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Abstract, The possibility of extending the second-harmonic beam (SHB) method proposed 
originally for picosecond and subpicosecond pulse-duration measurements to the femto- 
second region is pointed out. This can be achieved by introducing a differential time delay 
of the pulse wave front corresponding to a tilting of the pulse in the direction other than 
that applied by Wyatt and Marinero, and also by Saltiel et al., who achieved extensions 
towards the subnanosecond region. The solution of the wave equations for noneollinear 
second-harmonic generation in the case of arbitrarily tilted pulses has been carried out. 
Simple formulae valid from the subnanosecond to the femtosecond region are presented. 

PACS: 06.60, 42.65C 

The second-harmonic beam (SHB) method proposed 
earlier for the investigation of temporal characteristics 
of short laser pulses [1, 2] was found to be very 
efficient for picosecond and subpicosecond pulses 
[3-5], and appears to be the easiest method for 
duration measurements of single pulses. The related 
autocorrelation method first proposed by Maier et al. 
[6] requires strict reproducibility of the pulses and 
extremely narrow beams for pulses shorter than 1 ps 
[1]. The very expensive streak camera seems to have 
attained its limit of applicability at ~ 1 ps. For reviews 
of methods for pulse duration measurements see 
[7, 8]. 
In the SHB method two replicas of the pulse to be 
measured are used to generate a SH beam in a 
noncollinear arrangement in a nonlinear crystal where 
the SH radiation is only produced in the region where 
the two replicas overlap both in space and time. For 
fundamental pulses having lengths (durations) of the 
order or larger than the fundamental beam width 
(which is limited by the crystal size) the SH beam width 

saturates and carries information on the fundamental 
beam width rather than on the pulse duration 
(Fig. la). 
Recently, the SHB method has been extended beyond 
this saturation limit for the measurement of sub- 
nanosecond pulses by introducing a linear differential 
time delay along the fundamental wave front using 
either a grating [9, 10] or a Michelson echelon [11]. 
A differential time delay, i.e. a pulse delayed to a 
linearly varying extent at different points of its beam 
cross-section can be also described by a tilting of the 
front of the intensity envelope function and can be 
visualized by slanting (sliding askew) a pack of playing 
cards. As shown by a comparison of Fig. la and b a 
proper tilting of the "'long" pulse, in fact, gives an 
extension towards longer pulses: there is a narrower 
SH beam width in the tilted case containing infor- 
mation on the pulse duration. 
For short enough pulses one has no saturation pro- 
blem, the width of the overlap region where SH is 
generated depends linearly on the duration of the 
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Fig. la-d. Limits of the SHB method for long (a) and short (c) pulses 
and extensions of the method by tilting the pulse in various 
directions [(b) and (d)]. The overlap regions are supposed to be 
inside of a nonlinear crystal and for the sake of simplicity rec- 
tangularly shaped pulses are shown 

z)i ~y 

Fig. 2. Schematic arrangement of noncollinear SH generation of 
tilted Gaussian pulses inside a nonlinear crystal having its main axis 
parallel to the z-axis 

fundamental pulse, moreover, one has a symmetrized 
time-to-space mapping of the pulse structure. For 
durations ~<0.1ps,  however, the overlap region be- 
comes extremely narrow (Fig. lc) and the SH beam 
width will be determined by diffraction and other side 
effects [2, 3, 12]. 
In the present paper we show how a differential time 
delay corresponding to a tilting of the pulse in the 
opposit direction, as applied by Wyatt  and Marinero 
[9] and also by Saltiel et al. [11], can be used to extend 
the SHB method down to the femtosecond region. As 
seen on Fig. ld such a tilt, in fact, results in a broader 
SH beam thus diminishing the role of side effects. The 
solution of the wave equations for tilted pulses is, in 
general, given resulting in simple formulae valid from 
the subnanosecond to the femtosecond region. 

The General Case 

We use the usual ooe arrangement for noncollinear SH 
generation (Fig. 2) applying, however, differentially 
delayed, i.e. tilted pulses. In the calculations we assume 
Gaussian pulses, accurate phase-matching and neglect 
absorption phenomena. For generality we start with 
differently processed replica pulses which may have 
different beam diameters, tilting angles and even du- 
rations. (E.g., in the case of refraction on a grating a 
beam of circular cross-section will be transformed into 
one of elliptical cross-section, in addition to tilting of 
the wave front.) 
In this case the nonzero component of the electric field 
vectors inside the nonlinear crystal of the tilted funda- 
mental pulses having a carrier frequency co and wave- 
number k can be written (for the role of a delay 

between pulses see [1]) 

