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Abstract. Planar (co)sinusoidal conductivity (absorption) transmission gratings are ana- 
lyzed using rigorous coupled-wave theory. The first-order and higher-order diffraction 
efficiencies are determined over the entire range of possible conductivities and Bragg angles 
of incidence (or equivalently, grating periods) for H-mode polarization incident plane 
waves. The maximum possible first diffracted order efficiency is found to be 5.26%. 
Rigorous results are compared to approximate results from the Raman-Nath theory and 
the two-wave first-order coupled-wave (Kogelnik) theory. A regime parameter, 0~, is defined 
which delineates the regions of Raman-Nath diffraction behavior (0~ < 1) and the region of 
two-wave first-order diffraction theory behavior (0~> 1). Likewise, the angular selectivity 
characteristics of conductivity gratings are determined from rigorous theory and are 
compared with corresponding results from approximate theory. 

PACS: 42.20, 42.40 

Optical diffraction by planar transmission gratings is a 
subject of fundamental importance in optics. Fields of 
application include acousto-optics, integrated optics, 
quantum electronics, holography, and spectroscopy. 
Grating device functions include laser-beam deflection,. 
modulation, coupling filtering, distributed feedback, 
distributed Bragg reflection, holographic beam com- 
bining, wavelength multiplexing, and wavelength 
demultiplexing. 
A rigorous coupled-wave theory (without approxi- 
mations) has recently been formulated for lossless 
dielectric gratings with relative permittivity (dielectric 
constant) modulation [1]. This analysis has been 
shown to be general and the approximations used in 
previous theories have been explicitly quantified [2]. It 
is the purpose of this paper : 1) to extend the rigorous 
coupled-wave analysis to (co)sinusoidal conductivity 
(absorption) gratings, 2)to show that the maximum 
diffraction efficiency is 5.26 % (rather than 3.70% from 
Kogelnik theory [3] or 4.80% from Raman-Nath 
theory [4] for these gratings), 3)to define the diffrac- 
tion regimes and their boundaries for transmission 
absorption gratings, and 4) to determine rigorously the 

angular selectivity characteristics of these gratings and 
compare them to those from approximate theory. To 
assist in isolating the basic diffraction characteristics 
from other physical effects, the fundamental case of the 
same permittivity inside and outside the grating, an 
unslanted grating (fringes perpendicular to surface), 
and H-mode polarization (electric field perpendicular 
to the plane of incidence and perpendicular to the 
grating vector) is treated. 

1. Theory 

1.1. Conductivity Gratin9 

The gratings analyzed in this work have a conductivity 
of the form 

if(X) = a 0 + 0-1 COS Kx. (1) 

The grating is unslanted with grating vector K (of 
magnitude K = 2n/A, A being the grating period) along 
the x-axis. The planar surfaces of the grating medium 
are at z = 0 and z = d. The plane of incidence is the x - z  
plane and thus all quantities are invariant in the 
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y-direction. The permittivity e of the grating is con- 
stant and equal to the permittivity of the surrounding 
medium. The permeability/~ is that of free space. In 
terms of these parameters the attenuation factor c~(x) is 

~(x):co(#e)l/2{�89 +(a/e)~ )2]'/2-1]} 1/2 , (2) 

where e) is the angular frequency of the incident light 
wave. The primary quantities of interest here are the 
diffraction efficiencies of the first-order and higher- 
order transmitted diffracted waves. In particular, the 
maximum value of the first-order diffraction efficiency 
is obtained for the total range of conductivities and 
grating periods at Bragg incidence. 

