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Abstract. It is shown by numerical analysis based on Lamb's equations of motion, that 
standing-wave lasers with purely homogeneously broadened emission lines exhibit regular 
multimode oscillations. Specifically, modes lying far from the line centre are quenched due 
to mode competition, and the amplitudes of the oscillating modes approach steady-state 
values. The stabilization of the amplitudes is normally accompanied, or followed, by an 
evolution of the phases towards a phase-locked regime, where the relative phases 
q0, = 2q5,- qS+ 1 - qS_ t [q5 phase in the n th mode, defined by (6)] attain either the value 0 or 
+ re. The build-up times for the relative phases are found to vary over a wide range. 

PACS: 42.50, 42.55, 42.60 

In preceding papers [1-3] we have studied theoreti- 
cally, within the framework of Lamb's gas laser theory 
[4], mode competition effects in gas lasers in the 
presence of strong homogeneous line broadening, in 
addition to Doppler broadening. One interesting result 
was the prediction of a hysteresis effect in the tran- 
sition between different stable two-mode regimes in 
Ar-ion lasers [1]. Furthermore, in case of multimode 
operation (more than two modes being oscillating) a 
chaotic behaviour has been found to exist for homo- 
geneous linewidths that exceed the mode spacing 
[2, 3]: The amplitudes in the various modes undergo 
drastic changes in the course of time, and a Stationary 
state with constant amplitudes, as predicted by the 
free-running approximation, is never reached. 
In the present paper we extend our previous studies to 
the case of strong, purely homogeneous line broaden- 
ing t. Such a situation will be realized, to a good 
approximation, in high-pressure CO 2 lasers, for in- 
stance. We again present numerical solutions of 
Lamb's equations of motion for lasers with Fabry- 
Perot type resonators that are completely filled with 
the active medium. It will be shown in the following 

Risken and Nummedal [5] were the first to predict multimode 
operation in this case. In contrast to our present analysis, however, 
they considered a ring-resonator configuration and actually found 
the multimode regime to occur only very far above threshold 

that the behaviour of such a laser is quite different 
from the chaotic one described above : The amplitudes 
in the modes tend to stationary values and, in addition, 
their phases become normally locked, so that a steady- 
state is actually attained. This phase locking strongly 
affects the temporal behaviour of the total intensity. 

1. Basic Equations 

Applying Lamb's formalism [4] to the case of a purely 
homogeneous laser line, we find the following equa- 
tions of motion (of. also [6]) 

n 2~K #,Q,a -- n 

"[cos~p~o~, G(#O~) - sin ~o~,F(po~)], (1) 

27 ~,~,~ ' 

" [cos ~,oo,F(#0o-)+ sin ~,o~,G(#0o-)]. (2) 

Here, /~  is the conveniently normalized amplitude in 
the n *h mode 

( gZ ] 1/2 
e~ (3) 
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where E. is the slowly varying amplitude of the electric 
field strength [Ref. 4, Eq. (11)], g is the gain at the line 
centre [see (5) below] and 

p 2  

X= (4) 
1 6 h  z 

denotes the coupling constant, p (assumed real) being 
the nondiagonal element for the electric dipole mo- 
ment. The constant 7 has the meaning of the homo- 
geneous linewidth multiplied by ~z. [We allow for 
values of 7 that are larger than (G + 7b) /2 ,  where G and 
G are the reciprocal lifetimes of the upper and the 
lower atomic level, respectively, thus taking into ac- 
count phase destroying processes like soft collisions,] 
The symbol G stands for the small-signal gain in the 

n tla mode 
g 

g. = (5) 

where (2 is the circular frequency at the line centre and 
co. the (circular) frequency at which the n th mode is 
oscillating. The quantity ~c represents the cavity losses 
(assumed equal in all modes), and q5 is defined by 

~b. = (co. - f2.)t + qG(t), (6) 

where O. is the cavity resonance frequency and cp.(t) 
the slowly varying phase for the n th mode. Finally, the 
abbreviation 

~ P u o ` , . - = 4 u - d ) o  + 4 ) o - ( a  . (7) 

has been used. 
The time is in units of to- ~. 

