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Abstract. Planar (co)sinusoidal conductivity (absorption) transmission gratings are ana-
lyzed using rigorous coupled-wave theory. The first-order and higher-order diffraction
efficiencies are determined over the entire range of possible conductivities and Bragg angles
of incidence (or equivalently, grating periods) for H-mode polarization incident plane
waves. The maximum possible first diffracted order efficiency is found to be 5.26%.
Rigorous results are compared to approximate results from the Raman-Nath theory and
the two-wave first-order coupled-wave (Kogelnik) theory. A regime parameter, ¢, is defined
which delineates the regions of Raman-Nath diffraction behavior (¢, <1) and the region of
two-wave first-order diffraction theory behavior (¢,>>1). Likewise, the angular selectivity
characteristics of conductivity gratings are determined from rigorous theory and are
compared with corresponding results from approximate theory.

PACS: 42.20, 42.40

Optical diffraction by planar transmission gratings is a
subject of fundamental importance in optics. Fields of
application include acousto-optics, integrated optics,
quantum electronics, holography, and spectroscopy.

Grating device functions include laser-beam deflection, .

modulation, coupling filtering, distributed feedback,
distributed Bragg reflection, holographic beam com-
bining, wavelength multiplexing, and wavelength
demultiplexing.

A rigorous coupled-wave theory (without approxi-
mations) has recently been formulated for lossless
dielectric gratings with relative permittivity {dielectric
constant) modulation [1]. This analysis has been
shown to be general and the approximations used in
previous theories have been explicitly quantified {2]. It
is the purpose of this paper: 1) to extend the rigorous
coupled-wave analysis to {(co)sinusoidal conductivity
{absorption) gratings, 2) to show that the maximum
diffraction efficiency is 5.26 % (rather than 3.70 % from
Kogelnik theory [3] or 4.80% from Raman-Nath
theory [4] for these gratings), 3) to define the diffrac-
tion regimes and their boundaries for transmission
absorption gratings, and 4) to determine rigorously the

angular selectivity characteristics of these gratings and
compare them to those from approximate theory. To
assist in isolating the basic diffraction characteristics
from other physical effects, the fundamental case of the
same permittivity inside and outside the grating, an
unslanted grating {fringes perpendicular to surface),
and H-mode polarization {electric field perpendicular
to the plane of incidence and perpendicular to the
grating vector) is treated.

1. Theory

1.1. Conductivity Grating

The gratings analyzed in this work have a conductivity
of the form

g(x)=0,+0,cosKx. (1)

The grating is unslanted with grating vector K (of
magnitude K =27/, A being the grating period) along
the x-axis. The planar surfaces of the grating medium
are at z=0and z=4d. The plane of incidence is the x — z
plane and thus all quantities are invariant in the
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y-direction. The permittivity € of the grating is con-
stant and equal to the permittivity of the surrounding
medium. The permeability u is that of free space. In
terms of these parameters the attenuation factor a(x) is

ox)=w(ue) B[ +(o/we)*] 2 - 111172, (2)

where w is the angular frequency of the incident light
wave. The primary quantities of interest here are the
diffraction efficiencies of the first-order and higher-
order transmitted diffracted waves. In particular, the
maximum value of the first-order diffraction efficiency
is obtained for the total range of conductivities and
grating periods at Bragg incidence.

1.2. Rigorous Coupled-Wave Theory

The rigorous coupled-wave equations for an unslanted
{co)sinusoidal conductivity grating for H-mode polar-
ization are

d*S{z) 4=n{. g, L o2 dS{z)
dzz —T(J—E;—'SOCOS 0) dZ
27\ . T
+ (7{) i{m— l)Si(Z) -] 10'1"10[51&r 1(Z)+Si— 1(2)] =0,

&)

where S,z) is the normalized amplitude of the i*" space-
harmonic field at any point within the modulated
region, / is the free space wavelength of the incident
plane wave, €, is the permittivity of free space, ¢, is the
relative permittivity (dielectric constant) inside and
outside of the grating, &' is the angle of incidence in the
input region,

m=2Ael?sinf'/A 4)

is the Bragg condition for an unslanted absorption
grating (m= 1 for incidence at the first Bragg angle, 0;),
1o ="{Ho/€0)"/* is the characteristic impedance of free
space, and f, is the permeability of free space. These
rigorous coupled-wave equations can be solved by
state-variable methods [5]. Then with the application
of electromagnetic boundary conditions (continuity of
tangential E and tangential H at z=0 and z=d), the
diffracted fields and thus the diffraction efficiencies
can be calculated for any order, reflected or
transmitted [1].