Ejx = gj(r~, t) cos(cot- kyj), (1) 

where j = 1 , 2  and we use the cartesian coordinate 
systems x, y j, z~ introduced separately for beams 1 and 
2, y~ pointing into the propagation direction, zj to- 
wards the other beam before the crossing. The en- 
velope functions 9j have the form 

9j(rj, t) = Ej0 e x p ( -  2 ln2 {x2/H} + z2/H) 2 

+ I t -  ( y j -  zj tan 6j)/u] 2/z~}). (2) 

Here Hj and H) are beam width parameters (fwhm) 
in the x and z;directions, respectively, ~j are the tilt- 
ing angles, u is the group velocity of the ordinary 
fundamental pulses, and zj are the pulse durations 
(fwhm) without tilting (Fig. 2). The terms x2/H~, and 
zZ/H) 2 define the beams from which the term I t - ( y j  
- z  i tan@/u]2/z 2 taylors the desired differentially de- 
layed shape of the pulses. In the limit 6j = 0 we obtain 
the case without differential time delay described in 
[1]. It should be pointed out that the angles 6j 
characterize the tilts of the pulses inside the crystal. 
Pulses tilted towards the x-direction will not be con- 
sidered here resulting in no apparent advantages for 
measurements. 
The extraordinary SH wave propagates perpendic- 
ularly to the main axis z of the crystal in the direction 
defined as the y-axis (Fig. 2). Assuming nondepletion 
of the fundamental waves the nonzero z component of 
the electric field vector of the SH wave can be found as 
the solution of the equation 

t~ZEz k2 cos2 ip (~2 
~y2 - coz &2 (E~ +4~d~E~xE2~), (3) 
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where d~x x is the relevant SHG coefficient, 2co and 
2kcos~p are the frequency and the wave-vector of the 
SH wave, ~p is half of the crossing angle of the 
fundamental beams. We are looking for a solution of 
(3) in the form 

E~(r, t) =f(r,  t) sinE2(c0t- ky cos~p)], (4) 
wheref  is the envelope function of the SH pulse. In the 
approximation of slowly varying amplitudes from (3) 
and (4) we have 

+ - -  f(r, t) = - 4ndz~k cos~glg 2 . (5) 5t 

Introducing the new variable 0 = t - k y  cos~p/co instead 
of t and using throughout x, y, z and 0 as independent 
variables we obtain the ordinary linear differential 
equation 

d 
~yy f(r, fly, 0)) 

= F e x p [ - 2 1 n ( 2  . . . .  ~,,~,oG~uv)], (6) 

where the constant F, together with the coefficients G~ 
in the bilinear exponent can be found by comparison 
of (6) with (5) and by using (2). The nonvanishing 
coefficients are 

o-xx = H~- 2 ~_ H2 2, (6a) 

- -  t - 2  o-yy - (H 1 + H2- 2)sin2~ 

2 (6b) + + p u- , 

G~ = (H'I- 2 + H2- 2)COS 21] ) 

_}_ q2 u -  2Tl 2 --r -2/2- 2T2- 2 , (6c) 

0-,9 ~..C12 + .C2 2 (6d) 

ay, = Gy = ( -  H'I- 2 + H~- 2)cos~p sinF 

_ p lq l  u -  2z~ 2 +p2q2u-  2.c2 2, (6e) 

ar ~ = a~ r = pl u -  1 ~  2 q_p2 u - i7:2 2 (60 

Go = ao~ = - q l u -  lz~ 2 + q2 u -  lz2 2, (6g) 

where the notations 

p~ = (nu/c - 1) cos ~p + tan 6j sin ~p, (6h) 

qj = sin ~p - tan 6j cos ~p, (6i) 

have been used, n standing for the index of refraction of 
the ordinary fundamental wave. Equation (6) can be 
solved to obtain the envelope function f as a function 
of x, y, z, 0. The integration can be carried out trivially 
in the case if we are interested only in the SH wave 
leaving the crystal and the crystal is big enough to 
contain the whole of the intersection region of the 
pulses. In this reasonable approximation the integ- 
ration limits can be extended to y ~  _+ 0% respectively, 

to have 

f (x,z, O)~- G exp { -  21n 2 [,,,=~x,z,o auvUV 

- ( a y g  +ayoO)2/ary]}, (7) 

where G is a constant. This result can be used to 
calculate the distribution of the SH energy incident on 
the detector system defined as 

