Magnetic Coupling of ³He with a Fluorocarbon Substrate

L. J. Friedman, T. J. Gramila, and R. C. Richardson

Laboratory of Atomic and Solid State Physics and the Materials Science Center, Cornell University, Ithaca, New York

(Received September 12, 1983)

We observe a nuclear interaction between ³He and the ¹⁹F spin species of a fluorocarbon substrate. The magnetization of a ³He film is strongly linked to that of the ¹⁹F substrate spins. We use this interaction as a probe of the ³He to identify several features important in surface relaxation.

1. INTRODUCTION

The nature of ³He surface interactions has been of interest to lowtemperature physicists for some time. Starting in the late 1950s,¹⁻³ experiments designed to measure magnetic properties of bulk ³He liquid revealed several irregularities due to surface influences. Although wall effects were initially viewed as an annoyance, some later experiments⁴⁻⁷ specifically sought to study ³He properties in confined geometries. Using a variety of substrates with pore sizes ranging from 10 to 10^3 Å, these NMR experiments recorded both the temperature and field dependence for the ³He T_1 and T_2 . With such large surface areas in contact with the ³He liquid, wall effects are of course dominant. One of the more prominent features of such work is that the ³He T_1 is typically hundreds of milliseconds rather than the hundreds of seconds measured for the bulk experiments. This T_1 is observed to increase linearly with the applied H_0 field, and displays a broad maximum around 0.4 K as the temperature varies. Although the time scale for these T_1 values changes somewhat with different substrates, the qualitative temperature and field dependences appear to be a characteristic aspect of the surface relaxation. Thus, despite the lack of substrate characterization, there appears to be some (as yet unrecognized) common thread underlying the physics. One interesting attempt⁸ to account for the linear field dependence of T_1 (without provision for the temperature variation, however) is based on some general arguments concerning two-dimensional hydrodynamics.

Additional models for the surface interactions generally appeal to the ubiquity of paramagnetic surface impurities (such as adsorbed O_2),⁹⁻¹¹ but do not reproduce the temperature and field dependences seen in the T_1 experiments.

In addition to the T_1 effects noted above, the surface relaxation of ³He has aroused interest through the context of the anomalous Kapitza resistance. Upon noticing that the Kapitza boundary resistance between ³He and CMN was far below that predicted by theory (and that measured for ⁴He), Wheatley¹² suggested that there was some sort of ³He magnetic coupling with the substrate. This coupling was to provide the extra channel for heat flow across the interface, which resulted in the low values observed for $R_{\rm K}$. These low values are recognized as being quite fortunate from the cryogenic viewpoint, since they permit ³He experiments at temperatures that could otherwise not be attained. Leggett and Vuorio¹³ expanded along these lines by constructing a theory in which the ³He spin and paramagnetic surface sites. Others have since extended this framework^{14,15} to include additional surface effects as well.¹⁶ A review of the experiments and theory concerned with the $R_{\rm K}$ problem is given by Harrison.¹⁷

Nuclear magnetic resonance offers a very clean means to focus on the problems of magnetic interactions between ³He and surfaces. The very short T_1 values measured for ³He in restricted geometries are undoubtedly due to surface interactions of some sort. Recalling that a T_1 value directly characterizes the flow of energy between the ³He spin reservoir and the outside world, it should be apparent that the anomalous $R_{\rm K}$ effect may represent a closely related measurement. But there are nonmagnetic contributions to the heat flow between ³He liquid and a substrate, so that it is difficult to separate out the various components in an $R_{\rm K}$ measurement. The T_1 recovery for the ³He spin system, however, depends strictly on the magnetic interactions and is therefore preferable in this regard.

The present work affords an additional handle on the problem of surface relaxation. It was our intention to study the important interface region from both sides. To this end we chose a fluorocarbon substrate so that both the fluorine and ³He properties could be monitored via NMR. Bulk relaxation for similar fluorocarbon insulators had been seen to be quite long, indicating that surface effects were again expected to dominate the fluorine behavior so long as the fluorine spins could somehow sense the surface presence.¹⁸ For this we relied on the diffusive motion for the ¹⁹F magnetization that arises through the dipolar interactions of neighbors inducing mutual spin flips. Using typical values for spin diffusion in solids, we estimated this diffusive time constant to be around 20 sec for our 2000-Å-diameter fluorocarbon spheres. Since this was far shorter than

expected bulk T_1 values, any surface effects relevant for ³He relaxation might also be thought to influence the ¹⁹F.

