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Abstract. We study the Brans-Dicke vacuum field equations in the presence of a cosmological term A. 
Considering a Friedmann-Robertson-Walker metric with flat spatial sections (k = 0), we provide a qualita- 
tive analysis of the solutions and investigate its asymptotic properties. The general solution of the field 
equations for arbitrary values of w and A is obtained. 

1. Introduction 

Recently a renewed interest seems to exist in the so-called scalar-tensor theories of 
gravitation of which the Brans-Dicke theory (BDT) is notoriously the most investigated. 
Part of this interest may be attributed to the recognition of the important role these 
theories are able to play in the development of the contemporary models of the Universe, 
such as the extended inflationary cosmology program (La and Steinhardt, 1989). Another 
example of this interest comes from Supergravity via the mechanism of space-time 
dimensional compactification which generates in a rather natural way the Brans-Dicke 
scalar fields (Sherk, 1981). 

In this paper we consider the Brans-Dicke theory of gravity (Brans and Dicke, 196 l) 
with cosmological constant in the absence of matter. BDT solutions with a nonvanishing 
cosmological term have been already studied in different contexts (Uehara and Kim, 
1982; Cerver6 and Est6vez, 1983; Lorenz-Petzold, 1984; Pimentel, 1984). 

As we shall see in the next section, if we adopt the hypothesis that space is homo- 
geneous and isotropic, then the field equations are reduced to a plane autonomous 
dynamical system. Therefore, it is possible to carry out a global analysis of the solutions 
without solving analytically the differential equations. Thus, our first task, before trying 
to get explicit solutions, will con sist mainly of constructing the so-called phase diagrams 
of the system. Once obtained, the diagrams give us almost all informations about the 
dynamics of the models, the complete knowledge being provided by working out the 
general solution. 

2. The Field Equations 

The Brans-Dicke vacuum field equations with a nonvanishing cosmological term A are 
given by 

R~, v = -2A[(w + 1)/(2w + 3)]&, v + (w/q)2)q~, ~,q~, v + (1/qS)qS; m v, (la) 

[-]q~ = 2Aq~/(Zw + 3), (lb) 
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where w is the scalar field coupling constant  (see, for example, Ueha ra  and Kim, 1982). 

Considering a F r i edmann-Robe r t son -Walke r  metric with fiat spatial section (k = 0) 

in the form 

ds 2 = dt 2 _ R2(/) [dz2 + )~2 (d| + sin 2 | d(i)2)] , 

the above equations reduces to 

0 = - 02/3 - (w + 1)~/2 - t~ + 2A(w + 1)/(2w + 3) ,  (2a) 

0 = - 0 2 - ~b0 + 6A(w + 1)/(2w + 3) ,  (2b) 

~) : - ~b 2 - O0 + 2A/(2w + 3) ; (2c) 

where 0 =  3R/R describes the expansion of the model;  ~ =  ~/q~, the overdot  
denoting time derivative; and qS, due to spatial homogeneity,  is supposed to be a function 

of  t only. Since in B D T  the scalar field is identified to G - ~, then ~b = - GIG is actually 

a measure  of  the time variation of the Newtonian gravitational ' constant '  G. 
Now,  these equations lead to an algebraic relation between the variables 0 and ~: 

02/3 + 04,- w~2/2 = A ,  (3) 

which can be regarded as a constraint  of  the dynamical  system formed by any chosen 

pair of  the set of  Equations (2). In this way, let us choose (2b) and (2c) as defining our 

planar  au tonomous  dynamical  system. 

3. The Equilibrium Points 

The curves which appear  in the phase diagrams represent  the parametr ic  solutions 
0 = O(t), ~ = ~b(t) evolving in time. Generally speaking, it may happen  that  the dynami-  

cal system contains equiIibriumpoints, i.e., constant  solutions 0 = 0 o, ~ = ~o, which are 
the roots of  the right-hand side of  Equations (2b) and (2c). It  turns out that  the 
equilibrium points of  the system (2b)-(2c)  are given by 

0 o = 3(1 + w)~ o, (4a) 

~b o = + x /2A/[(2w + 3) (3w + 4) ] .  (4b) 

In this paper  let us assume from the outset that A > 0. We shall return to this point later 
4 

on with brief comments  on the cases A = 0 and A < 0. Thus,  if - ~ < w < - 5 we do 

not have equilibrium points. 
One should note that 0o and ~b o also satisfy the constraint  equation (3) and corre- 

spond, after straightforward integration, to de Sitter's type of solutions 

R(t) = Ro exp [(1 + w)~bot ] , (5a) 

qS(t) = 4)0 exp [0o t ] .  (5b) 

Incidentally, if w---, o% we see that  0o and 0 o tend to zero and _+ x / ~ ,  respectively; 
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and thus (5) becomes identical to de Sitter's solution of general relativity: i.e., 

R ( 0  = no exp (_+ ,fA/3 0, 

q~(t) = 4o = const. 

