one concerns the various attempts to construct theories which 
reconcile quantum mechanics with a description of the motion of particles 
in space by means of random processes. The fundamental physical content 
of this theories consists in the fact that they reproduce the one-time 
expectations of quantum mecanics. However, since the existence of 
trajectories is assumed explicitely, the positions of the particle at two 
different times are supposed to be correlated. This correlation is not 
experimentally observed and can be in principle of any kind. However our 
analisis gives a criterion to decide if such a theory can be accepted or not. 
The correlation must be in fact strong enough in order that the treajectories 
become the Newtonian trajectories in the classical limit. More precisely, 

according to (24), one should have E[(~(t)-~(t-dt)) 2] < ht/m, where ~(t) is 
the process. 

One of these theories is Nelson's stochastic mechanics.(5) In this 
theory, the motion is the result of the joint action of classical and stochastic 
forces, leading to a continous but non differentiable trajectory, typical of a 

Markov diffusion process. In fact the stochastic variable ~(t) describing the 
particle's position on the trajectory satisfies the stochastic differential 
equation 

dE = b+(~(t),t) dt + dw(t), (25) 
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where the drift is given by 

b+(x,t) = h bR(x,t)/bx + bS(x,t)/bx, (26) 

with R,S as defined in Equation (7) and dw(t) denoting a Brownian 
process with the same diffusion coefficient h/2m found above. 

If we consider now the Stern Gerlach device discussed in Appendix 2, 
it is clear that, when the conditions are met which ensure that the lateral 

width of the beams are much smaller than their separation (Po >> APo, and 

t>>mh/PoAPo), only the first term survives in the wave function (A21), 
when q-~q+, and only the second term survives when q'~l- because the 

Gaussians of width Aq are vanishingly small when q>>q.t_- This means 
that the stochastic trajectories of Nelson's theory are confined within the 
regions swept by each beam, but do not jump from one beam to the other. 
The drift contains in fact a term podt (-Podt) in the upper (lower) beam 
which leads to their further separation. The initial choice for the particle to 
go into any one of the two beams is intrinsically casual, and occurs with 
probabilities P_+ in the region where the two beams overlap, but as time 
goes on the separation between the two beams increases, and the 
probability of the particle being kicked out of one beam into the other one 
becomes smaller and smaller. 

The additional content of the formalism of stochastic mechanics, which 
describes not only the statistical properties of an ensemble, identical of  
course with those given by quantum mechanics, but also the behaviour of 
individual particles in terms of stochastic trajectories, is therefore not 
meaningless, as usually one may think. It is this content which fits in our 
interpretation of quantum mechanics and does not fit in the conventional 
one. This does not mean, of course, that this theory should be accepted in 
its present form as a more satisfactory description of nature than 
conventional quantum mechanics. It means however, in our opinion, that 
the search for a reformulation of quantum mechanics, in which its purely 
statistical content due to our incomplete knowledge of the state of an 
individual system should be separated from the intrinsic quantum 
indeterminacy of the system's physical properties, is still an open question 
worth of deep effort and clever thinking. 

The second comment has some relevance for the old problem of the 
nature of the wave packet reduction as a consequence of a measurement.(6) 
In order to understand fully the meaning of our point of  view, we stress 
again that the result of a measurement which reduces a wave packet whith 

uncertainty product A~Ag >>h into a wave packet with uncertainty 

AqoAPo= h, is substantially different from a change in the form of a wave 
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packet which maintains the uncertainty equal to its minimum value. It is 
very important to avoid confusions between the two, 

The first one is irreversible, because our knowledge changes 
irreversibly. It implies, exactly as it does in classical mechanics, the 
measurement of both q and p, the only difference with classical mechanics 

being that now the resolutions Aqo and APt must satisfy the minimum 
uncertainty relation. The state of the individual particle is not reduced: it is 
only the ensemble's state which is reduced. This measurement eliminates 
the "empty waves" of a superposition because they are not physical; they 
only represent our ignorance before the measurement. 

The second change is reversible, because it corresponds to an actual 
change of the individual particle's physical state from a wave packet with 
Aq'oAP' o = h to a wave packet with AqoAPo-~ h due to its Schrrdinger 
evolution in the presence of a physical interaction. Clearly, there is no 
reduction in this case, because there is no change in the information we 
have on the properties of the individual system: What we gain in the 

definition of q (if Aqo< Aq'o), we loose in the definition of p (APt> Ap' o) 
and vice versa. Obviously, this absence of reduction will not lead to a 
nightmarish multiplication of worlds,(7) because the first type of reduction 
(reduction of ignorance) is sufficient to eliminate the proliferation of 
branches of a composite system's wave function, a proliferation which, by 
definition, implies a tremendous increase with time of the uncertainty 
product. At the same time this absence of reduction is sufficient to 
eliminate the extremely "counterintuitive mutual involvement of physical 
and mental phenomena",(8) invoked explicitly by von Neumann and 
implicitly accepted by all theories of measurement which adopt the wave 
function collapse postulate as a physical irreversible phenomenon that 
cannot be reduced to the Schrrdinger time evolution. 