1.3. Two-Wave First-Order Theory

In this approximation to the rigorous theory
(Kogelnik theory [3]), the only orders retained in the
analysis are i=0 and +1; the second derivatives of
field amplitudes are assumed negligible; and the
boundary conditions on the two space-harmonic field
amplitudes are assumed to be S,(0)=1 and §,(0)=0.
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The diffraction efficiency for the first-order transmitted
wave according to this theory is given by

—MgT0d ) .\ 5 Mo0,d
DE, = h
1 =3P (s(l)/ 2 cos 9’) s (48(1)/ 2 cost’

and the zero-order (undiffracted) transmitted efficiency
is predicted to be

)

’700'1d ) (6)

— o004 2
DE, =exp —10%0% ) coshz(-To%ié
0 =EXP (s})/ 2 cos 6’) cos (48(1)/ 2 cost)’

The maximum first-order diffraction efficiency occurs
when a, =0, and 1,0,d/2¢5/* cos®/ =In3. This maxi-
mum efficiency bas a value of DE, ., =1/27~3.70%.
The results of this well-known two-wave, first-order
approximation are used as a comparison for the results

obtained from rigorous theory.

1.4. Multiwave First-Order Theory Without Dephasing

In this approximation to the rigorous theory (an
extension of the Raman-Nath theory of phase gratings
[6-8] to absorption gratings [4]), the second de-
rivatives of the space-harmonic field amplitudes are
assumed negligible, dephasing from the Bragg con-
dition is ignored, and the boundary conditions on the
space-harmonic field amplitudes are assumed to be
So(0)=1 and S(0)=0 for i+0. The diffraction ef-
ficiency predicted for any transmitted diffracted order i
is gtven by

—1g00d \ (o[ Mo014
DE.= I 7
i~ CXP (8(1)/2 ) ’(23(1)/2 cost')’ @

cost

where I, is a modified Bessel function of the first kind
of integer order i The quantity i is equal to the
diffracted order. The maximum first-order diffraction
efficiency occurs when o, =0, and 1,6,d/2e5'* cost’
=1.545 and has a value of DE, , ~4.80% The
results of this multiwave, first-order theory without
dephasing are used as a comparison for the results

obtained from rigorous theory.

2. Diffraction Characteristics

To determine the diffraction characteristics of planar
(co)sinusoidal conductivity gratings, the first-order and
higher-order diffraction efficiencies were calculated
using the rigorous coupled-wave theory. The maxi-
mum first-order transmitted diffraction efficiency was
determined for each value of conductivity modulation
and Bragg angle of incidence (or equivalently, the
grating period). The rigorously-determined diffraction
efficiencies were then compared with results from the
two-wave first-order coupled-wave (Kogelnik) theory
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Table 1. Maximum diffraction efficiencies for sinusoidal conductive gratings. The maximum diffraction efficiencies (given in percent) are shown
for each combination of conductivity and Bragg angle. The amplitude of the conductivity modulation in each case is equal to the average
conductivity of the grating. The indices of refraction inside and outside of the grating are equal

g Angle of incidence (at first Bragg angle)
[mho/m]
sTHL9) s/ s~H1/5) sT1(1/3)
1° 5° 6.38°  821° 10° 11.54°  15° 19.47°  20° 25° 30° 35¢ 40° 45°

1 3.704 3700 3699 3698 3.698  3.704 3702 3704 3.704 3698 3703 3696 3703  3.704
10 3760 3700 3700  3.691  3.698 3704 3702 3704 3704 3.698 3703 3696 3703 3704
102 4687 3710 3703 3700  3.698 3704 3702 3704 3704 3.698 3703 3696 3.703 3704
103 4800 4390 4118 3836 3759 3737 3714 3713 3705 3.698 3702 3695 3.701 3700
5%x10° 4794 4775 4751 4659 4498 4385 4000 3857 3745 3683 3675 3657 3.609 3575
9,375 4777 4797 4802 4788 4743 4682 4459 4251 4015 3674 3607 33562 3529 3454
10% 4773 4791 4799 4794 4754 4704 4499 4319 4046 3673 3596  3.557 3499 3432
14,375 4.747 4775 4789 4808 4807 4787 4659 4627 4332 3693 3515 3420 3330 3.230
28,125 4641  4.666 4688 4748 4787 4881 4793 5126 4851 3590 3275 3129 3.020 2906
5 x10* 4481 4520 4552 4635 4700 4837 4688 5256 4906 3646 3137 2927 2777 2639
55,937 4450 4488 4512 4604 4672 4812 4673 5260 4911 3648  3.139 2900 2730 2.576
10° 4272 4320 4362 4474 4526 4717 4518 4197 4849 3622 3062 2721 2493 2295
5x10° 3441 3505 3569  3.744 3793 4050 3736 4473 4151 3141 2642 2318 2114 1981
10° 3053 3117 3180 3353 3417 3687 3408 4253 3928 3001 2558 2279 2102 1993

