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Abstract. Using Ambartsumian's principle of invariance we investigate for radio waves the 
reflection coefficient of a plane inhomogeneous slab. We find that the reflection coefficient, 
as a function of slab thickness, satisfies the Riccati equation. From this equation we deduce 
a geometric theorem on the upper and lower bounds of the reflection coefficient. We 
illustrate the theorem by applying it to several special cases. 

PACS: 41, 42.80 

Ambartsumian's principle of invariance, which plays a 
central role in the theory of radiative transfer in 
planetary atmospheres [1], provides the basis of a 
novel method for calculating the reflection of radio 
waves from plane-stratified slabs E2]. The method 
stems from the principle's central idea of considering 
how much the reflection coefficient of a reflector or 
scatterer is changed by the addition of a thin layer to 
its surface, and thus leads to a differential equation for 
the reflection coefficient. The advantage of the method 
over conventional methods is that from a compu- 
tational viewpoint it is easier to solve the differential 
equation for the reflection coefficient than to solve the 
linear boundary-value problem for the field within the 
inhomogeneous dielectric body. 
To illustrate the method let us calculate the reflection 
of a plane wave that is normally incident on a plane- 
stratified lossless dielectric slab. As shown in Fig. 1, the 
slab lies in the region O<z<a. Since the slab is 
inhomogeneous, its wave number k(z) is not a con- 
stant, but a real function of z. The half-space z < 0  is 
filled with a homogeneous lossless dielectric of con- 
stant wave number ko, and the half-space z > a, with a 
homogeneous lossless dielectric of constant wave num- 
ber k 1. 
We assume that a wave of unit amplitude is incident on 
the slab, i.e., 

incident wave =eik~ -i~t (z_<0). (1) 

Then a reflected wave in the half-space z < 0  and a 
transmitted wave in the half-space z > a will be gener- 
ated, i.e., 

reflected wave = Re-  ikoz e-  i~o~ 

transmitted wave = re ik~ze  -ic~ 

(z<0), (2) 

(z>-_a). (3) 

The problem is to determine the reflection coefficient R 
and the transmission coefficient T from a knowledge of 
k(z) and the slab thickness. 
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Fig. 1. Plane inhomogeneous slab extending from z = 0  to z=a .  k o 
and k 1 are the wave numbers  of the homogeneous  media to the left 
and to the right of the slab. k(z) is the wave number  within the slab 
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Fig. 2. Addition of thin layer for relating reflection coefficient R at 
z=~7 to reflection coefficient R at z = t l + A t  1 

We now formulate the problem in a way that will 
enable us to determine the reflection coefficient as a 
function of the slab thickness. We consider a plane 
z=t /  lying somewhere within the bounds of the slab, 
i.e., 0__<t/<a (Fig. 2). To the left of this plane, we 
assume there is a homogeneous half-space of wave 
number k( t / -0)  where k( t / -  0) denotes the limit of k(z) 
as z approaches t/ from below. The wave incident on 
the plane z = t / i s  given by 

incident wave = e ik~'1- o).(~- ~) (4) 

and the wave reflected from it, by 

reflected wave = R(t/)e-i~(,- o).(~- 7). (5) 

When t/=0, (4 and 5) reduce, respectively, to (1 and 2). 
When t /=a,  the problem is the same as the simple 
problem of determining the reflection coefficient of the 
plane interface of two homogeneous media and we 
have 

R(a) = k ( a -  0 ) -  k 1 (6) 
k ( a -  O) + k I 

To the right of the plane z = t /we place another plane 
z=t/+Atl ,  where At/is a differential of the first order. 
Since this layer extending from z=t /  to z=t/+Arl  is 
thin, its wave number is taken as constant and equal to 
k(t/+At/-O).  The reflection coefficient R(t/) can be 
looked upon as the sum of multiple reflections: 

R(t/) = R,(tl) + R2(tl) + R3(t/) + . . . .  (7) 

where Rl( t / )  is the contribution of the incident wave 
reflected at z--q, R2(t/) is the contribution from the 

transmitted wave which is reflected at z= t /+  At/ and 
then transmitted through z=t/ ,  and R3(t/) is the contri- 
bution from the transmitted wave which is reflected at 
z=t/+At/ ,  at z=t/ ,  and at z = t / + A q  and then finally 
transmitted through z =  t/. This method of computing 
R(t/), sometimes called the "method of multiple re- 
flections", is particularly useful here because the layer 
is thin and hence only the first, second, and third order 
reflections, Rl(t/), Rz(t/) ,  R3(t/)  contribute appreciably. 
W e  emphasize that it is necessary and sufficient to 
include from the start only the first, second, and third 
order reflections Rp R 2, R 3 since the higher-order 
reflections R4, Rs, etc. will not contribute in the limit 
At/-~O. 
By elementary considerations we find that 

k(t/- o)-  k(t/+ At/- 0) 
Rl(t/)= k(t/- 0)+ k(t/+ At/-0)' 