1.2. Rigorous Coupled-Wave Theory 

The rigorous coupled-wave equations for an unslanted 
(co)sinusoidal conductivity grating for H-mode polar- 
ization are 

j 1/2 
dzsi(z) an . a o cos20, ] dSi(z) 

dz ~ ,~ ~ - e~ / dz 

+ i)Si(z)-J 2- alt/~ l(z) + s i -  l(z)] = 0 ,  

(3) 
where Si(z) is the normalized amplitude of the i th space- 
harmonic field at any point within the modulated 
region, 2 is the free space wavelength of the incident 
plane wave, e o is the permittivity of free space, e 0 is the 
relative permittivity (dielectric constant) inside and 
outside of the grating, 0' is the angle of incidence in the 
input region, 

m = 2Ae 1/2 sin 0'/2 (4) 

is the Bragg condition for an unslanted absorption 
grating (m = 1 for incidence at the first Bragg angIe, 0B), 
t/0 =(/~0/eo) a/2 is the characteristic impedance of free 
space, and / t  o is the permeability of free space. These 
rigorous coupled-wave equations can be solved by 
state-variable methods [5]. Then with the application 
of electromagnetic boundary conditions (continuity of 
tangential E and tangential H at z = 0  and z =  d), the 
diffracted fields and thus the diffraction efficiencies 
can be calculated for any order, reflected or 
transmitted [1]. 

1.3. Two-Wave First-Order Theory 

In this approximation to the rigorous theory 
(Kogelnik theory [3]), the only orders retained in the 
analysis are i = 0  and + 1; the second derivatives of 
field amplitudes are assumed negligible; and the 
boundary conditions on the two space-harmonic field 
amplitudes are assumed to be S0(0)= 1 and $I(0)=0. 

The diffraction efficiency for the first-order transmitted 
wave according to this theory is given by 

( - " ~ 1 7 6  ( ~~ / 
DE 1 = exp ~e~/2 cos 0') sinh2 ~4% 1/2 cos O'J (5) 

and the zero-order (undiffracted) transmitted efficiency 
is predicted to be 

-~o~od ( ~o~,d / 
DEo = exp ( e ~ , )  cosh2,4eI/2 cos 0,j. (6) 

The maximum first-order diffraction efficiency occurs 
when a l = a  o and tloaod/2eUZcosO'=ln3. This maxi- 
mum efficiency has a value of DE 1 . . . .  = 1/27-~ 3.70 %. 
The results of this well-known two-wave, first-order 
approximation are used as a comparison for the results 
obtained from rigorous theory. 

1.4. Multiwave First-Order Theory Without Dephasin 9 

In this approximation to the rigorous theory (an 
extension of the Raman-Nath theory of phase gratings 
[6-8] to absorption gratings [4]), the second de- 
rivatives of the space-harmonic field amplitudes are 
assumed negligible, dephasing from the Bragg con- 
dition is ignored, and the boundary conditions on the 
space-harmonic field amplitudes are assumed to be 
So(0)=1 and Si(0)=0 for i+0.  The diffraction ef- 
ficiency predicted for any transmitted diffracted order i 
is given by 

( - t / ~ 1 7 6  tl~ I 
DEi=exp~8ol/2 cos0'] ~2eI/2cos0']' (7) 

where I i is a modified Bessel function of the first kind 
of integer order i. The quantity i is equal to the 
diffracted order. The maximum first-order diffraction 
efficiency occurs when a t = a  o and rfoaod/2e~/2cosO' 
---1.545 and has a value of DE 1 . . . .  -~4.80%. The 
results of this multiwave, first-order theory without 
dephasing are used as a comparison for the results 
obtained from rigorous theory. 

2. Diffraction Characteristics 

To determine the diffraction characteristics of planar 
(co)sinusoidal conductivity gratings, the first-order and 
higher-order diffraction efficiencies were calculated 
using the rigorous coupled-wave theory. The maxi- 
mum first-order transmitted diffraction efficiency was 
determined for each value of conductivity modulation 
and Bragg angle of incidence (or equivalently, the 
grating period). The rigorously-determined diffraction 
efficiencies were then compared with results from the 
two-wave first-order coupled-wave (Kogelnik) theory 
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Table 1. Max imum diffraction efficiencies for sinusoidal conductive gratings. The max imum diffraction efficiencies (given in percent) are shown 
for each combinat ion of conductivity and Bragg angle. The amplitude of the conductivity modulat ion in each case is equal to the average 
conductivity of the grating�9 The indices of refraction inside and outside of the grating are equal 