The general hope in these experiments was to find features in the ³He behavior that were common with the surface-dominated substrate relaxation. Our work with the fluorocarbon substrate in fact led us to observe an unexpected sort of surface interaction for ³He. We shall describe several experiments that show the existence of a strong nuclear coupling between ³He and the ¹⁹F spin species in the substrate. Although the origin of this interaction is as yet indefinite, the interaction itself represents a different means to study various aspects important to ³He relaxation.

2. EXPERIMENTAL

The resonance experiments were all performed using a cryostat cooled by means of a pumped ³He pot with a minimum temperature of 0.35 K. Intermediate temperatures necessary for ³He condensation were attained by pumping the ⁴He bath down to 1.25 K. Both carbon resistors and ¹⁹F susceptibility were used for cell thermometry. The carbon resistors were referenced to a CMN susceptibility calibrated germanium resistor, while the ¹⁹F signal was referenced to the 4.2 K bath.

The NMR cells were machined out of epoxy cast with about a 20% fill fraction of #36 Cu wires. The wires, of course, were intended to aid thermal conductivity through the epoxy. One large cell with a 6 cm³ volume was used during the ³He coverage experiments in which the fluorine T_1 behavior was correlated with ³He adsorption isotherms (see Fig. 8). All other stages in the ¹⁹F-³He experiments were performed using cells with 0.2 cm³ as a typical coil volume. The ³He sample doses could be added to the cells through vacuum-insulated fill lines. These capillaries were equipped with inner and outer heater wires to preclude the plating of ³He as the lines passed through the ⁴He bath region. After plating a ³He dose onto the substrate surface, we would anneal the sample at approximately 7 K for 2 h to ensure uniform coverage.

The substrate used in these experiments was a saturated fluorocarbon polymer $(CF_2)_x$, marketed by Dupont under the name DLX6000 Microspheres (Dupont Co., Wilmington, Delaware). Figure 1 shows an electron micrograph of these 2000-Å-diameter microspheres. The rather uniform size distribution seen here is typical of the samples we viewed. The microspheres are intended as a plastic additive or lubricant, whereas their redeeming feature for our experiments was merely the presence of the spin- $\frac{1}{2}$ fluorine species. Adsorption isotherms indicated a monolayer ³He dose as being 3.8 STP cm³ per gram of DLX6000. This was in good agreement with geometrical estimates of the surface area based on electron

Fig. 1. A scanning electron micrograph of the DLX6000 fluorocarbon particles. The bar in the right corner represents a length of $0.1 \ \mu m$.

microscope pictures to determine particle size, and Dupont's figures for the bulk density. To increase the effective surface area for our samples, we first compressed the fluorocarbon powder using a machined brass jig and a commercial press. In this manner we were able to attain a 50% fill fraction in the cell volume. After subjecting the powder to approximately 1000 psi, it formed brittle pellets, which could easily be slid into the NMR coil space.

In a previous set of experiments^{19,20} we noticed very large differences in the fluorine relaxation times resulting from changes in the substrate O_2 environment. To preclude the O_2 effects it was necessary to clean the sample through repeated N_2 flushings at 100°C. Another means for accomplishing this was merely to subject the sample to a fast thermal cycle. After an initial ⁴He transfer the NMR cell was heated to approximately 120 K with liquid ⁴He in the dewar but without gas in the exchange gas can. By then admitting a small quantity of ⁴He we could cool the sample cell rapidly to 4 K in perhaps 10–20 min. The rapid cooling was thought to favor the plating out of the O_2 gas (desorbed at 120 K) on the cell walls rather than the substrate surface. The ¹⁹F T_1 values resulting from this procedure were characteristic of our cleanest (most thoroughly flushed) samples.