R2(t/) = 
2k(t / -  0) o)~, X e ik(q+Aq 

k(t/- 0)+ k(t/+ At/-0) 

" R(t/ + At/) x e ik(~t+ Att-O)A'l 

2k(t/+ A t / -  0) 

k(t/- 0) + k(t/+ At/- 0)' 

2k(r/-  O) x e ik(q+A"- O)A, 
R3(t/) = k( t / -  0) + k(t/+ At~- O) 

�9 R(t/+ At/) x eit*("+ an- ~ 

k(t/+ At/- o)-  k(t/- o) 
k(t/- 0) + k(t/+ A t/- 0) 

-e ik(n+A"- O)&7 x R(t/+dt/) x e ik(q+Aq- 0)de 

2k(t/+ A t / -  0) 

k(n + A~- o) + k(n- 0)' 

In the limit At/~0, we have 

dk dt/. 
R~(t/) = dr/ 2k'  (8) 

and since 

e2ik~' + A,- O)3, = 1 + 2ik(t/)&l, 

we get 

R2(t/) = R(t/ + dt/) + 2ik(t/)dt/R(t/ + Arl) 

= R(t/) + ~ dt/+ 2ik(t/)dt/ROl); 
at~ 

(9) 
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and similarly 

dk 
R3(t/) = ~ 2 k R2(t/)dr/. (10) 

Substituting (8, 9, and 10) into (7) we obtain 

dR dk 1 dk 1 
- --R 2 (11) 

drl d:'l 2k 2 i k R -  -~ 2k " 

This is the desired differential equation for the re- 
flection coefficient of the inhomogeneous slab. We see 
that it is a nonlinear equation of the Riccati type, 
difficult to handle analytically but easy to solve 
numerically. Starting from the right side of the slab 
where the end condition (6) holds and progressing in 
discrete steps to the left, one can solve the equation 
numerically for the value of R at the left side of the 
slab. 
We have assumed k(r/) to be sectionally smooth. 
However, if the medium has a jump discontinuity at 
any position z = r h, the reflection coefficient just to the 
left of the discontinuity R(r/1-0) is related to the 
reflection coefficient just to the right of the discon- 
tinuity R(r h + 0) by 

r(r/1 - -  0 ,  ~/1 +0) + R(t h +0) (12) 
R(t h - 0 ) =  1 + r(~/, -O,  tl~ +0)R(r/~ +0) '  

where r( c~, fi) = [k( e ) -  k(fi)]/[k( c 0 + k(fi)J [3]. As the 
integration of (11) proceeds from ~/= a to r/= 0 relation 
(12) must be employed at each discontinuity. If, for 
example, there is a jump discontinuity at z=0,  (12) 
must be used to obtain R ( - 0 )  from a knowledge of 
R( + o). 
The reflection coefficient R( -0 )  can be found analyti- 
cally in a few special cases [4]. In general, however, 
numerical methods must be used. In recent years, the 
reflection coefficient R ( - 0 )  has been calculated by the 
numerical integration of (11) for a number of radio 
physics problems related to such phenomena as the  
reflection of radio waves from jet streams [5], the 
transmission of radar signals through radomes [6], the 
emission of radio waves from antennas in matter [7], 
the filtering of millimeter waves by almost periodic 
structures [8], and the reflection of radio waves from 
cylindrically or spherically stratified aerosols [9]. 
In some applications it is sufficient to know only the 
magnitude of R. That is, in such applications, if we 
write R as 

R = A e  i~ , (13) 

where A is the magnitude of R and ~0 is its phase, it is 
sufficient to find only A. To handle applications of this 
sort, we now shall deduce a theorem that will give in a 
very simple manner, upper and lower bounds on A in 
terms of the maxima and minima of k(z). 

1. Formulation of the Problem 

Substituting (13) into (11) we find that A satisfies 

dA =(1 , 1 dk 
dz - A-) 2s dz c~ (14) 

Using this equation as a point of departure we wish to 
find upper and lower bounds on A(+0) fi'om a know- 
ledge of A(a) and the maxima and minima of k(z). 
It follows from (14) that 

A(~) dA ~ 1 dk 
I _ A ~ -  ] ~ c o s ~ d ~  (15) 

A(+O) +0 

and hence 

1 []+A(a)][]-A(+O)]= " 1 dk 
~ln [ ~ j  [i + A(+0)] fl0 ~ ds cos~dz. (16) 

To obtain bounds on A(+ 0), we must obtain bounds 
on the value I of the integral on the right-hand side of 
this equation, that is, we must establish bounds on 

I=  i l d k  
+o ~ dzz c~ (17) 

We shall now find such bounds by noting that 
- 1  < c o s ~ <  1 and by splitting the integration into 
sections where dk/kz > 0 or dk/dz < O. 