Angle ofincidence (at first Bragg angle) 
[mho /m]  

s-1(1/9) s 1(1/7) s-1(1/5) s-1(1/3) 

1 o 5 o 6.38 ~ 8.2t ~ 10 ~ 11.54 ~ 15 ~ 19.47 ~ 20 ~ 25 ~ 30 ~ 35 ~ 40 ~ 45 ~ 

1 3.704 3.700 3.699 3.698 3.698 3.704 3.702 3.704 3.704 3.698 3.703 3.696 3.703 3.704 
10 3.760 3.700 3.700 3.691 3.698 3.704 3.702 3.704 3.704 3.698 3.703 3.696 3.703 3.704 
102 4.687 3.710 3.703 3.700 3.698 3.704 3.702 3.704 3.704 3.698 3.703 3.696 3.703 3.704 
103 4.800 4.390 4.118 3.836 3.759 3.737 3.714 3.713 3.705 3.698 3.702 3.695 3.701 3.700 
5 x 103 4.794 4.775 4.751 4.659 4.498 4.385 4.000 3.857 3.745 3.683 3.675 3.657 3.609 3.575 
9,375 4.777 4.797 4.802 4.788 4.743 4.682 4.459 4.251 4.015 3.674 3.607 3.562 3.529 3.454 
10 4 4.773 4.791 4.799 4.794 4.754 4.704 4.499 4.319 4.046 3.673 3.596 3.557 3.499 3.432 
14,375 4.747 4.775 4.789 4.808 4.807 4.787 4.659 4.627 4.332 3.693 3.515 3.420 3.330 3.230 
28,125 4.641 4.666 4.688 4.748 4.787 4.881 4.793 5.t26 4.851 3.590 3.275 3.129 3.020 2.906 
5 x 104 4.481 4.520 4.552 4.635 4.700 4.837 4.688 5.256 4.906 3.646 3.137 2.927 2.777 2.639 
55,937 4.450 4.488 4.512 4.604 4.672 4.812 4.673 5.260 4.911 3.648 3.139 2.900 2.730 2.576 
105 4.272 4.320 4.362 4.474 4.526 4.717 4.518 4.197 4.849 3.622 3.062 2.721 2.493 2.295 
5 x l05 3.441 3.505 3.569 3.744 3.793 4.050 3.736 4.473 4.151 3.141 2.642 2.318 2.114 1.981 
106 3.053 3.117 3.180 3.353 3.417 3.687 3.408 4.253 3.928 3.001 2.558 2.279 2.102 1.993 

and the Raman-Nath theory. The regions of validity of 
these approximate theories were then delineated. 
Similarly, the angular selectivity characteristics were 
calculated using rigorous theory and compared with 
results from approximate theory. 

2.1. Maximum Diffraction Efficiency 

The maximum first-order transmitted diffraction ef- 
ficiencies in percent for a range of Bragg angles of 
incidence and grating conductivity amplitudes are 
presented numerically and graphically in Table 1 and 
Fig. 1, respectively. The conductivity modulation 
amplitude is always equal to the average conductivity 
value, as this is necessary for maximum diffraction 
efficiency. The wavelength of l:he incident light is 
500 nm, and the grating period is varied to keep the 
angle of incidence always at the first Bragg angle 
(m--1). The relative permittivity (dielectric constant) 
both inside and outside the grating is the same in order 
to eliminate the effects due to discontinuities in the 
average index of refraction. For near-normal incidence 
and lower values of conductivity, the maximum dif- 
fraction efficiency tends to the value of 4.80 % predicted 
by the Raman-Nath multiwave t!heory, which neglects 
dephasing. For conditions of near-normal incidence, 
there are many closely angularly-spaced propagating 
diffracted orders and dephasing iLS indeed expected to 
be of minor importance. For larger Bragg angles of 
incidence and lower values of conductivity, the maxi- 
mum diffraction efficiency tends to the value of 3.70% 
predicted by the Kogelnik two-wave first-order theory. 
For these larger angles of incidence, the higher-order 
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Fig. 1. Max imum diffraction efficiencies for sinusoidal conductive 
gratings 