A
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and the Raman-Nath theory. The regions of validity of
these approximate theories were then delineated.
Similarly, the angular selectivity characteristics were
calculated using rigorous theory and compared with
results from approximate theory.

FIRST-ORDER
{KOGELNIK)
THEORY

{percent}

2.1. Maximum Diffraction Efficiency

The maximum first-order transmitted diffraction ef-
ficiencies in percent for a range of Bragg angles of
incidence and grating conductivity amplitudes are
presented numerically and graphically in Table 1 and
Fig. 1, respectively. The conductivity modulation
amplitude is always equal to the average conductivity
value, as this is necessary for maximum diffraction
efficiency. The wavelength of the incident light is
500 nm, and the grating period is varied to keep the
angle of incidence always at the first Bragg angle
{m=1). The relative permittivity (dielectric constant)
both inside and outside the grating is the same in order
to eliminate the effects due to discontinuities in the
average index of refraction. For near-normal incidence
and lower values of conductivity, the maximum dif-
fraction efficiency tends to the value of 4.80 % predicted
by the Raman-Nath multiwave theory, which neglects
dephasing. For conditions of near-normal incidence,

DIFFRACTION
EFFICIENCY

Fig. 1. Maximum diffraction efficiencies for sinusoidal conductive
gratings

waves are evanescent and rigorous multiwave theory
may be approximated in practice by a two-wave

there are many closely angularly-spaced propagating
diffracted orders and dephasing is indeed expected to
be of minor importance. For larger Bragg angles of
incidence and lower values of conductivity, the maxi-
mum diffraction efficiency tends to the value of 3.70%
predicted by the Kogelnik two-wave first-order theory.
For these larger angles of incidence, the higher-order

calculation.

A significant structural feature in the resulting maxi-
mum diffraction efficiency surface (Fig. 1) occurs for
those Bragg angles of incidence at which higher-order
diffracted waves are at the transition from propa-
gating to evanescent (cut-off). For example, the
angles sin”!(1/9)~6.38°, sin~'(1/7)~8.21°, and



18

W. E. Baird et al

Table 2. Example fundamental and higher-order diffraction efficiencies for a Bragg angle incidence of 1.00° for sinusoidal conductivity gratings
according to the Raman-Nath, Kogelnik, and rigorous coupled-wave theories. The first case (¢ =1 mho/m) is in the Bragg regime (Kogelnik
theory) and the second case (6, = 10® mho/m) is in the Raman-Nath regime. Other parameters are 1=0.5 pm, A=14.325 um, 6, =0,, and

thickness chosen to maximize DE,

Theory 0, 0, Diffraction efficiency [ %]

[mho/m] DE, DE, DE, DE, DE, DE,
Raman-Nath 1 8.12 x10? 19.6 4.49 3.05x107! 9.66 x1073 1.75 x10™* 2.05 x107°
Kogelnik 1 8.12 x10* 14.9 3.70 - - - -
Rigorous coupled-wave 1 8.12 x 10! 14.9 3.70 1.38x 107 577 x1071° 604 x107% 228 x107%2
Raman-Nath 103 8.12 x1072 13.0 4.80 598 x107! 3.61 1072 1.27 x1073 293 x107°
Kogelnik 10° 8.12 %1072 7.84 330 - - - -
Rigorous coupled-wave 103 8.12 x1072 13.0 480 598 x10°! 3.61 x1072 127 x1073 285 %1073

sin” 1(1/5)~11.54° exhibit local diffraction efficiency
maxima in the surface and correspond to transitions
from 10 to 8 transmitted propagating waves, 8 to 6
waves, and 6 to 4 waves, respectively. For the angle
sin”}(1/3)~19.47° and a conductivity of 55,937 mho-
s/m, the global maximum of 5.260 % occurs in the first-
order transmitted wave diffraction efficiency. This
angle marks the transition from 4 forward-diffracted
waves to 2 waves (i=—1 and +2 become cut-off).
Other transitions, of course, occur for specific angles
less than sin ™ (1/9). However, the resulting local maxi-
ma are masked by the overall Raman-Nath behavior
of the surface in that region.

