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Abstract. In contrast to previous models diffraction efficiencies of evanescent-wave 
holograms are calculated within the framework of a slab model that takes into account the 
finite thickness of the recording medium. This modification leads to characteristic 
diffraction efficiency oscillations with respect to reconstruction angle and medium thickness 
as well. One obtains higher diffi'action efficiency maxima and pseudo-optical tunnelling. 
The analysis covers TE-polarized fields. 

PACS: 42.40, 42.80 

The interference of the evanescent tail of a totally reflected reference wave with an arbitrary object wave provides 
an intensity pattern which is called evanescent-wave hologram (EWH) after having been recorded in a fotosensitive 
medium. The intrinsic properties of EWH's (see, for instance, [1-6]) are due to their specific grating patterns which 
are confined to the immediate vicinity of that boundary of the recording medium where total reflection took place. 
Two of these properties are: (i) the elegant way of image field separation from the strong unwanted zeroth 
diffraction order well suited to large aperture processing [8], by total reflection [3], and (ii) their compatibility 
with integrated-optics implementations. On the other hand, EWH's are useful to study the process of recording 
and retrieval of evanescent object waves in order to cross the wavelength-resolution limit [11] and to investigate 
the properties of waveguide holograms at least in a first step [7]. An interesting EWH implementation is the 
matrix storage device [8]. 
Due to their thin modulated region along the boundary, diffraction efficiency (DE) is a critical parameter for 
EWH's. Several models have already been published [3-6], determining DE without full consideration of the slab 
geometry and using the first Born approximation effectively. In contrast to those models, the aim of this 
contribution is to take into account the effect of finite hologram thickness (which is the thickness of the whole 
recording medium) during hologram reconstruction. By introducing a second sharp hologram interface (slab 
model) we are able to consider interference effects like those observed in [4] which are due to multiple reflections of 
the reconstruction wave and reconstructed field as well, and its superposition with scattering effects by the 
evanescent grating. Multiple reflections give rise to repeated interactions with the hologram pattern and should 
therefore enhance total DE. Additionally a medium "behind" the hologram of suitable high refractive index 
permits the formation of a homogeneously transmitted reconstructed wave even in the case of an evanescent 
scattered field inside the hologram ("pseudo-optical tunnelling"). 
In the first section we derive an integral equation describing the reconstruction process and the appropriate Green's 
function. At this stage we discuss the approximations made in [3, 5]. Having solved the integral equation in the 
first Born approximation we compare our numerical results with those predicted by Lee and Streifer [5], and with 
some experimental investigations [4]. The main consequences of our model are (i) strong oscillations of the 
angular selectivity and of the thickness dependence curves due to multiple wave interference, (ii) higher DE 
maxima, (iii) change of the peak shapes and (iv) pseudo-optical tunnelling. 
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Fig. 1. Hologram recording geometry (0, : critical angle of total reflection; nl, n2, n3: refractive 
indices (n 2 : recording medium before exposure; n 1, n 3 : surrounding media); El0 : object wave; 
E~r: reference wave; d: slab thickness). The hatched area indicates the interference pattern 
within the recording medium 

1. Recording and Reconstruction of the Evanescent-Wave Hologram 

Assuming translat ion invariance with respect to the y-direction (Fig. 1) we consider TE  polar izat ion only. The  time 
dependence e x p ( - i c o t )  is supposed th roughout  the paper. Just  like in [3, 5~ the real dielectric function e(x,z) 
characterizing the ho logram pat tern  is assumed as 

e(x, z) : n 2 + A(n~)+ 2KA(na~) e x p ( -  {2rx)cos [(flo - -  fir) Z -~ 720X] , ( la) 

e(x, z) = n~ + A(n~) + 2KA(n~) exp [- - (%0 + %~)x] cos [(rio - fl~)z], (lb) 

representing slanted (la) or unslanted (lb) a t tenuated  phase gratings. These gratings give the recorded interference 
pat tern of  a homogeneous  (la) or an evanescent  (lb) object wave 