waves are evanescent and rigorous multiwave theory 
may be approximated in practice by a two-wave 
calculation. 
A significant structural feature in the resulting maxi- 
mum diffraction efficiency surface (Fig. 1) occurs for 
those Bragg angles of incidence at which higher-order 
diffracted waves are at the transition from propa- 
gating to evanescent (cut-off). For example, the 
angles sin- ~ (1/9) _~ 6.38 ~ sin-1(1/7)_~8.21 ~ and 
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Table  2. Example  fundamenta l  and  h igher-order  diffraction efficiencies for a Bragg angle incidence of 1.00 ~ for s inusoida l  conduct iv i ty  gra t ings  
accord ing  to the R a m a n - N a t h ,  Kogeln ik ,  and  r igorous  coupled-wave  theories.  The  first case (er = 1 mho /m)  is in the Bragg regime (Kogeln ik  
theory) and  the second case (cq = 103 mho /m)  is in the R a m a n - N a t h  regime. Other  pa rame te r s  are  2 = 0 . 5  ~tm, A =  14.325 gm, cra =cr0, and  

th ickness  chosen  to max imize  D E  1 

Theory  % 0, Diffract ion efficiency [ %] 

[ m h o / m ]  D E  0 D E  i DE2 DE3 DE4 DEs  

R a m a n - N a t h  1 8.12 •  ~ 19.6 4.49 3.05 •  -1 9.66 •  3 1.75 x l 0  -4 2.05 •  -6 
Koge ln ik  1 8.12 x 10 t 14.9 3.70 - - 
R igorous  coup led-wave  1 8.12• 101 14.9 3.70 1.38 • 10 -4  5.77 •  -1~  6.04 •  -1~ 2.28 x l 0  22 
R a m a n - N a t h  103 8 .12 •  -2 13.0 4.80 5 .98 •  -1 3 . 6 1 •  2 1 . 27 •  3 2.93 • - s  

Koge ln ik  103 8.12 •  -2 7.84 3.30 - - 
R i g o r o u s c o u p l e d - w a v e  103 8.12 •  2 13.0 4.80 5.98 x l 0  1 3.61 x l 0  2 1.27 •  -3 2.85 x l 0  5 

sin- 1(1/5)~- 11.54 ~ exhibit local diffraction efficiency 
maxima in the surface and correspond to transitions 
from 10 to 8 transmitted propagating waves, 8 to 6 
waves, and 6 to 4 waves, respectively. For the angle 
sin-1(1/3)-~ 19.47 ~ and a conductivity of 55,937 mho- 
s/m, the global maximum of 5.260 % occurs in the first- 
order transmitted wave diffraction efficiency. This 
angle marks the transition from 4 forward-diffracted 
waves to 2 waves ( i = - 1  and +2  become cut-ofi). 
Other transitions, of course, occur for specific angles 
less than sin- 1(1/9). However, the resulting local maxi- 
ma are masked by the overall Raman-Nath behavior 
of the surface in that region. 

2.2. Diffraction Regimes 

The regime where the two-wave first-order theory 
accurately predicts the diffraction characteristics is 
often referred to as the "Bragg regime". The region 
where Raman-Nath theory is accurate is called the 
"Raman-Nath regime". These regions may be distin- 
guished by a regime parameter. The conductivity 
grating regime parameter 0~ is defined as 

0 ~ -  t/oO_iA 2 (8) 

by analogy to the regime parameter 0 for phase 
gratings [9-11] which is 

0 = 2"~2/gl A 2  , (9) 

where 81 is the amplitude of the relative permittivity 
modulation of the phase grating. The condition 0~ = 1 
separates the or- 0 B plane into two regions as shown in 
Fig. 1. For the region of 0~ > 1, which includes large 
Bragg angles of incidence (small grating periods), the 
two-wave first-order (Kogelnik) result as given by (5) 
produces accurate results for the fundamental dif- 
fracted order (i = + 1) for conductivities up to about 
10 3 mho/m. In the 0~ > 1 regime, the transmitted power 
is concentrated primarily in the i = 0 and i = + 1 orders. 