The position of the equilibrium points in the phase diagram depends on the values 

of w and A. For fixed A Figures l (a ) - l ( f )  show how the equilibrium points, represented 
in the diagrams as A and B, move as w varies from - oo to + oo. 

A .  

e " t " e  I~ B 
Fig. la. w - - - , - ~ .  Fig. lb. w <  - 3 .  

13 

A .  

I ~ 
�9 B 

Fig. lc. - ~ < w < - l .  

)- 
e 3 

8 

Fig. Id. w =  - 1 .  

3, 
e 

B 

0 

, A  

e e 

FJg. le. w >  - 1 .  Fig. ls w ~  + o r .  



266 c. ROMERO AND A. BARROS 

At the special value w = - 1 we have 0 o = 0 and ~o = -+ x / ~ -  Such configuration 
is immediately recognized as the Minkowski static solution except for the fact that the 
Newtonian gravitational constant now evolves in time. (We shall return to this point 
later.) 

4. The Phase Diagrams 

At this point we should mention that the first integral of the dynamical system defined 
by Equations (2b) and (2c) is given by 

C[ ~ -  (~+ O)/(3w + 4)] 2 + 2A(O+ 0)2/[(2w + 3) (3w + 4)] = (2A/(2w + 3)) 2 , 

(6) 

where C is an integration constant*. It is not difficult to see that (6) represents a conic 
in the plane phase. If  we take C = - 2A(3w + 4)/[3(2w + 3)2], we obtain the constraint 

equation (3), which is one of the integral curves of the system. 

Thus, our procedure will consis! basically of drawing the curve corresponding to the 

constraint equation (3) for arbitrary values of the parameters w and A. This curve 
contains six, four, or two distinct solutions of the field equations according to w > - 4 ,  
w <  - 3 ,  or - 3 < w <  4 _ - ~, respe&ively. 

The essential features of the solutions of the Brans-Dicke field equations can be 
displayed with the aid of the next diagrams. For a fixed value of A, we have typically 

nine distinct diagrams corresponding to Figures 2(a)-2(i). 
Let us make some comments on these diagrams. The first one (Figure 2(a)) refers to 

the configuration of the solutions in the asymptotic limit w ~ - oc. There appear to be 
three solutions: the two equilibrium points corresponding to de Sitter's solutions (con- 

stant rate expanding and contracting space-times) graphically represented by the points 

A and B, and another solution which 'links' them. This third solution starts from A and 

ends at B, undergoing initially a contracting era (0 < 0), decelerates and begins to 

A lO B O 
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e 
8 

Fig. 2. w - ~ - o o .  Fig. 2b. w <  - 3 .  

* E q u a t i o n  (6)  is n o t  de f i ned  for w = - 4  a n d  w = - 3 .  T h e  c a s e  w = - 3  ha s  a so lu t ion  on ly  if  A = O. O n  

t he  o t h e r  h a n d ,  w = --~ m u s t  be  a n a l y s e d  s epa ra t e ly .  



RRANS--DICKE COSMO[ OGY." VACUUM SOLUTIONS 267 

Fig. 2c. w =  - 3 .  Fig. 2d, 3 < w <  4 .  

Fig. 2e. - } < w <  - 1 .  Fig. 2f. w =  - 1 .  

Fig. 2g. w=O.  

/ 

Fig. 2h, ~v > 0, 
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I 
4 

Fig. 2i. w --, + or. 