2.2. Diffraction Regimes

The regime where the two-wave first-order theory
accurately predicts the diffraction characteristics is
often referred to as the “Bragg regime”. The region
where Raman-Nath theory is accurate is called the
“Raman-Nath regime”. These regions may be distin-
guished by a regime parameter. The conductivity
grating regime parameter ¢, is defined as

_ 4ri
B ’7001/12

0 ®)
by analogy to the regime parameter ¢ for phase
gratings [9-11] which is

0=21%e, A%, 9)

where ¢, is the amplitude of the relative permittivity
modulation of the phase grating. The condition g, =1
separates the ¢ — 6 plane into two regions as shown in
Fig. 1. For the region of ¢, >1, which includes large
Bragg angles of incidence (small grating periods), the
two-wave first-order {Kogelnik) result as given by (5)
produces accurate results for the fundamental dif-
fracted order (i= +1) for conductivities up to about
10® mho/m. In the g, > 1 regime, the transmitted power
is concentrated primarily in the i=0and i= + 1 orders.

In fact, the higher-order diffraction efficiencies calcu-
lated by rigorous theory were found to obey the
condition

Y DE;<1/g2. (10)
i*0,1
That is, the sum of all of the higher-order diffraction
efficiencies is less than 1/g2. This is exactly analogous
to the Bragg regime two-wave criterion for phase
gratings [11]. Also for ¢_>1, the values of the trans-
mitted wave (i=0) efficiency calculated by rigorous
theory were compared with the values predicted by (6)
from Kogelnik’s theory. Good agreement was again
found except at high conductivities. An example g, >1
case showing this agreement is given in Table 2. Since
two-wave first-order theory neglects all diffracted or-
ders except the i=0 and i=+1 orders, there are no
predictions for the higher-order waves using this
theory and these are indicated by dashes in Table 2.
For the region of ¢, <1, the diffraction efficiencies of
all diffracted orders (in addition to the i= +1 order)
were calculated by rigorous theory and then compared
with the values predicted by the Raman-Nath theory,
(7). The ¢,<1 regime includes near-normal Bragg
incidence (large grating periods). In this region the
Raman-Nath formula as given by (7) was found to
produce accurate results for conductivities up to about
5 x 10* mho/m. This close agreement for the first-order
diffracted wave is apparent in Table 1 and Fig. 1. For
the zero-order and higher-order diffraction efficiencies,
similar good agreement was found. A single typical
0,<1 case showing the agreement with Raman-Nath
theory is included in Table 2.

2.3. Angular Selectivity

A Bragg condition occurs whenever m in (4) is an
integer. Dephasing from the Bragg condition may be
produced for a fixed grating by changing the angle of
incidence and/or the wavelength. For m=1, it is the
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first or fundamental Bragg incidence. In this case, there
is efficient power transfer from the incident wave to the
i= +1 diffracted order. Mathematically, this is due to
the factor (m—i) being zero in the rigorous coupled-
wave equations, (3). This S/z) term in the rigorous
coupled-wave equations represents dephasing from the
Bragg condition. When it is zero, there is no dephasing
and Bragg incidence occurs. The two-wave first-order
coupled-wave analysis of Kogelnik retains the effects
of dephasing from the Bragg condition. The Raman-
Nath theory neglects this term entirely, and any angle
of incidence and wavelength is treated as Bragg
incidence.

The angular selectivity of a grating is a measure of the
sensitivity of the diffraction to changes in the angle of
incidence. The angular selectivity, 46, may be defined
as the full angular deviation about the first Bragg angle
(m=1) which causes a reduction in the diffraction
efficiency to one half the value at the Bragg angle. This
angular selectivity may be calculated from rigorous
coupled-wave theory or from approximate two-wave
first-order coupled-wave theory since these theories
include dephasing effects. The angular selectivity is
given by

A0=0%—-0", (11
where 8% and 6~ are the angles of incidence, greater
than and less than the Bragg angle, respectively, at
which the diffraction efficiency has dropped to one half
of the value at the Bragg angle. From two-wave first-
order (Kogelnik) theory, these quantities are given by

sinfy +(EA/nd) [cos? 0y — (EA/nd)*] 1/2}
1 +{¢EA/nd)? .