The third comment has to do with the controversy about the objective 
nature of the properties of a macroscopic body. It is often stated that the 
possibility of defining variables which maintain an essential quantum 
nature even in the classical limit makes a superposition of macroscopically 
different states substantially different from the corresponding statistical 
mixture (Schrodinger's cat), and forces us to conclude that one can never 
attribute the character of absolute reality (independent of the observer) to 
the objects of the world around us. This statement is, according to our 
viewpoint, totally unjustified. 

It is of course true that one can define for a macroscopic body variables 
strongly depending on the details of its microscopic structure, such as the 
relative position of some of its atoms, which show, by definition, a typical 
quantum behaviour. Variables of this kind, however, are completely 
decoupled from those which have a classical limit, which describe all the 
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collective properties of the body. This means not only that its physical 
state, in the classical limit, may be completely defined independently of the 
details of  its microscopic structure, but also that the body's classical 
properties are objective inasmuch as their values, as we have argued at 
length in the preceeding sections, do not depend on whether they are 
measured or not. 

One concludes therefore that the inconsistency between the standard 
interpretation of QM and the commonly accepted realistic interpretation of 
CSM discussed above should be removed if we wish to save our cherished 
belief that the world is there even if we do not look at it. 

We are grateful to our friends G Jona-Lasinio, G F Dell'Antonio, G F 
De Angelis and N Zanghi for stimulating discussions. We thank L Peliti 
for his poetical advice. 

APPENDIX 1 

We are going now to discuss a model of a macroscopic body made of N 
particles individually and coupled elastically to the origin, coupled one to 
each other by an elastic force 

V= (a/4)Y.ij(qi-qj) 2 + (b/2)Y~iqi 2, i,j = t ..... N. (A1) 

By introducing the center of mass coordinate q= ~qi/N and rescaling the 

coupling constant a---> a/N, we get 

V=(a]2) Xi(qi-q)2+(b/2) Y.i qi 2 = ((a+b)/2) ]~i(qi-q)2+(b/2)Nq 2. (A2) 

In this form we see that b is the coupling constant of the center of mass to 
the origin and (a+b) the coupling constant of the individual particles to the 
center of mass. The 2N independent classical equations derived from the 
Hamiltonian (m=l) 

H = (1/2)Y.iPi2 + V (A3) 

a l e :  

dqi/dt = Pi (A4a) 

dpi/dt = -o,-2(qi-q) -f22q, a+b = to 2 b = f22. (A4b) 
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Let us now define 

q'i = qi-q, P'i = Pi -v, 

q"k = q'k- ~ q'N, p"~= p'k - E P'N, 

Then it is easy to see that we have 2(N-l) independent equations 

dq"ffdt = p"~ (A5a) 

dp"z/dt = -m 2 q"k, ~, = 1 ...... N- l ,  (A5b) 

and two equations 

dq/dt = v (A6a) 

dv/dt = -[2 2 q. (A6b) 

The corresponding quantum variables have the commutators 

[qi,Pj] = ih ~ij (A7) 

[q,v] = ih /N,  [q"k,P"~t] = ih 5x~t ~,,[t = 1 ..... N-1 (A8) 

v = Eipi /N,  i= 1 ..... N 

e = (-I+~/N)/(N-1) k= 1 .... N- l ,  

One should notice that as N (the total mass) --->oo the commutator  of the 
average (intensive) variables q and v vanishes, i.e., these variables 
become classical, while the "internal" variables maintain their quantum 
nature. 

The quantum Hamiltonian corresponding to (A3) becomes, in terms of 
the new variables, 

H = (1/2)Y~p"~2+ (m2/2)E~q"~ 2 + (1/2) N v2+ (f22/2) N q2 ,  (A9) 

and the corresponding Schrtidinger equation 

ih 3~/~t = H ~ (A10) 

is obtained by taking 
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v = (-ih/hi) O/0q, q=q; p"~, = (-ih) 0/~q")~, q"x= q"~. (All )  

We take a factorizable wave function W of the form 

q' = ¢~(q) )~ (q"l, ...,q"N-1), (A12) 

with the center of mass wave function describing a coherent state 

~(q) =(ND./h g)-l/4exp { [-Nf2(q-qc)2+2iNqvc-iNqcvc-ih f~t]/2h } (A13) 

Consider for the moment the q-dependent part of W. The classical limit 
of the Wigner function constructed with the wave function (A 13), namely 

f(q,v) = 6(q-qc(t)) 8(V-Vc(t)) (A14) 

is now attained as N-->oo. This means that the center of mass coordinate of 
a macroscopic body undergoes a classical oscillator motion with coordinate 
qc(t) and velocity Vc(t). We might instead consider, however, a wave 

function of the center of mass which does not shrink to a 6 function in 

phase space, as (A13) does. A stationary state of energy E>> h f~ would, 

for example, lead to a Wigner function which tends to (14) as N-->oo. In 

other words the statistical properties of ~(q) are the same as those 
discussed in Section 2 in the corresponding classical limit. The presence of 
the remaining variables does however make a difference in the case of a 
macroscopic body. 