expand (0 > 0), the turning point corresponding to Minkowski's space-time. All three 

models share the property of constancy of G (since ~ -- 0). 
The second diagram (Figure 2(b)) is valid for - oc < w < - 3. The equilibrium points 

are no longer located at the 0-axis, which means that in the corresponding solutions G 

varies as time goes by. The model represented by point B describes a universe in which 
the gravitational strength increases as it expands, in contradiction to Dirac's hypothesis 

which claims that in an expanding universe G must decrease (Weinberg, 1972). As we 
shall see, only when w > - 1  will there appear to be solutions not violating this 

hypothesis. On the other hand, point A represents a contracting universe in which 
Newton's gravitational constant decreases. Analogously to the former case, the points A 

and B are not isolated; rather they are connected by the two distinct solutions A B  + and 
A B  - both undergoing different stages during its trajectories. In effect, starting from A 

in contraction regime they follow, however, quite different paths" A B  +, for instance, 
describes a model beginning in an ever-increasing contraction regime, reaching a maxi- 
mum contraction point, after which it decelerates continuously until it begins to expand, 

approaching point B. As far as G is concerned, following the trajectory of A B  + we 
observe that G decreases at the beginning, attains a maximum rate of decrease before 

entering a region of increasing G, when it violates Dirac's hypothesis mentioned above. 
A B - ,  in turn, describes a space-time starting in a contraction era which gradually 

changes to an expansion era. It is interesting to note that, before the contraction era has 

ended, the initially decreasing gravitational constant attains its minimum value and 
begins to increase. In its final stage towards point B, this universe represented by A B  - 

experiences a maximum expansion corresponding in the figure to the right vertex of the 

ellipse. It is worthwhile to mention that all the solutions in the diagram of Figure 2(b) 
are non-singular and, as we shall see later, this property holds only for w < - 3. 

A glance at Equation (3) discloses that the constraint curve assumes the form of an 
ellipse in the 0~0-plane for w < - 3. At the critical value w = - 3 this ellipse suddenly 
breaks off into two parallel lines and the equilibrium points disappear (Figure 2(c)). 
When w > - 3 the curve becomes an hyperbola, but the equilibrium points do not appear 
until w is greater than - 4 (Figures 2(d) and 2(e)). Therefore, we conclude that at w -- - 32 



B R A N S - D I C K E  C O S M O L O G Y ;  V A C U U M  S O L U T I O N S  269 

and w = - 4  the dynamical system undergoes drastic changes with respect to its 

topological properties. 
3 4 For w lying in the small interval - ff < w < - ~ we have no equilibrium points and 

there are two singular solutions (see Figure 2(d)). Practically they behave the same way: 

both start from a Big Bang (0 = + oo), decelerate, and contract to a final collapse 
(0 -- - oo). The gravitational constant starts out increasing, reaches a maximum value 

and begins to decrease. 
4 For w > - 5 the phase diagrams have the same topological properties in the sense that 

the constraint curve remains an hyperbola and the two equilibrium points are present. 

Indeed, the only effect of increasing the value of w is to cause a kind of non-rigid 

'rotation' in the 00-plane of the entire pattern of solutions in the clockwise sense 
(Figures 2(e)-2(h)). In the following we shall discuss some special cases which, in our 
opinion, deserve some separate comments. 

The case w = - 1 is illustrated by Figure 2(f). Here, the equilibrium points are located 

on the 0-axis and, as a consequence, the cosmological solutions represented by these 
points do not experience any kind of expansion or contraction in its geometry. In other 

words, we are in the presence of static Minkowskian space-times in which Newton's 
gravitational constant varies exponentially with time. As was firstly pointed out by 

O'Hanlon and Tupper (1972), vacuum solutions with a varying scalar field ~b (or a 

varying G) contradict Mach's  principle in the sense that this quantity is not generated 

by matter distribution. At this moment the question arises concerning the source of the 

dynamics of G in the specific case w = - 1. Looking into Equation (3) we find that in 
the absence of a cosmological constant there is no possibility of existence of a varying 

G in a static model. Thus, we are led to a very peculiar situation in which the cosmic 
evolution of the gravitational constant is not determined by matter nor by geometry; 

rather it seems to be entirely caused by the presence of A. It should be mentioned that 
a possible connection between G and A in a cosmological context has been the object 

of recent speculation based on quite different reasonings (Pollock, 1984; TomMek, 

1985). On the other hand, from the diagram we see that the solution represented by the 
pointA acts as an attractor of two singular solutions: one of them begins with a Big Bang 

and goes expanding indefinitely until the expansion vanishes, while the other starts 

contracting and undergoes an everlasting contracting stage before it becomes static. The 
model represented by the point B, in turn, is an unstable equilibrium point, and we have 

two singular solutions (again, one undergoes contraction while the other expands 

forever) which run away from B. One should add that up to now none of the solutions 
represented in the diagrams for w -< - 1 satisfy Dirac's hypothesis already mentioned. 

The next case to be examined is w = 0 (Figure 2(g)). Two of the six solutions describe 
models which expand as G decreases continuously along their whole history. One of 
these is represented by the curve coming from (0, + oo) approaching A and the other 
one by the point A itself. The former experiences a transition from Minkowski's to 
de Sitter's geometry. 