E2o(X, z) = A o exp [i(fioZ + 7zoX)], 
O<x<_d ,  

E2o(X, z) = A 0 e x p ( -  %oX) exp(ifioZ), 

(the index "2" refers to the slab region, see Fig. 1) with an evanescent reference wave 

E2~(x, z) = A r e x p ( -  %,.x) exp (ifi,.z), 

where reflections at the boundary  x = d and the spatial variat ion of A(n 2) have been suppressed. 
The  following abbreviat ions  were used 

.2 ,~2  /~2~1/2 =( f102  k 2 n 2 ~ l / 2  
~ 2 0  : ( k  r~ 2 - -  P o }  , ~x20 2I  , 

/ t . 2 r 1 2  0 2 ~ 1 / 2  : ( f i 2  k 2 n 2 ~ l / 2  
2 r  ~ k r~ 2 - -  P v  } ' ~ 2 r  2;  ~ 

k = 2~z/2, K = A / A  o , 2 : vacuum wavelength.  

Figure 2 shows the geometry  of the reconstruct ion process. We consider an incident reconstruct ion wave 

E i c ( x , z ) = A , . e x p E i ( f i j + 7 1 c x ) ~  , x < O ,  (2) 

whose scattering by the ho logram is to be described. 
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Fig. 2. Hologram reconstruction geometry (0~: incidence angle of the reconstruction wave ; 
e(x, z): hologram pattern; EI~: reconstruction wave) 

Instead of solving Maxwell's equations we prefer the equivalent integral equation approach [9] 

E(x,z)=Ehom(X,Z) +k2 ~ i ' '  ~2 , ,  x'; . . . .  2 [ g ( x , z ) - n 2 ] E ( x , z ) G ( x ,  z - z ) d x d z , n  2 = n 2 +  A(n~), (3) 
--o0 0 

where E(x, z) stands for the resulting total field. Ehom(X , z) denotes the homogeneous solution. It is that field which 
would exist for vanishing grating modulation [e(x, z)-n22 = 0]. Consequently it satisfies 

((~2/(~X2 _{_ ~2/ (~Z2 _}_ 2 2 k nl)Ehom(X,z)=O , x~O,  

(~2/~x24-~2,/~z2q-k21422)Ehorn(X,z)=O, 0 < x < d ,  (4) 

(c~2/ux2 q-632/~z2 q-k2n23)Ehorn(X,z)=O , x > d, 

and together with the corresponding continuity requirement across the slab boundaries we get 

E h o m ( X ,  Z) = A c exp(iflcZ)~ 

"exp(i71cX ) + R exp ( -  i71cx), x <0 ,  

271~ 72c cos [7zc(d- x)] - i73 ~ sin [72c(d- x)] 0 < x < d, 
72ct71~ + 73~) cos(72c d) - i(72c + 7 lc73r sin (Y2~d) ' 

T exp (i ~ 3~x), x > d, 

(5) 

where R and T are the reflection and transmission coefficients of the homogeneous slab, respectively, [12~]. Real 
and imaginary parts of all >roots are to be taken positively. Realize that Eho m for x < 0  consists of the incident 
reconstruction wave and a backward-scattered component. Inside the slab (0<x <d) multiple reflections of the 
reconstruction wave form a standing-wave pattern. 
G(x, x ' ; z - z ' )  is the Green function for the homogeneous slab and it is determined by 

(~2/&2+~2/&2+k2,~)G(x,x"z-z')=O, x<O, ] 
( ~ 2 / ~ X 2  _{_ (~2/~Z2 2 ,2 , , , , ~ , 4-k n2)G(x,x ; z - z ) = - ~ ) ( x - x , z - z ' )  0 < x < d ,  0 < x  < d ,  (6) 

/ 
(a2/~?x2+Oz/~?z2+kZn~)G(x,x';z-z')=O, x > d ,  J 

and the usual continuity requirements across the slab boundaries and the radiation condition as well. 
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Following the calculation of Maradudin and Mills for the half-space Green's function El0] we start with the 
Fourier transform of G(x, x' ; z -  z') with respect to ( z -  z') 