In fact, the higher-order diffraction efficiencies calcu- 
lated by rigorous theory were found to obey the 
condition 

2 DEi< 1/0 2. (10) 
i :t: O, 1 

That is, the sum of all of the higher-order diffraction 
efficiencies is less than 1/0 2. This is exactly analogous 
to the Bragg regime two-wave criterion for phase 
gratings [11-1. Also for 0~> 1, the values of the trans- 
mitted wave (i=0) efficiency calculated by rigorous 
theory were compared with the values predicted by (6) 
from Kogelnik's theory. Good agreement was again 
found except at high conductivities. An example 0~ > 1 
case showing this agreement is given in Table 2. Since 
two-wave first-order theory neglects all diffracted or- 
ders except the i = 0  and i=  + 1 orders, there are no 
predictions for the higher-order waves using this 
theory and these are indicated by dashes in Table 2. 
For the region of 0~ < 1, the diffraction efficiencies of 
all diffracted orders (in addition to the i=  + 1 order) 
were calculated by rigorous theory and then compared 
with the values predicted by the Raman-Nath theory, 
(7). The o~< l  regime includes near-normal Bragg 
incidence {large grating periods). In this region the 
Raman-Nath formula as given by (7) was found to 
produce accurate results for conductivities up to about 
5 x 10 4 mho/m. This close agreement for the first-order 
diffracted wave is apparent in Table 1 and Fig. 1. For 
the zero-order and higher-order diffraction efficiencies, 
similar good agreement was found. A single typical 
0~ < 1 case showing the agreement with Raman-Nath 
theory is included in Table 2. 

2.3. Angular Selectivity 

A Bragg condition occurs whenever m in (4) is an 
integer. Dephasing from the Bragg condition may be 
produced for a fixed grating by changing the angle of 
incidence and/or the wavelength. For m = 1, it is the 
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first or fundamental Bragg incidence. In this case, there 
is efficient power transfer from the incident wave to the 
i= + 1 diffracted order. Mathematically, this is due to 
the factor (m-i)  being zero in the rigorous coupled- 
wave equations, (3). This Si(z ) term in the rigorous 
coupled-wave equations represents dephasing from the 
Bragg condition. When it is zero, there is no dephasing 
and Bragg incidence occurs. The two-wave first-order 
coupled-wave analysis of Kogelnik retains the effects 
of dephasing from the Bragg condition. The Raman- 
Nath theory neglects this term entirely, and any angle 
of incidence and wavelength is treated as Bragg 
incidence. 
The angular selectivity of a grating is a measure of the 
sensitivity of the diffraction to changes in the angle of 
incidence. The angular selectivity, AO, may be defined 
as the full angular deviation about the first Bragg angle 
(re=l) which causes a reduction in the diffraction 
efficiency to one half the value at the Bragg angle. This 
angular selectivity may be calculated from rigorous 
coupled-wave theory or from approximate two-wave 
first-order coupled-wave theory since these theories 
include dephasing effects. The angular selectivity is 
given by 

AO=O + - 0 - ,  (11) 

where 0 § and 0- are the angles of incidence, greater 
than and less than the Bragg angle, respectively, at 
which the diffraction efficiency has dropped to one half 
of the value at the Bragg angle. From two-wave first- 
order (Kogelnik) theory, these quantities are given by 

~sin 0 B _+ ({A/nd) [COS 2 0 B -- (~A/gd)  2] 1/2 
0 -+ =sin-  1 [- [ + ( ~ d j ~  J" 