Figure 2(h) is to be representative of all the cases in which the coupling constant w 

assumes positive values. Basically, if one compares this diagram with the former (w = 0) 
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one could note a qualitative new fact concerning the Big-Bang nature now acquired by 

the expanding solution which tends to A. Clearly, this solution represents a Big-Bang 
model whose expansion tends to become stationary as t--, + c~. Surely, of all other 

vacuum solutions considered up to now, this seems to be the one exhibiting the most 

desirable characteristics from the point of view of the present observational cosmology, 

besides the fact that it does not violate Dirac's hypothesis during its whole lifetime. 
As the value of w increases the equilibrium points, A and B tend to be located on the 

0-axis. In the limit case when w ~ + oo the picture obtained is that of Figure 2(i). It 
happens that in this extreme case the two branches of the hyperbola corresponding to 

Equation (3) merge into two lines. These lines, in turn, now correspond to two solutions: 

one tending to point A and the other going away from point B. It is a well-known fact 
that in the limit w ~ oo the Brans-Dicke theory becomes indistinguishable from general 

relativity. Therefore, it is not surprising that the solutions represented by the equilibrium 
points A and B go over de Sitter's vacuum solutions. Yet it is interesting to call attention 

to the remaining two solutions tending asymptotically to A and B. The exact form of 

these solutions as well as the general solution of the field equations (2) are discussed 

in the next section. 

5. The General Solution 

In this section we solve the field equations for an arbitrary value of w. Asymptotic 

solutions such as w ~ + oo are also obtained. 
To begin with, let us consider Equations (2b) and (2c) which constitute our dynamical 

system. If  we define the new variable cc = 0 + ~ and add (2b) to (2c) we get the equation 

a +  ~2_  a = 0 ,  (7) 

where a = 2A(3w + 4)/(2w + 3). Two obvious particular solutions of this equation are 

= _+,L, (8) 

3 4 
if w <  - T ~  -5 -  

Now, if we substitute Equation (8) into the constraint equation (3) gives for 0 and @ 

the constant values 0 = 3(w + 1)@o and @o = -+ x/2A/[( 2w + 3)(3w + 4)] which are 
nothing other than the coordinates of the equilibrium points. Evidently, further integra- 

tion leads to Equations (5). 
To solve (7) we have to consider different intervals of variation of w, according to the 

sign of a" 

(i) w >  - 4 o r  

For w lying on this interval a > 0 and the general solution of Equation (7) is given by 

e(t) = xfa  (1 + c tanh x/Ca t) (c + tanh x/~ t ) -  1, (9) 

where c is an integration constant. If  we put qJ = c~ - 0 into the constraint equation we 
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get the explicit dependence  of  0 on cfft): 

O(t) = (3w + 4 ) - 1  (3(w -~ 1)c~(t) + x /3(Zw + 3) [c~2(t) - a])  ; (10a) 

and  qJ(t) also gets de te rmined  f rom 

O(t) = (3w + 4) -1  (a(t) -7 x / 3 ( 2 w  + 3) led(t) - a ] ) .  (10b) 

If  we integrate these two last equat ions  leads immediate ly  to the final solutions for the 

scale fac tor  R(t )  and  the scalar field qS(t): 

R(t)  = R o { l(c + 1) exp (2 x / a  t) + (c - 1)j * +l (j exp ( . , ~  t) - x/(1 - c)/(1 + c) j x 

x [exp(x/-a  l) + x/(1 - c)/(1 + c i ] -  l)+-x/(2w+3)/3} 1/(3w+4) x 

x e x p [ -  (w + 1) x ~ t ( 3 w  + 4 ) - 1 1 ,  ( l l a )  

qS(t) = q~o{[(c + 1) exp(2  x ~  t) + (c - 1)i ( lexp(x/ -a  t) - x/(1 - c)/(1 + c)[ • 

x [exp(x~a  t) + x / (1  - ,c ) / (1  + c)]-I)-T-~3(Rw+3)}l/(3w+4) X 

x exp(  - x ~  t/(Bw + 4)) ,  ( l l b )  
4 for w >  - 5  and  Ic] < 1; 

R(t)  = R o p(c + 1) exp (2 . ~  t) + (c - 1)l (w+l~/O" + 47 exp(  - (w + 1) x / a  t/(3 w + 4) +_ 

+ (2/3) (3w + 4) -1  x /3  12w + 31 tan -1  ( e x p ( x / a  t) x / (c  + 1)/(c - i ) ) ) ,  

(12a) 

qS(t) = q5 o I(c + 1) exp(2  x / a  t ) + (c - 1 ) l l / C 3 w + 4 ) e x p ( - x f a t / ( 3 w  + 4 ) ;  

-T- 2 (3w + 4) ~x /3  L2w + 31 tan -1  ( e x p ( x / ~  t) x/-(c + 1)/(c - 1))), 

(12b) 

for w < - 3 and  [c[ > 1, where  R 0 and q50 are integration constants*.  