2. Sectionalization 

To find bounds on I of (17) we note that 
- 1  < c o s ~ <  1, k is sectionally smooth, and the range 
of integration can be divided into sections where 
dk/dz > 0 and sections, where dk/dz < 0. If throughout a 
section (z = z i to z = %) dk/dz > 0, we see that 

~ 1 dk i' 1 dk ff l dk j - - - - &  (18) 2~g~ dZ> ~ c ~  2kdz �9 
zi  Zi -= 

On the other hand, if dk/dz < 0 throughout the section, 
we have 

z~ 1 dk 1 
~, - ~ L,~uz c~  S' 2k de (19) 

that is, 

1 k(zi) l l n  k(~) dk 1 dzz cos ~ dz >= ~_ In (20) 
2 k(zi) ~ ~i ~ k(zj) 

when dk/z > 0, and 

1 ink(Z) -~ 1 dk 1 k(zi) 
~ --< z, ~ gzz c~ ~In/s (21) 

when dk/dz < O. 
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Fig. 3. Sample k(z) showing maxima (kmax)l, (kmax)2, and minima 
(kmin) 1, (kmln)2 

2=O Z=a 

Fig. 4. Smoothing of jumps in k(z). Broken curve shows how jump is 
smoothed out 

From this it follows that 

/, 2 k 2 k 2 
1 ,  [ (gmax) l (  max)2( max)3"'" - i n  
2 /(kmin)1 (kmin)2 (kmin)3.., ~ 

) 
2 k 2 k 2 

_ 1 _ - i n  ~ ~ >  "> 1, /(kmin)l( min)2( min)3"" ~) 

2 ~(km.x)l(ma&(kmox)3-.- ' 
(22) 

where (kmax)l, (kmax)2, etc. and (kmin)l, (kmin)2, etc. 
denote the maxima and minima within the slab 
(0 < z < a) excluding the end points (Fig. 3). Here 7 is a 
factor that depends on the behaviour of k as z ap- 
proaches from within the slab the end points z = 0 and 
z = a, viz. 

? = k ( + O ) k ( a )  if k(z) increases as z ~ 0  and z -~a ,  

1 
if k(z) decreases as z ~ 0  and z ~ a ,  

k( + O) k(a) 

k(+O) 
k(a) 

k(a) 
k(+0) 

if k(z) increases as z---,0 and decreases 

as z-- ,a,  

if k(z) decreases as z ~ 0  and increases 

as z-+a. 

(23) 

For  brevity we denote by L the argument of in in (22), 
i.e. we write 

2 2 2 
L = (kmax)l (kmax)2(kmax)3"'" (24) 

2 2 2 -~2. 
(kmin)l(kmin)2(kmin)3 , . .  

Thus we see that 

1 1 1 
~ l n L _ > I >  ~ l n ~ .  (25) 

3. Upper and Lower Bounds 

From (16) and (25) it follows that the upper and lower 
bounds on A(+0)  are given by 

k ( a ) -  L k  1 
k ( a ) + L k l  ==A(+0)=< 

when k(a) > kl ,  and 

k I - Lk(a) 
k~ +Lk(a)  <A(+O)N 

L k ( a ) - k  1 

L k ( a ) + k  1 

Lk  1 - k(a) 

L k  i + k(a) ' 

(26) 

(27) 

L k ( a ) -  k 1 

Lk(a) + k I 
(28) 

when k(a) > k 1, and 

k 1 - Lk(a) Lk  1 -- k(a) 
k, + Lk(a) --<IR(- 0)i--< LG + k(a)' (29) 

when k(a)< k 1. Here L is given by (24) and k(z) is the 
new k(z). 
If k(z) happens to have an internal jump we can handle 
it by the same smoothing procedure. Consequently, the 
new k(z) can be taken to be jump-free not only at z = 0  
but also throughout the slab. 