G(x,x' ; z -  z')= l/2rc S g(x,x' ; f i )exp[i f i (z-  z')] dfi (7) 

and arrive at the following general solution for the resulting system of ordinary differential equations 

A(x ' , f i )exp(- i71x) ,  x<=O, 

g(x ,x ' ; f l )={iexp( iY2{x-x ' l ) /2y2+B(x ' , f i )exp( i72x)+C(x ' , f i )exp(- i72x) ,  0 < x < d ,  (8) 

[D(x,/3) exp (i73x) , x > d ,  

where outside the slab only outgoing waves are assumed. The unknown functions A, B, C, D are to be determined 
with the help of the continuity conditions : g(x, x' ; fi) and d(g(x, x' ; fi))/dx to be continuous along x = 0 and x = d. 
This gives finally 

i {72 COS [-72( d --  X')3 --  i73 sin [-72(d - x ' ) ]  } exp( - i7 lx)/det, x < 0, 

g(x,x';f i)= {72cos[ ;2(d-x ) - i73 '  ' sin [72(d- x')] } * [72 cos(72x)- i71 sin(72x)]/(272 det), 0 < x < d., (9) 

[72 c~ i7, sin(TS)] exp [i73(x- d)]/det, x > d, 

det = i72(71 + 73) cos (72d) + (722 + 7,73) sin72 d , 
71 = (k2H2-- f12)  1/2 , 72 = (k2/1~22 _ fl2)1/2 , 73 = (  k2Fl2 __j~2)1/2 , 

which is valid for x < x' only. To get the appropriate expression for x_-< x' exchange the primes of x and x'. Notice 
that Re{7} >0, Im{7} >0. Before solving (3) in the first Born approximation a few comparing remarks concerning 
the models of Lukosz and Wiithrich [3] and Lee and Streifer [-5] are necessary. These models are also based on the 
first Born approximation. Both approaches formulated with Green's functions yield two different Green's 
functions, in detail Lukosz and Wiithrich [-3] neglected reflections within the slab, which means in our case 

B = C = 0  in (8). 

Lee and Streifer [5] preferred the half-space geometry which appears in our approach for 

C = D = 0  in (8). 

Consequently, in both papers the reconstruction wave suffers a single reflection at the entry interface of the 
hologram only. That means, there is no standing wave pattern inside the slab. 
Now we start to solve (3). To this end we use (1), (7), (9), and (5). The application of the first Born approximation is 
generally justified because of the very confined hologram pattern and the small modulation amplitude, see also 
[3, 5]. To avoid overcoupling between two adjacent DE maxima, they should not lie too close to one another 

El3]. 
The approximated scattered field looks like 

E(x,  z) = Ehom(X, Z) + Us(X, z), (10) 

a [g(X, Z ) -- n 2 ] Ehom(X, Z') G(x, x' ,  z -  z')dx'dz' (11) E s ( X , Z ) = k  2 ~ ' ' '~ "' " 
--cx) O 

consisting of two conjugated subfields 

Es(x, z) = E + s(x, z) + E_ s(x, z) 

which split into a backward-scattered component (x<0) 

(12) 

1s(x,z)= AcH/qa l #~176 [exp(i0od) - 1]+ #~ [exp(i0od)-exp(2i72sd)] E+ 
- l O o  01 

+/~, Vo [exp (i Oo d) - exp (2i 72cd)] + g i v 1 [exp (i .ood ) - exp (i or I exp [i (fi,z - 71 sx)] 
~o2 03 J 

(13a) 
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and a forward-scattered component (x > d) 

E+ 3~(x, z) = A~H/q~ I -  ~t~ [exp(i0o d ) -  1] exp(i72,d) + #~ [exp(i05d ) - exp(i~2sd)] - #1v3 1-exp(icod) 
- t 0o 01 02 

exp(2iY2cd) ] exp(iy2sd) + #1 v2 1-exp(i45d )_  exp(i06d)-]/exp [i(fl~z + Y3s{X- d})]. (13 b) 
03 J 