(ii) - { < w <  - 4  

F or  w assuming  values in this interval a < 0 and the integration of  Equat ion  (7) results:  

e ( t ) =  x / - a ( c o s x / C a t -  c s i n  ~ Z a t ) ( s i n x / - a t  + c c o s x / - a t )  -1  , (13) 

where,  as before, c is an arbitrary integration constant .  Equat ions  (10) and  (13) imply 
the following expressions for R( t )  and  qS(t): 

R( t )  = Ro(FC cos  ( x / C a  t) + sin(x / - a t)l (w+ 1) x 

x ]tan ( ( x / -  a t + tan 1 C) /2)  [ • ~ + 3)/3)l/(3w + 4 )  (14a) 

* One should be aware that Equations (1 la) and (1 lb) represent four solutions according to the choice of 
the _+ sign as well as the domain of validity oft is t < t o or t > to, where t o = (1/x/a) tanh - i ( _ c). Ifw < - 3, 
however, then Ic[ > 1 and c + tanh (xfa t) ~ 0 for all values oft, which implies that in this case the domain 
of validity of t is - oo < t < + oo. Thus, for w < - 3 we have two solutions corresponding to the +_ sign 
in Equations (12a) and (12b). 
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q~(t) = q5 o (I c cos ( x / -  a t) + sin ( ~  t)[ x 

x [tan ( ( x / -  a t + tan -1 c)/2) [ w- ,/3(2w + 3))1/(3w + 4 ) .  

(14b) 

4 The value a = 0 corresponds to setting w = - 5  since A r  0. In this case 
~(t) = 1/(t + c) is the solution of Equation (7), where again c is an arbitrary constant.  
Then, a trivial calculations shows that* 

O(t) = 2(t + c ) - l  _ 3A(t + c) ,  (15a) 

~(t) -- - (t + c ) -~  + 3A(t + c ) ,  (15b) 

R(t )  = Ro q(t + c)12/3 e x p ( - A ( t 2 / 2  + ct)),  (16a) 

q~(t) = q~o I(t + c ) l - 1  exp(3A(t2/2 + ct)) .  (16b) 

Let us make  some comments  on the solutions showed above. Each of the solutions 
may  be easily identified in the diagrams displayed in Section 4. Starting with the case 

for w > - 4 we observe that  we actually have six solutions (two of  which correspond 

to the equilibrium points). Except  for the equilibrium points all the solutions are singular, 
not being defined for the entire range - o o  < t < + oo. Furthermore,  if It] tends to 
infinity it is not difficult to see that Equations ( l l a )  and ( l l b )  goes over into 
Equations (5), which represent de Sitter-type solutions, just  confirming what  was con- 
cluded from the simple analysis of  Figures 2(e)-2(h)  carried out in Section 4. In the limit 

of  general relativity, i.e., w-~ o% the general solution (11) tends to 

R(t)  = Ro e x p ( - x / A / 3  t ) ](c + 1) exp(2 x / ~  t ) + (c - 1)11/3 

~b(t) = q~o -- const.  

(17a) 

(17b) 

It is worth mentioning that  this solution clearly approaches  de Sitter's solution of general 

relativity when t ~  + oo. Nevertheless,  (17a) is not a vacuum solution of Einstein 
equations with cosmological  constant,  and we think this fact deserves a further com- 
ment. 

Now let us turn our attention to the case w < - 3. As was already pointed out from 
the analysis of  the diagrams, this solution which holds for any value of w < - 3 and 

positive A is singularity-free. In addition to the solutions corresponding to the equi- 
librium points A and B, there are two solutions which connect  them. As can be directly 
seen f rom Equations (12a) and (12b), all the models  describe eternal universes which 
eventually undergo stationary regimes of expansion or contraction, running backward  
or onward  in time. In the limit w--, oo, Equations (12a) and (12b) turns into Equations 
(17a) and (17b), but in this case it should be noted that  there is no singularity. 