The coupling coefficients F ( # o a )  and G(#~er) are more complicated than in the Doppler limit [2, 3]. In explicit 
terms, they read 

[~a (2 -- cO. -t- coo -- Co ,̀ co -- coo (2 -- co ,̀ Q -- co. q- coo -- Co Co o -- Cò , (2 -- co~ 
- -  + + + 

F(~qo-) = ? 7 Y,~ 7 7 y,~ 7 [( ; )2][( 
1 + ~ -  co" Coo - co~ 1 + coo - co,, 1 + 

7a J l 

-- co. + coo -- co~ coo -- Co ,̀ (2 -- COQ (2 -- co. + co o -- co ,̀ coo -- co ,̀ coo -- ~ + + § 
G 7 7 7,~ 7 7 

4 
7a 

+ same with ~/a---~Tb]. (1 + c~oo + ~5.o), (8) 
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+ same with G--+Tb ~(l + 6o~ + 6,o). 
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(9) 
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In the so-called free-running approximation [6], only those terms are retained in (1) for which ~.~,, vanishes 
identically. Then (1) reduces to 

n 2 \ 1  ~ i 

where 

0.. = G(nnn) = 6y G + G 1 

O.i = 0~. = G(nii) + G(iin) =47 G + ?b 
7aG 

J74 1 +2c~ c~176 
+ 2  7 7 7a 

+ 

\ 7 / d  \ G / J  

COn - -  Q COl - -  ('On ~ n  - -  Q COl - -  ~ 
1+ + - - - +  

Y Y G 7 Y Y G 

CO i - -  f2  CO n - -  CO i 

74 [1+ ( ~ ) 2 ) [ 1 +  (c~176 ] [1+ ( _ ~ ) 2 ]  
\ G / ] 

) 

+ same with ya~Yb~. / (12) 

Since the amplitude equations are decoupled from the 
phase equations, the latter need no longer be 
considered. 

2. Details of the Numerical Treatment 
The full system (1, 2) has been integrated numeri- 
cally. In the calculations, the oscillation frequencies in 
(2, 5, 8, and 9) were replaced by the cavity resonance 
frequencies, which appears to be justified in the case of 
small cavity losses. For simplicity, we supposed the 
homogeneous linewidth to be mainly due to the decay 
of both the upper and the lower level, thus putting 

__1 y--g(G+yb). As in our previous work [2, 3], 13 modes 
labeled n=0,  _+l,..., + 6  were taken into account 
in our computer program. In general, we assumed the 
mode n = 0 does not coincide with the line centre, but 
rather is displaced from it by a certain fraction of the 
mode spacing c, towards higher fl'equencies. 
We examined numerically the evolution of the field 
amplitudes and phases in all the modes under con- 
sideration, starting from small amplitudes (/~n= 10 .4  
for all modes) and random phases. In the calculations, 
the ratio of g and ~c was held fixed, g/~c= 1.2. On the 

other hand, both the homogeneous linewidth in re- 
lation to the mode spacing Am (--Q~+ 1 -  f2), and the 
ratio of the decay constants ?a and G were varied. The 
same holds for the parameter c. It turned out, however, 
that the results are rather insensitive to changes in c. 
Moreover, the evolution of the field (apart from its 
initial stage, of course) proved to be independent of the 
initial amplitudes. 