Although the NMR electronics was fairly standard in design, it is worth noting a few details of the pulse methods used for these measurements. The long ¹⁹F relaxation times presented concerns that differed somewhat from those one might normally encounter for a short- T_1 species. One such instance involved the measurements of fluorine T_1 and susceptibilities when there was no ³He in the cell (see Fig. 5). The ¹⁹F T_1 values were in some cases over 10⁴ sec, so that the thermal equilibrium necessary for a susceptibility measurement might require at least a day (even longer with the nonexponential recoveries that were typical). The actual ¹⁹F signal, however, was so large that a mere 3° tipping pulse was sufficient to attain reasonable signals. Since 97% of the initial magnetization remained after 20 such pulses, we were easily able to nondestructively monitor the ¹⁹F magnetization. Typically, a series of these short sampling pulses was used to monitor a single recovery of the fluorine spins following saturation and thus arrive at a T_1 value. In contrast, relaxation measurements using a $180^{\circ}-90^{\circ}$ sequence would have required many T_1 intervals to determine a T_1 value.

In order to find an accurate value for the equilibrium magnetization M_0 , we observed the time evolution of the magnetization for values both greater and less than the actual equilibrium M_0 . As seen in Fig. 2, with the magnetization less than the equilibrium M_0 , M(t) would increase with time (region A). The process could be considerably hurried by ramping up the magnet current and allowing the sample to spend time (regions B and D) in a high H_0 field. The M(t) would then increase faster than in the lower field and even surpass the low-field equilibrium M_0 . Subsequent small-angle

Fig. 2. Allowing the ¹⁹F spins to spend time in a high magnetic field (B and D) results in an increasing (A and C) or decreasing (E) magnetization versus time. This sets unambiguous limits on the equilibrium magnetization M_0 .

measurements would then reveal whether the measured M(t) was either above [M(t) decreasing, as in region E] or below [M(t) increasing, as in region C] the equilibrium M_0 . In this manner it was possible to set unambiguous limits on M_0 without worrying about spurious effects arising from nonexponential recoveries.

The use of short sampling pulses generally allowed us to avoid the tedium of fine tuning the pulse lengths and phases. On the rare occasions when accurate ¹⁹F pulse lengths were required (such as during the ¹⁹F-³He inversion sequences, Fig. 3), we used the ³He signal for tuning rather than dealing with the long T_1 of the ¹⁹F species. A high-precision NMR field lock in the magnet allowed us to first adjust the electronics by observing the ³He signal at some frequency f_0 . The field could then be accurately altered to bring the ¹⁹F resonance to this already tuned frequency.

3. EXPERIMENTAL RESULTS

Much attention in the field has been focused on what role magnetic impurities might occupy in the processes governing ³He behavior in restricted geometries. Because the relaxation effects from electronic impurities were generally thought to be more important than nuclear spins, there has been no prior work dealing directly with the possibility of ³He interactions with any nuclear substrate species. The data we present will show that these interactions may be a major factor influencing the behavior of ³He close to a substrate containing nuclear spins. Since most popular substrates do at least contain some isotope with a nonvanishing moment, the scope of such effects may be very wide indeed. From a slightly different perspective, the presence of such an interaction will be seen to provide a very useful surface probe. Some later experiments began to use this probe as a means to help detail additional features relevant for ³He relaxation.

3.1. Inversion Experiments

Figure 3 depicts the unusual NMR behavior that underlies much of the present work.²¹ The experiment involved monitoring both the ¹⁹F and ³He magnetization following a near 180° pulse on just the ¹⁹F spins. The data were collected at 1 K and 1.1 kG with roughly one monolayer of ³He adsorbed on the surface. Figure 3a considered alone shows the time evolution of the ¹⁹F magnetization in a typical NMR experiment for which the system starts out in thermal equilibrium (during times t < 0) with $M_z = M_0$. The pulse applied at t = 0 inverts the magnetization so that it points along the negative z axis (antiparallel to the applied H_0 field). Notice that for subsequent times on the order of 40 sec, the ¹⁹F magnetization recovers