6+ =sin~* {
(12)
The quantity £ is a dephasing parameter. If £ =0, there
is no dephasing and 6* =80, indicating 46=0 (in-
cidence at Bragg angle). For the maximum efficiency
(DE{ x=1/27) in this theory, it is £=0.8952. The
angular selectivity may not be calculated from Raman-
Nath theory since that theory does not include any
dephasing effects.
A comparison of some angular selectivity results from
rigorous theory and from Kogelnik theory are shown
in Table 3. In each case the first Bragg angle 6, =30°,
the wavelength A=500nm, and the grating is fully
modulated ¢, =g, For each conductivity, the thick-
ness that maximizes the first diffracted order power is
used. For relatively thick gratings, the rigorous theory
and the Kogelnik theory predict the same angular
sensitivities. For high conductivity thin gratings, the
angular selectivity, 46, approaches approximately
80°. However, approximate two-wave first-order
(Kogelnik) theory, (12), predicts that the angular selec-
tivity approaches 180° in the limit of increasing
conductivity.

19

Table 3. Angular selectivity for sinusoidal conductive gratings. The
full angular deviation about the first Bragg angle, 46, that causes a
reduction in the diffraction efficiency to one half of the value at the
Bragg angle is given. Both the approximate value of 46 from Kogel-
nik’s two-wave first-order coupled-wave theory and the value from
the present rigorous theory are shown. In each case 6y=30°
4=500 nm, and the grating is fully modulated. The indices of refrac-
tion inside and outside of the grating are equal

a d Af [degrees]
Kogelnik’s Rigorous

[mho/m] [mm] theory theory
1071 5.05 x10* 5.08 x107* 5.08 x10™*

{ 5.05 5.08 x1073 5.08 %1073
10 5.05 x107! 5.08 x1072 508 x10~2
10? 505 x107? 5.08 x107! 5.08 107!
10® 5.05 x1073 5.07 5.08
10% 516x107% 4.69 x 10* 5.06 x10!
10° 8.85 x1073 1.37 x10% 7.83 x10!
10° 1.07 1073 1.75 x10? 7.79 x10!
107 1.02 x107¢ 1.79 x10? 7.84 x10*

3. Summary and Discussion

The rigorous coupled-wave equations for (co)-
sinusoidal conductivity (absorption) gratings have
been presented. These were then solved subject to the
appropriate electromagnetic boundary conditions for
the first-order and higher-order transmitted diffraction
efficiencies for the entire range of possible conducti-
vities and first Bragg angles of incidence {equivalent to
the range of possible grating periods). These results
were then compared to results from the Raman-Nath
and two-wave first-order (Kogelnik) approximate
theories. Example results are shown in Table 2. The
global maximum diffraction efficiency for the first-
order transmitted diffracted wave was found to be
5.26 % rather than 4.80 % or 3.70 % predicted respective-
ly by the Raman-Nath and Kogelnik approximate
theories.

A conductivity grating regime parameter was defined
as g, =4nl/n,0,4* by analogy to the phase grating
regime parameter [9-11]. The condition ¢, =1 was
shown to delineate Raman-Nath diffraction behavior
{0, <1) and two-wave first-order (Kogelnik) diffraction
behavior (¢, >1). For sufficiently high conductivities
{(about 5x10*mho/m for Raman-Nath theory and
about 10° mho/m for Kogelnik theory), it was shown
that these approximate theories no longer give ac-
curate results even though the regime parameter con-
dition is met (Fig. 1).

The angular selectivity characteristics of these planar
conductivity gratings were analyzed using rigorous
coupled-wave theory. Two-wave first-order approxi-
mate theory was found to give accurate predictions for
conductivities up to about 10*mho/m, but overesti-
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mated the angular
ductivities.

H-mode polarization (electric field perpendicular to
the plane of incidence and perpendicular to the grating
vector) has been analyzed. However, E-mode polariza-
tion may be treated in the same manner by starting
with the E-mode coupled-wave equations, as shown in
[12].
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