3. Amplitude Stabilization 
Rather surprisingly, the amplitudes do not exhibit any 
irregular behaviour (as it is the case in the presence of 
strong Doppler broadening, in addition to large homo- 
geneous line broadening [2, 3]), instead they tend to 
stationary values in comparatively short times. As a 
consequence of mode competition a smaller number of 
modes are oscillating than would do so in the absence 
of mode coupling. Generally, such modes are quenched 
that are far from the line centre. Specifically, we found 
3-mode oscillation to exist in certain circumstances 
(see Figs. la and 2a). Increasing the homogeneous 
linewidth leads to a larger number of oscillating modes 
(see Figs. 3a and 4a). This is easily understood as a 
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Fig. la  and b. Evolution of the amplitudes (a) 
and the relative phase ~p=2~b o -  q51- q~-i (b) for 
Aco/7=0.134, Aco/7,=134.067, Ac~/?b=0.067 (7~/?b 
= 5  x 10-4), c=0.25. The number  of modes N that 
would oscillate in the absence of coupling is 7. (The 
time is in units of ~-1) 
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Fig. 2a and b. Same as Fig. 1 for Aco/7 =0.067, 
Aco/Ta = 0.25, Aa)/Tb =0.039 (7,/7b = 0.16), 
c =0.25 ; N = 1 3  
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Fig. 3a-c. Steady-state amplitudes (a) and evolution 
of the relative phases ~,  = 2 ( b , -  qS+ 1 - q~,,- 1 (b) and 
(c) for Aco/7=0.067, Aco/7o=67.034, Aco/Tb=0.0335 
(7a /Tb=5xl  0 4 ) , c = 0 ; N = 1 3  0 1 2 3 4 5 " t[104] 
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consequence of the corresponding broadening of the 
gain profile (5), as a function of n. At the same time, 
there is a tendency for the number of oscillating modes 
to get increased, when 7~ and 7b differ more and more. 
This is seen by comparing Figs. 2a and 3a. 
It should be noted that within any group of oscillating 
modes there are no "holes" (corresponding to sup- 
pressed modes). This is in a marked contrast to the 
situation encountered in the Ar-ion laser case [1]. 
When only a few modes oscillate, the mode nearest to 
the line centre has the greatest amplitude. This is, 
however, not the case for a larger number of oscillating 
modes (>  9), as becomes evident from Fig. 4a. 
For comparison, we performed also calculations in the 
free-running approximation (10). In this case, single- 
mode operation was predicted quite generally (the 
mode nearest to the line centre quenched all the 
remaining ones). Hence, the free-running approxima- 
tion cannot be applied, and it becomes obvious that 
the phase terms in the basic equations (1 and 2) play an 
important role. 

4. Phase Locking 

Our numerical analysis revealed that normally the 
amplitude stabilization is accompanied, or followed, 
by an evolution of the phases towards a phase-locked 
regime. Hence a steady-state is attained. Its existence 
is, in fact, compatible with the equations of motion 
[Ref. 6, p. 134], however, it is by no means trivial that 
the latter allow for stable stationary solutions. 

4.I. Three-Mode Operation 

In the 3-mode case, a detailed analytical treatment of 
the locking phenomenon has been given in [-Ref. 6, 
p. 129], which is based, however, on the assumption 

that the variations in the amplitudes can be neglected 
("decoupled approximation" ). 
In the following, we first briefly reproduce, in our 
notation, the theoretical results derived in E6]. It 
follows from (2), by simple algebra, that 
d~ 
d~- = d + I s sin~0 + 1 c cos~ 

- d + l s i n ( ~ - ~ 0 ) ,  (13) 

where 

~=2q~0-~1-~-1, (14) 
1 

d = ~ [2g0(~ - coo)- gl(a - coO- g- ~(a - co_ 1)] 

+1 

+ ~ EZ{F(ii-  1 ) + F ( -  l i i )+F(ii l)+F(li i)  
i = - 1  

- 2[F(iiO) + F(Oii)] } 

+2/~2F(000)-EZF(111)-/~ 2_ ~F( -  1 -  1 -  1), (15) 

I~=2E_ t E l [ G ( -  101)+ G(10-  1)] 

I c = - 2E_ tE~ [ F ( -  101) + V(10-  1)3 

+/~0z [ ~ 1 1 F ( 0 -  10) + EE~_~ F(010)I, (17) 

I 
qJo = - arctan ~,  (18) 

(14  (19t 1=is 1+%/. 