(12) 
The quantity ~ is a dephasing parameter. If { =0, there 
is no dephasing and 0-+=05 indicating AO=O (in- 
cidence at Bragg angle). For the maximum efficiency 
(DE1 . . . .  =1/27) in this theory, it is 4=0.8952. The 
angular selectivity may not be calculated from Raman- 
Nath theory since that theory does not include any 
dephasing effects. 
A comparison of some angular selectivity results from 
rigorous theory and from Kogelnik theory are shown 
in Table 3. In each case the first Bragg angle 05 = 30 ~ 
the wavelength 2=500nm, and the grating is fully 
modulated 0-1 = %. For each conductivity, the thick- 
ness that maximizes the first diffracted order power is 
used. For relatively thick gratings, the rigorous theory 
and the Kogelnik theory predict the same angular 
sensitivities. For high conductivity thin gratings, the 
angular selectivity, A 0, approaches approximately 
80 ~ . However, approximate two-wave first-order 
(Kogelnik) theory, (12), predicts that the angular selec- 
tivity approaches 180 ~ in the limit of increasing 
conductivity. 

Table 3. Angular selectivity for sinusoidal conductive gratings. The 
full angular deviation about the first Bragg angle, AO, that causes a 
reduction in the diffraction efficiency to one half of the value at the 
Bragg angle is given. Both the approximate value of AO from Kogel- 
nik's two-wave first-order coupled-wave theory and the value from 
the present rigorous theory are shown. In each case 0B=30 ~ 
2 = 500 nm, and the grating is fully modulated. The indices of refrac- 
tion inside and outside of the grating are equal 

a d AO [degrees] 

Kogelnik's Rigorous 
[mho/m] [mm] theory theory 

10 -1 5.05x101 5.08 •  4 5.08x10 -4 
1 5.05 5.08 x l0  3 5.08 • .3 

10 5.05 x l0  -1 5.08 x l0  -2 5.08 x l0  2 
102 5.05 x l0  -~ 5.08 x l0  -1 5.08 x l0  1 
103 5.05 x 10 -3 5.07 5.08 
104 5.16x 10 -4 4.69x 101 5.06 xl01 
105 8,85 xlO -5 1.37 xlO 2 7.83 xlO 1 
106 1.07 xlO -s  1.75 xlO 2 7,79 xlO* 
10 v 1.02 xlO -6 1.79 • 7,84 xlO i 

3. Summary and Discussion 

The rigorous coupled-wave equations for (co)- 
sinusoidal conductivity (absorption) gratings have 
been presented. These were then solved subject to the 
appropriate electromagnetic boundary conditions for 
the first-order and higher-order transmitted diffraction 
efficiencies for the entire range of possible conducti- 
vities and first Bragg angles of incidence (equivalent to 
the range of possible grating periods). These results 
were then compared to results from the Raman-Nath 
and two-wave first-order (Kogelnik) approximate 
theories. Example results are shown in Table 2. The 
global maximum diffraction efficiency for the first- 
order transmitted diffracted wave was found to be 
5.26 % rather than 4.80 % or 3.70 % predicted respective- 
ly by the Raman-Nath and Kogelnik approximate 
theories. 
A conductivity grating regime parameter was defined 
as G=4n2/rloalA2 by analogy to the phase grating 
regime parameter [9-11]. The condition G = I  was 
shown to delineate Raman-Nath diffraction behavior 
(G < 1) and two-wave first-order (Kogelnik) diffraction 
behavior (G> 1). For sufficiently high conductivities 
(about 5x  104mho/m for Raman-Nath theory and 
about 103 mho/m for Kogelnik theory), it was shown 
that these approximate theories no longer give ac- 
curate results even though the regime parameter con- 
dition is met (Fig. 1). 
The angular selectivity characteristics of these planar 
conductivity gratings were analyzed using rigorous 
coupled-wave theory. Two-wave first-order approxi- 
mate theory was found to give accurate predictions for 
conductivities up to about 104mho/m, but overesti- 
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m a t e d  the angular  selectivity for higher  con- 
ductivities.  
H - m o d e  po la r i za t ion  (electric field pe rpend icu la r  to 
the plane of  incidence and  pe rpend icu la r  to the gra t ing 
vector)  has been analyzed.  However ,  E -mode  polar iza-  
t ion m a y  be t rea ted  in the same manne r  by  s tar t ing 
with the E -mode  coupled-wave  equat ions ,  as shown in 

[121. 
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