To see how this comes out, let us consider a state described by a 
superposition of two wave functions of the form (A!2), 

= Cld~l)~ 1 + C2(~2~ 2 (A15) 

In the classical limit N~oo,  (A15) leads to a classical Liouville 
distribution of the form (19) with fl,2(q,v) of the form (A14). This result 
follows by considering the proper Wigner function of the center of mass 
variables q,v constructed by integrating over all the microscopic variables. 
One gets, in fact, the following expressions: 

W(q,v) = Y'i Icil2Wi(q,v) + Cross Term, i=1,2, (A16) 



Where  Is an Object? 149 

Wi(q,v) = (N/~h)~ dy ~i*(q+y) ~i(q-Y) exp[(2iN/h )vy], (A17) 

C.T.=(N/~h )~{Cl*C 2 J12 S dy ~l*(q+y) ~2(q-Y) exp[(2iN/h )vy]} (A18) 

J12 = S...S Xl*(q"l,.-q"N-1) ~2(q"l...q"N-1) dq"l ..... dq"N_ 1. (A19) 

It is now clear that the C. T. is small not only for the reasons that made 
small the interference contribution to the Wigner function derived from the 
wave function (15) (which have the same effect in the integral on y of 
eq.(A18), but also because it is extremely unlikely that g l  and X2 are 

exactly the same. In general ~land X2 are very different microscopically 
even if they are macroscopically equivalent. Therefore J12 becomes 
vanishingly small very quickly as N becomes large. 

APPENDIX 2 

Let us consider a Stem Gerlach device in which a beam of particles 
initially located in a given space region is split, by means of an 
inhomogeneous magnetic field interacting with the magnetic moment of 
each particle, into two beams whose separation increases with time. We 
study the time evolution of their lateral widths, which at t=0 coincide. If 
the initial wave packet is 

gd(q,0) = ~(q,0) [c+exp(ipoq/h ) + c_exp(-iPoq/h )], (A20) 

with ~t(q,0) given by (9), the expression of the wave function at a time t 
tums out to be: 

W(q,t) = c+U?+(q,t) + c_U?_(q,t) (A21) 

with 

~P+_=exp {-i(_-_-_-~oq/h)-ipo2t12mh ) (oqrc) 1/4(0 0-1/2exp {- (q-q~_)2/2~, (A22) 

o~ = a + ih t/m ~ = %.+_+ Pot/m (A23) 

Eq.(A22) gives rise to a Wigner function, which is the sum of two widely 
separated parts: 
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W(q,p;t) = P+ W+(q,p;t) + P_ W_(q,p;t), P+= Ic_+l 2, (A24) 

where W+(q,p;t) are given by Eq.(11), with x o replaced by q_+= %_+ 
Pot/m. The interference terms are in fact easily found to be vanishingly 
small, because the overlap of the two Gaussians centered at q~ is 
practically zero. It is easy to work out the mean square values of q,p by 
means of (A24). We have: 

(Aq) 2 =(Aqo)2+ (APo)2t2/m2 + 4 P+P_ po2t2/m 2, (A25) 

(Ap)2= (APo)2 + 4P+P_ po 2. (A26) 

Now one has, in addition to the terms which describe the spread of the 
individual beams, also the terms which take into account the spread in the 
position which arises from the possible presence of the particle in either of 
the two beams. If the lateral width of the individual beams is much smaller 

than their distance (namely if po>>APo, and t >>hm/PoAPo ), the 
uncertainty product reduces to the classical expression 

(Aq AP)c/= 4 P+P. po2t/m, (A27) 

which represents the effect of the uncertainty -+Po in the momentum of the 
particle on the uncertainty of its position. Here again, if we measure the 
position and we find the particle in the region occupied by the beam with 
momentum +Po, we have to conclude that it was in that beam even before 
we made the measurement. The probabilities P_+ represent therefore our 
ignorance and not an intrinsic delocalization of the particle. 

The example of the Stern Gerlach device shows therefore that our 
interpretation and the conventional one have very different implications. 
For us the particle is already in one of the two beams before its detection 
by a counter which may have been placed on its path. The counter is 
discharged because the particle was already in the beam which impinges on 
it. We stress that this does not imply that coherence has been destroyed 
once and for all. In fact if the two beams are superimposed again, the 
occupied phase space is not anymore the union of two classically separated 
regions, and therefore the typical quantum interference occurs again. In our 
picture the reduction of the wave function is simply a consequence of the 
additional information acquired on the state of the particle which allows us 
to change our description of it, and no problem arises. 
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For the conventional interpretation it is the other way round: The 
counter's discharge localizes the particle in the region where it occurs, 
inducing an abrupt change in the physical entity represented by the wave 
function. In this case, as already discussed at length, one has to explain 
many puzzling features of this sudden and irreversible change of the 
particle's properties. 
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