

Amplified Phase-Conjugate Reflection of $\lambda = 10.51 \,\mu\text{m}$ Radiation in Gaseous SF₆

L. T. Bolotskikh and A. K. Popov

L. V. Kirensky Institute of Physics, USSR Academy of Sciences, Siberian Branch, SU-660036 Krasnoyarsk, USSR

Received 21 October 1982/Accepted 7 February 1983

Abstract. Phase-conjugate reflection at the $P(12) \text{ CO}_2$ line ($\lambda = 10.51 \,\mu\text{m}$) has been obtained in gaseous SF₆ with a power reflection coefficient of 220% and an energy reflection coefficient of 115%.

PACS: 42.65

Optical phase conjugation is interesting for its ability to correct optical aberration of radiation passing through inhomogeneous media, to provide optimum focusing of light pulses in plasma studies, etc. [1, 2]. The possibility of optical phase conjugation of CO_2 -laser radiation in resonant media [3–6] is of a particular interest.

This paper reports on the study of phase-conjugate reflection of CO_2 -laser radiation at the vibrational molecular transitions in SF₆ by degenerate four-wave mixing. The reflection has been obtained with the power and the energy of the reflected radiation exceeding those of the probe wave.

Experimental

The experimental apparatus used is shown in Fig. 1. As a pump source, single-mode radiation (TEM_{00q}) of a pulsed TEA CO₂-laser "1" tuned with a grating (100 lines/mm, blaze angle: 30°) was used. The temporal behavior of output pulse has the shape of a narrow peak, on a wide background, with a duration of $\tau_{0.5} = 100$ ns and $\tau_{0.1} = 1.5 \,\mu$ s. A germanium 50% beam splitter "2" devided the CO₂-laser radiation into 3 beams. Two of them, of approximately equal intensity, were reflected from the mirrors "3" and formed counterpropagating pump waves in the gaseous medium SF₆. The third one, of lower intensity, was reflected from another face of the beam splitter "2" to form a probe wave. It was directed into the cell "5" by a ZnSe beam splitter "4". To provide a better overlap with the pump beam, the lens "6" was used to focus the probe wave. Four-wave mixing of the pump and probe waves in SF_6 results in a third-order polarization causing a phase-conjugate wave counterpropagating to the probe one. This radiation may be treated as a result of phase-conjugate four-wave-mirror reflection of the signal wave. The reflected wave was selected and recorded by the detector "12" consisting of a photon-drag detector and a Ge-Au photoresistance $(\tau_{\text{const}} = 1 \text{ ns})$ $(\tau_{const} \sim 2 \,\mu s)$. To ensure operation in the linear of the photoresistance, a preliminary calibrated attenuators "11" were used. To find the reflection coefficient, the recording system was calibrated with the 100% mirror "7". A precisely backward-travelling probe wave reflect-

Fig. 1. Experimental arrangement

Fig. 2a and b. Reflection-coefficient dependence on SF₆ pressure [Torr] at $\lambda = 10.51 \,\mu\text{m}$ for the P(12) CO₂-laser line: (a) $I_p = 6.25 \,\text{MW/cm}^2$; (b) $I_p = 3 \,\text{MW/cm}^2$

ed from mirror "7" passed through the ZnSe beam splitter "4" and entered the photodetector "12". The signal obtained corresponded to a 100% reflection. The reflection coefficient for power was measured by a photon-drag detector and that for energy by a photoresistor.

Results

Experimental studies of the dependence of the reflection coefficient on the pump wavelength for the discussed scheme showed, unlike [4, 5], that the maximum reflection coefficient corresponds to the P(12) output line ($\lambda = 10.51 \,\mu\text{m}$). It should be noted that for each generating line there is own optimum SF₆ pressure.

Figure 2 illustrates the dependence of energy reflection coefficient R_e for the P(12) CO₂-line on the SF₆ pressure at two different pump intensities I_p . For $I_p = 6.25$ MW/cm² (Curve *a*) the maximum energy reflection coefficient is $R_e \simeq 115\%$ and the power one $R_p \simeq 220\%$; they were obtained at a SF₆ pressure of P = 34 Torr. At P = 38 Torr a dip is observed, while at lower pump intensities $I_p = 3$ MW/cm² (Curve *b*) the dip is absent.

The dip appearance is obviously, caused by the competing coherent parametric and noncoherent linear and nonliear processes in a strong pump field. It is interesting that just in this pressure region $(P \simeq 38 \text{ Torr})$ at $I_p = 6.25 \text{ MW/cm}^2$ the pressure dependence of the transmission coefficient for one of the pump waves has a plato. This plato was not observed at $I_n = 3 \text{ MW/cm}^2$. The study of the reflectioncoefficient dependence on the pump intensity at the fixed pressure of P = 34 Torr showed that the growth is faster than quadratic. A similar peculiarity has been observed in [4] when studying nonliear optical phase conjugation for the P(20) CO₂-laser line. The study of the dependence of the reflected light power on the probe-wave intensity at the fixed pump intensity $I_n = 6.25 \text{ MW/cm}^2$ showed a deviation from linearity at $I_{\text{probe}}/I_p > 5 \times 10^{-2}$.

In conclusion, using degenerate resonant four-wave mixing in gaseous molecular media provides, at optimum conditions, an effective amplification of the reflected conjugate radiation.

References

- 1. A. Yariv: IEEE J. QE-14, 650 (1978)
- 2. C.R. Giuliano: Phys. Today 4, 27 (April 1981)
- R.C. Lind, D.G. Steel, M.B. Klein, R.L. Abrams, C.R. Giuliano, R.K. Jaim: Appl. Phys. Lett. 34, 457 (1979)
- 4. D.G. Steel, R.C. Lind, J.E. Lam: Phys. Rev. A 23, 2513 (1981)
- 5. S.D. Balitsky, L.T. Bolotskikh: Pis'ma Zh. T. F. 8, 52 (1982); Preprint IFSO-178 F, Krasnoyarsk, 1981, 10p
- N.G. Basov, V.I. Kovalev, M.A. Musaev, F.S. Faizulov: Preprint No. 204 (FIAN, Moscow 1981)