The following abbreviations were used 

H = 27i~k2KA(n2), ~b = {#o#2 + #1#3 [exp(2i72~d)l} [v0v2 + vlv3 exp(2iTz~d)], 

#0 = 72c-~- ?3c, #1 = 7 2 c - -  73c, #2 : Ylcq-'~2c, #3 =? lc - - 'Y2c ,  

VO~-~2s~-~3s ,  V 1 =~2s - - ]13s  , Y2 : 71s -~- ~2s, V 3 : ' ~ l s - - ] 1 2 s ,  

00 = +-~20 +ic~2~-t-~2~+72~, 41-- +720 +icq~+Y2c-Y2~, 
(13c) 

42--- ---72o +ic~2~- 72~+72~, 03 = +--Tzo +icq~-~2c-?2~, 

04=2(72~+72~), Os = +-72o +ic~2~+72~, 06 =272c+72~, 
__ (/zala2__ R211/2 __ ~2]1/2 7 ~ s - - , ' - ' .  ~'s,  , ?2s=(k2n'~ ~-,-s,t~2~/2, 7 ~ s = ( k 2 n ~  . . . .  

~2c~---( R t~2 r'c; ~ /3c--~, " ' t 3 - - H c ]  

and the + / -  signs agree with the corresponding ones in (13a, b). 
Take care if ~er = 0 or 72~ = 0. It is worth mentioning that (13a-c) coincide exactly with (21) of Lee and Streifer [53 
after the straightforward simplification d--, oo, n 2 = n 3 in (13a). 
Finally, the diffraction efficiency is given by 

Ig+_l~1271s _ ]g++.3s]273s 
1 7 + - 1 - - i A c l 2 y i c  , 17+3 lAc lZYlc  

backward-scattered field forward-scattered field 

2.  N u m e r i c a l  R e s u l t s  

In this section several diagrams illustrating the angular selectivity and the thickness dependence of DE are 
presented and a comparison with [5] is made. The following parameters and assumptions were used throughout 
the calculations : 
- Recording configuration according to Fig. 3. 
- Hologram pattern according to (la) but putting n 2 = n~. 

2.1. Dependence of DE on the Angle 0 c of Incidence of the Reconstruction Wave 

Figure 4 exhibits DE of the (+)  backscattered wave (solid line) comparing it with the half-space model of Lee and 
Streifer 1-5] (broken line). The interference effects due to multiple wave interference are considerable. Also the 
expected enhancement of the average DE can be clearly seen. 
Figure 5 gives a survey of the different DE's that appear in the slab model. With respect to Fig. 4 reduced medium 
thickness is assumed leading to larger oscillation periods. Quite naturally there are common features with respect 
to the half-space model: 

- the envelope of the oscillating curve, which is mainly determined by the scattering process rather than the slab 
geometry, coincides qualitatively with the corresponding curves of the half-space model, 
- the absolute maxima do appear neither at Bragg incidence nor at the exact relevant critical angeles, where the 
reconstruction wave or a diffraction order undergoes total reflection. In Fig. 6 this interference-induced shift is 
considered in more detail. 

There two different peak shapes are plotted which belong to different n3-values. Peak shape deformation and peak 
location depend on the location of the multiple wave interference peaks for a given slab configuration. Obviously, 
this effect loses ground with increasing thickness and decreasing refractive index difference between the hologram 
and the medium behind it. Bragg angle location is also shown in Fig. 6. 