* Again ,  it should  be under s tood  tha t  Equa t ions  (16a) and  (16b) define two dis t inct  solut ions  accord ing  

t o t <  - c  or t >  - c .  
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In the narrow interval - 3 < w < - 4 we have no equilibrium points (see Figure 2(d)). 

Thus the solution does not become close to a de Sitter-type solution at any time of  its 

existence. Rather,  it shows the peculiarity of  developing two singularities: one in the past  
and the other in the future, these occurrences being separated by a finite period of  time. 
This may  be inferred immediately from the investigation of  the domain  of  validity for 

the variable t in Equation (13). Clearly, one has to restrict the variation of  the cosmo-  

logical time to the finite range t o < t < t o + zc /xf~a ,  where t o = ( l / x / -  a) tan - 1( _ C). 
Finally, let us consider the special solution for w = - 4. Analogous to the former case, 

the solutions given by Equations (16) do not tend to a de Sitter's geometry. The two 
curves appearing in Figure 2(d) correspond to two different domains  of  variation of 
t : t <  - c a n d t >  - c .  

6. F i n a l  C o m m e n t s  

In this paper  we have focused the Brans -Dicke  vacuum solutions with a positive 
cosmological  constant  A. Exactly the same mathematical  methods  apply to examine 

A = 0 or A < 0. The  case A = 0 was completely solved by O 'Han lon  and Tupper  (1972) 
for w > - 3 .  It can be easily verified that  the latter may  be directly obtained from 

Equations (3) and (7). Indeed, if we follow this procedure we arrive at the following 
equations for 0 and t~: 

O(t) = (3w + 4) -~ [3(w + 1) _+ x / ~ +  3)]c~(t), (18a) 

~k(t) = (3w + 4 ) - I  (1 -T- x /3 (2w + 3))c~(t), (18b) 

where ~(t) = (t + c) ~ is the solution of  Equation (7) with a = 0. Thus,  after straight- 
forward integration of  Equations (18a) and (18b) we get 

R( t )  = Ro( t  + c) (3w+4)-' [ w + l  + x / ( 2 w +  3)/3] , (19a) 

q~(l) = q~0(t -~ C) ( 3 w + 4 )  I [l _t x / ~ 2 w  + 3)] ; (19b) 

which is the solution found by O 'Han lon  and Tupper.  In connection with this, we 

should point out that the special de Sitter-like solution for w = - 4 ,  obtained by these 

authors, can also be recovered by just considering the constant  solution of  Equation (7) 

= 0 and then putting 0 = - ~in  Equations (2b) and (2c) which implies 0 = - ~ = con- 
stant. I f  w < - 3 there are no solutions for A = 0, since the constraint  equation (3) 

cannot  be satisfied for any value of  0 and ~. The presence of  the cosmological  constant  
thus makes  possible the existence of  solutions for any value of  w. 

We have not considered A < 0 since this case seems somewhat  artificial in the sense 
that  the cosmological  constant  loses its character  o f  a repulsive gravitational force, 
which was the or i#nal  motivat ion of its inclusion into Einstein's equations. Never-  
theless, the same analysis carried out for positive A may  be repeated for A < 0. Some 

results can be quickly anticipated: for instance, there will be equilibrium points only for 
3 4 

- ~ < w < - 5- Also, the form of  the solutions of  Equation (7) remain the same, but with 
the obvious modification in the ranges of  variation of  w. 
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We would like to conclude this paper with a brief comment  on the asymptotic 

solutions w---, oo. Except for the solutions corresponding to the equilibrium points 

(which in this limit lie on the 0-axis), it can be readily verified that these solutions do 

not satisfy Einstein equations with non-vanishing cosmological constant  in the absence 

of  matter. Yet one can show that Equation (17a) does represent a solution of  Einstein 

equations with cosmological constant  and a matter distribution corresponding to a 

perfect fluid satisfying an equation of  state p = p. However,  in the limit w-~ - ~ ,  p is 

negative, which is not  permitted classically. Although the Brans-Dicke  field equations 

reduce to Einstein equations in the limit w ~ oc, it may happen, as we have just shown, 

that the solutions obtained from the Brans-Dicke  equations for finite w do not tend to 

the equivalent solutions of  general relativity if we take this limit a posteriori. In the 

specific case we have analysed, everything seems to happen as if the Brans-Dicke  

solutions (after the limit w --* oo has been taken) just kept the scalar field 'in memory '  

through a curious mechanism of generating matter from the vacuum. 
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