1 ~ EZ(r ' t)dt ~- fZ(x,  z, O)dO. (S) W(x,  z ) =  _ 

Using (7) and (6a) we obtain the Gaussian 
distribution 

W(x, z) = K exp [ -  41n2(xZ/H 2 + zZ/H2)], (9) 

where K is a constant and 

H x = a L  1/2 = (H~ 2 + H2 2)- 1/2 (9a) 

m z  = 2 2 [a= + ( a , G  o + % a ~  
2 -1/2 - 2ay~ayuG~)/(ay ~ -  ay/roo)] , (9b) 

are the easily measurable widths (fwhm) of the SH 
energy distribution, the latter containing according to 
(6b-6g) information about the pulse durations 7:j. The 
analysis of the result (9b) confirms the qualitative 
deductions one obtains from drawings similar to 
Fig. 1. The analysis will be carried out here in the 
symmetric case of identical replica since this is the one 
which can be used most effectively for extending the 
time domain of measurements. 

The Symmetrical Case 

The results (9a, b) can be considerably simplified in the 
case of a symmetric arrangement when 31=52=~ ,  
7:1 =z2, H1 =H2 and H' 1 = H '  2. In fact, for this case we 
have p l=p2 ,  ql=-q2, Oyz=azO:0 and H z = a ~  1/2 

Accordingly the widths of the SH energy distribution 
(fwhm) along the x and z-axis defined in (9) can be 
written using (%, b), (6c and i) in the form 

H~, = H/  ]//2, (10a) 

H 2 = H~(1  + zz/z2) - 1/2 (10b) 

where ~ is the duration and H the beam diameter in the 
x-direction of the fundamental pulses (fwhm), 

Hzo o = H'/( ] ~  cos ~) (11) 

is the saturation value of H z for long pulses, H' is the 
beam diameter (fwhm) of the fundamental pulses in the 
yz plane inside the crystal, q~ is shown on Fig. 2, and 

z o = ro(~) = H'rtan~p- tanSl/u (12) 
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Fig. 3. The variation of the timescale constant z o in (10b) and (12) as 
a function of the tilting angle 6 in the symmetric case assuming 
~p = 19.7 ~ which is the phase-matching angle in LiIO 3 for 2 = 1.06 gm 

is a time scale constant characterizing the range of 
pulse durations available for measurement by the 
present method in a given experimental arrangement. 
The %(6) function is plotted in Fig. 3. The relative 
errors of z and H= have the ratio 

Az / AH z 

increasing rapidly for 'c>r o i.e. in the saturation 
region. For z < %/2 the linearity 

z~_'coH=/Hzoo = ]/ /2HzJtan~-tan6[cos~/u (13) 

holds to better than 11%. As can be seen from (12) and 
Fig. 3, by varying the tilting angle the time scale 
constant z o can be made both larger and smaller than 
the value 

%(6 = 0) = H'tan ~/u (14) 

corresponding to the untilted case [1]. The experimen- 
tal results of Wyatt and Marinero [9], and Saltiel et al. 
[11] correspond to the case of large TO i.e. negative 6. 
Choosing positive tilting angles, especially 6---qJ, very 
small %'s can be obtained, i.e. the femtosecond region 
becomes accessible for pulse duration measurements. 
Indeed, in the untilted case for femtosecond pulses 
(10b) or (13) yield a small H z which is completely 
overruled by divergency, diffraction and walk-off ef- 
fects, whereas setting 0 < 6-~ ~p results in a blowed-up 
H=. In the latter case, however, the precise knowledge 
of 6 becomes increasingly important as the limit 6 =p,  
corresponding to "c o = 0 is approached. 
It should be pointed out that the approximation of 
slowly varying amplitudes and (10b) break down in the 

case of the pulse consisting only of a small number of 
oscillations. The suggested experimental method may 
be applicable even in this case. For this, however, a 
solution of the second-order wave equation becomes 
necessary in order to replace (10b) by a more valid 
H= = H=(T) function. 
More serious problems have to be faced due to the 
spread of femtosecond wave packets. The spread in the 
nonlinear crystal can be reduced by using very thin 
crystals, even at a price of intensity loss which should 
not be crucial for femtosecond pulses. The spread 
during the "tilting" step, however, can be very impor- 
tant. In the case of a grating the spread is accompanied 
also by a divergence of the diffracted beam. In the case 
of a Michelson echelon the problems may be reduced 
by choosing a material of especially low-dispersion 
near the wavelength used and by minimizing the size of 
the echelon along the optical path. 
In summary, we have presented an extension of the 
SHB method down to the femtosecond region, where a 
new limit due to pulse shape distortion may be 
expected. 
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