k ( a ) -  Lk l  <IR(_0)I_< 
k(a) + Lk  1 = 

when k ( a ) < k  1. To find from A(+0) the quantity of 
physical interest, IR(-0)I, we must take into account 
any jump that k may have at the boundary z = 0. Here, 
a most convenient way of doing this is to replace the 
k(z) that has a jump at z = 0 with a new k(z) that has its 
jump smoothed out as shown in Fig. 4. We see that the 
new k(z) is identical with the original k(z) except at the 
jump at z - -0 ;  at this jump the new k(z) is obtained 
from the original k(z) by replacing the jump with a 
smooth connecting curve that closely resembles the 
jump and yet has a non-infinite slope. 
Accordingly, from (26) and (27) we have 
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Fig. 5. H o m o g e n e o u s  slab of wave n u m b e r  Ic Broken line s m o o t h e s  
out  j u m p  at  z = 0 
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Fig. 7. Slab with t rapezoidal  d is t r ibut ion 
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Fig. 6. Slab with ramp distr ibut ion 
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Fig. 8. Slab with serpent ine  dis t r ibut ion 
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Since the transmission coefficient T of (3) and the 
reflection coefficient R of (2) are related to each other 
by the rule 

[RI 2 + ~ ITI 2 = 1, (30) 

which expresses the conservation of energy, we can 
find the upper and lower bounds of [TJ from the 
bounds on ]R(-0)1 as given by (28) and (29). 

4. The Measure L 

From (28) and (29), we know that the upper and lower 
bounds on [R(-0)t  are determined by kl, the wave 
number of the homogeneous medium to the right of 
the slab; by k(a), the wave number  of the slab at its 
right end; and by the measure L of the slab's in- 
homogeneity, as given by (24). 
To show how L is geometrically related to k(z) we 
examine the following special cases. 
We first consider the case of a homogeneous slab 
whose wave number  is k. As shown in Fig. 5, 

k > k 1 > k 0. Since there is a jump at z = 0, we replace the 
jump with the broken line shown in the figure and thus 
obtain the new k(z). By inspection of the figure and by 
using definition (24) we see that in this case 

k 
L = - - .  (31) 

k0 

Similarly, for the case of the ramp, shown in Fig. 6, we 
see that 

L = ~ ,  (32) 

and for the case of the trapezoid, shown in Fig. 7, we 
have 

12 
L =  Cmax . (33) 

k ;  

In Fig. 8 we see a situation where k(z) has one maxi- 
mum and one minimum. Here 

L -  kmax k l  (34) 
kmi n k 0 " 
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We wish to emphasize that L can be found for any k(z) 
by simply inspecting the geometric features of k(z) and 
entering the pertinent data into (24). 
It is clear that L >  1. L is equal to 1 only for the trivial 
situation where k(z)=ko; in all other situations L is 
greater than 1. It is also clear that if we keep k(z) fixed 
at z = 0  and z = a  and if we increase the number  of 
wiggles of k(z), then the corresponding L increases. For  
example, we note that L of Fig, 8 is greater than the L 
of Fig. 6. 
From (24) we see that L depends on the maxima and 
minima of k(z) and not on their positions along the z 
axis. This means that we can move the maxima and 
minima to new positions along the z-axis without 
causing a change in the value of L. 

5. Illustrative Cases 

As illustrative examples let us consider the cases shown 
in Figs. 5-8. 
For  each of these cases we have already calculated L. 
By substituting these values of L into (28) we find that 

k 2 -  klk~ (35) 
[RI< kZ+klko 

for the homogeneous slab of Fig. 5, 

IR[ < ks - k~ (36) 
kl + ko 

for the ramp distribution of Fig. 6, 

2 
IRt ~ kmax --  k2 (37) 

k, ax + 

for the trapezoidal distribution of Fig. 7, and 

k . . . .  ks - -  k ; m i n k ~  (38) 
Ial =< km~xkl Tkmi~k ~ 

for the serpentine distribution of Fig. 8. 
The result for the homogeneous slab agrees with what 
rigorous theory gives [3]. Likewise the results for the 
ramp and trapezoidal distributions agree with exact 
theory [10]. However, for the serpentine distribution 
there is nothing in the literature against which we can 
check our result. 

6. Conclusions 

We have investigated the problem of determining for 
radio waves the reflection coefficient of a plane in- 

homogeneous slab of lossless dielectric. Using 
Ambartsumian's  principle of invariance as the point of 
departure, we have shown that the reflection coefficient 
satisfies a nonlinear equation of the Riccati type which 
may be solved numerically or may be used to obtain 
upper and lower bounds on the magnitude of the 
reflection coefficient. We have shown that such bounds 
can be established by inspection of the spatial distri- 
bution of the slab's wave number. 
We have proved the following geometric theorem : The 
upper and lower bounds on the reflection and trans- 
mission coefficients o fa  lossless inhomogeneous dielec- 
tric slab are determined by the slab's measure of 
inhomogeneity L which depends only on the values of 
the maxima and minima of the dielectric slab's wave 
number and not on their relative positions within the 
slab. 
Several cases which illustrate the geometric approach 
have been worked out and have been found to agree 
with known results. 
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