92 W. Biehlig et al. 

E,o 

n, I ~ j  n~ I n3 

/ 

Fig. 3. Recording geometry used for numerical calculations (El0: normally incident object 
wave; Elf  : totally reflected reference wave; n 1 = 1.73; n 2 = n 3 = 1.58; critical angle 0~= 65.91~ 
angle of incidence of the reference wave 0 r =67  ~ ; 2 = 6 3 3  nm 

It 

Fig. 4. D E  dependence on the angle of incidence 0 c (angular selectivity 
curves) of the backscattered field (broken line : half-space model;  solid 
line: slab model ;  n 3 = 1.00; d =  8 jxm; KA(n~)=0.025) 

2.2. Dependence of DE on Thickness 

It is well known that the multiple wave interferences in a slab are very sensitive to thickness changes and therefore 
can seriously affect the experimental results [-4]. 
Figure 7 shows two curves for the backscattered and the transmitted (+)  image field, which reveal periodicities of 
asymmetric shape. Consider each maximum to be followed immediately by a distinct minimum. The periods of the 
different oscillations are clearly determined by multiple wave interference at the two slab interfaces of the 
reconstruction wave (long period) and the reconstructed scattered field (short period, appearing in the 
backscattered field only), respectively. For the present parameter choice both waves mentioned above are 
homogeneous ones inside the slab, but they travel with different inclinations. Evidently, evanescent waves are 
affected only within slab thicknesses of the order of the wavelength used. The asymmetric shape of each oscillation 
reflects the influence of the evanescent grating inside the slab. Particularly, the situation of the interference pattern 
maxima with respect to the hologram pattern seems to be responsible for the asymmetries. 
Let us consider the particular case where the transmitted field is formed by an entirely evanescent scattered field 
within the hologram (Y3~ and Yl~ are real but Y2~ is an imaginary quantity implying n 3 > n2). In this case, there is an 
energy transfer through an evanescent field region which we call "pseudo optical tunneling". 
Figure 8 shows a typical transmitted DE-curve plotted via slab thickness. The oscillations are due to multiple wave 
interference of the homogeneous reconstruction wave only. 
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with respect to all image fields Fig. 5. Angular selectivity curves 
(q + 1 : backscattered DE; t/+ 3 : transmitted DE; broken line: "' + "  
diffraction order; solid line: " ' - "  diffraction order; d =  1 gin; 
other parameters like in Fig. 4) 
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Fig. 7. DE dependence on the slab thickness; backward and 
forward scattered (+ )  fields (0,.: 65.81'; n 3 = 1.00; KA(n~)=0.008) 

10"3 

tO'' 

l 

0,19 sin~ [in6b ] ~ i n ~  

10"s 

0.5 ~_ 
0,9 sin g~ 

Fig. 6. DE-peak shapes for different surrounding media (a: same 
hologram like in Fig. 5; b: n~=3.00; other parameters un- 
changed; 0z,: Bragg angle) 
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Fig. 8. DE dependence on the slab thickness in the case of pseudo 
optical tunnelling (n3=1.61; 0~.=0.33"; KA(n~)=O.025; r/+3: 
transmitted (+)  field diffraction efficiency) 
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3. Summary 

In contrast  to previous models [3-6] ,  diffraction efficiencies of  evanescent-wave holograms were calculated within 
the framework of a slab model  that takes into account  the finite thickness of the recording medium. Using the exact 
Green's  function for a homogeneous  slab the scattered (reconstructed) wave were calculated within the first Born 
approximat ion  of the relevant integral equat ion for TE polarization. 
Multiple wave interferences within the slab lead to characteristic oscillations of the angular  selectivity curves and 
the diffraction efficiency thickness dependence. These oscillations interfere with the intrinsic diffraction effects 
already predicted by previous models. Multiple reflections give rise to a modified interaction of  the inner wave 
fields with the evanescent ho logram grating. This mechanism leads to higher diffraction efficiencies. The shape of 
the diffraction efficiency maxima appears to be changed and their location slightly shifted away from the relevant 
angles of  total reflection. The effect of pseudo-optical  tunneling having no analogue in the half-space configuration 
is also considered. 
It seems to be reasonable to use the presented diffraction efficiency formulas as modified local diffraction efficiency 
expressions in the model of Lukosz  and Wiithrich [7] to calculate "overall-diffraction efficiencies" of waveguide 
holograms. 
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