For convenience, we have labeled the modes - 1, 0, 1 ; 
of course, the above results hold for any three neigh- 
bouring modes. While the analysis in [6] was restricted 
to the discussion of the stationary case (d~p/dt = 0), we 
investigate more generally the approach to the steady 



192 W. Brunner  et ai. 

1 
tp - ~Po = 2 arctan - ~ + 

where the abbreviation 

state. In fact, (13) can be integrated, for Id/IJ < 1, to yield (cf. also [7]) 

l] 1/~_fd]fl+aexp[~(J)21tll, 

a =  

d {~(0)- po\ + 1_ ~ _  (~)2 
)-tan / ~ J 

d /~p(0)-~O~+l+ 1 ~ _ ( ~ )  2  tan / ) 

(20) 

(21) 

has been introduced. 
In the cases studied in our numerical analysis, the 
inequalities [dJ ~[lJ and Ilcl ~ll~l were fulfilled. In these 
circumstances (20) becomes very simple; to a good 
approximation, it reduces to 

q~(t) = 2 arctan ltan (~0)) eZt } . (22) 

It is evident from (22) that the steady-state value of ~p is 
determined by the sign of l: 

0 for l<0 (23) 
~(oo)= +__re for />0.  

In the first case one speaks of amplitude modulation 
(AM) phase locking, the second one has been termed 
frequency modulation (FM) mode locking [Ref. 6, 
p. 132]. 
The result (23) is the same as that obtained in [6; 
Eq. (22)], however, provides additional information 
about the time needed to actually attain the steady- 
state. 
Our numerical results presented in Figs. lb-4b are, in 
fact, in quantitative agreement with the prediction (22). 
In Fig. lb the parameters were chosen such that l<0. 
Hence ~p tends to zero, however, ]/[ is so small that the 
evolution proceeds rather slowly, and one recognizes 
that the "decoupled approximation" works excellently 
in these circumstances. In Fig. 2b, ~p approaches much 
faster its stationary value which equals -r~, since t is 
now positive. 

4.2. MuItimode Operation 
Interestingly, we found also in case of multimode 
operation that the relative phases 
~v =2~b-qS+ 1-q~,_1 (24) 

(but not necessarily all of them) attained stationary 
values which proved to be either 0 or + re, as in the 
3-mode case. 

This is illustrated by Figs. 3b and c and 4b. 
It should be noted that the relative phases ~ evolve on 
different time scales. One recognizes from Figs. 3b and 
c and 4b that the monotonic approach to the steady- 
state, as expressed by formula (22), is not a general rule. 
Moreover, Fig. 3b and c reveal that only partial mode 
locking may take place. This does not affect, however, 
the steady-state amplitudes which, in fact, are practi- 
cally attained when a time t of a few hundreds (in units 
of ~c- 1) has elapsed. 

5. Time Behaviour of the Total Intensity 

It is well known that the total intensity depends 
critically on the phases of the different oscillating 
modes. For illustration of this point, the total intensity 
has been plotted for the multimode oscillation repre- 
sented by Fig. 4. Figure 5a shows its temporal be- 
haviour in the steady-state. It is interesting to see that 
it varies only slightly. On the other hand, replacement 
of the actual (steady-state) phases by q5 =0 (perfect 
AM phase locking) yields excellent pulses (see Fig. 5b). 
To demonstrate how strongly the evolution of the 
phases affects the total intensity, we have associated 
the steady-state amplitudes with the (random) initial 
phases too. The result is shown in Fig. 5c. 
In conclusion, we have shown by numerical analysis 
that in case of strong, purely homogeneous line 
broadening the oscillating modes exhibit a regular 
behaviour; The amplitudes tend to stationary values, 
while the phases normally become locked. Hence, a 
steady-state is attained. 
Thus it is proved that stable stationary solutions to the 
equations of motion actually exist. 
This is in contrast to the situation encountered in the 
case of strong homogeneous line broadening, in the 
presence, however, of dominating Doppler broaden- 
ing, where (except stable two-mode oscillation [1]) the 
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Fig. 5a-c. Total normalized intensity I(z)= ~ E,E~,cos[(n-m)z+~b n-q~r~] vs. time z (in units of the reciprocal mode spacing A co-l) 
n , m  

corresponding to the steady-state amplitudes taken from Fig. 4a and a set of locked phases in accordance with the steady-state values for % in 
Fig. 4b (a), the phases q~, = 0 (b), and the initial (random) phases (c) 

multimode oscillations are of chaotic character [2, 3]. 
From this result it appears rather surprising that the 
stronger mode coupling connected with purely homo- 
geneous line broadening produces order rather than 
chaos. 
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