Fig. 3. (a) Magnetization of ¹⁹F versus time following a 180° pulse at the ¹⁹F resonant frequency. The rf frequency was 4.45 MHz and the temperature was 1 K. The fluorine magnetization first inverts and then recovers toward the thermal equilibrium value with a time constant of about 40 sec. (b) Magnetization of ³He versus time under the same conditions of field and temperature as (a). The ³He resonant frequency was 3.6 MHz. The applied rf pulse was at the ¹⁹F resonant frequency, the same initial pulse used in (a). The coupling between the ¹⁹F and ³He causes the ³He spins to invert and recover with much the same time constant as the ¹⁹F. (c) Recovery of ³He magnetization following a 180° pulse applied at the ³He resonant frequency. This is the conventional experiment for measuring the quantity T_1 . In this case the ³He spins recover with a 40-msec time constant. The recovery is three orders of magnitude more rapid than that observed for either ³He or ¹⁹F when an rf pulse is used to invert the ¹⁹F spins initially.

back to thermal equilibrium. The time constant associated with the recovery seen on such curves is, of course, the thermal relaxation time T_1 .

The surprise arises when we view the behavior of the adsorbed 3 He monolayer simultaneously with that for the ¹⁹F. Although the 180° pulse applied at t=0 was at the resonant frequency of the ¹⁹F spins, the ³He magnetization shows a marked response to it. Figure 3b displays how in such an instance the time evolution of the ³He magnetization closely mimics that of the ¹⁹F. Following the 180° pulse on the ¹⁹F spins, the ³He magnetization first inverts and then recovers with the same 40-sec time constant seen in Fig. 3a for the ¹⁹F system. This is in sharp contrast to the 40-msec T_1 measured for ³He in the conventional manner. The 40-msec time may be derived from the plot appearing in Fig. 3c. In this instance, the thermal equilibrium of the ³He is disrupted through a pulse applied at the ³He frequency. The recovery of the ³He magnetization is then seen to occur with the short 40-msec T_1 instead of the 40-sec recovery in Fig. 3b. At higher frequencies the time constants measured by these two methods increase considerably, but maintain the marked contrast seen in Fig. 3. With $H_0 = 4 \text{ kG}$, for example, the ¹⁹F-³He recoveries in response to a resonant fluorine pulse (Figs. 3a and 3b) reach 10^3 sec, while the ³He T_1 of Fig. 3c increases to 200 msec.

A somewhat related form of the effect seen in Fig. 3 could be observed by merely saturating either of the two spin species. As one might suspect from Fig. 3, setting the fluorine magnetization equal to zero (by applying a 90° rather than 180° pulse) would result in a zeroed magnetization for ³He as well. But the reverse effect was also observed when the ³He signal was saturated. For example, with $H_0 = 4 \text{ kG}$ a few hundred 90° pulses applied at the ³He frequency with a rate of several per second (recall that the measured T_1 under such conditions was 200 msec) would result in a fluorine magnetization roughly half that observed in equilibrium. Eddy current heating was not responsible for the increase in ¹⁹F temperature, as no such effect was observed if the pulses were not at the ³He frequency. This merely reflected the fact that the spin temperatures of the ¹⁹F and ³He were in close communication regardless of which magnetization was being directly altered by the applied rf. Once the ¹⁹F magnetization had been so degraded, however, it required several T_1 intervals (several thousand seconds) to recover after the ³He pulses ceased. The ³He, of course, displayed a diminished signal for the same length of time since its spin temperature was pinned to that of the fluorine.

This sort of behavior for the ³He was the signature of a two-bath effect, only in this instance the data had clearly identified which two reservoirs were involved. The contact between the two spin reservoirs would therefore create a marked difference in the ³He behavior following a short, as opposed to long, interval of saturation. To be explicit, any mild irradiation at the ³He frequency (such as that from just a few pulses) had little effect on the ¹⁹F reservoir. But prolonged heating of the ³He allowed heat to trickle into the ¹⁹F reservoir and ultimately cause a diminished ¹⁹F magnetization. This degraded ¹⁹F signal would then persist for several times T_1 once the heating had ended and, in addition, drag the ³He magnetization down for the same interval. This type of two-bath behavior has been previously noted in ³He experiments. Goto,²² for example, observed these same differences between the long and short saturation pulses for ³He adsorbed on Vycor. He attributed this to a two-bath effect arising from a contact between the ³He spin and tunneling motion reservoirs. It is possible, however, that the 5% abundant ²⁹Si isotope in the Vycor substrate could have been a second reservoir in contact with the ³He.

The two-bath contact that could degrade our ³He signals for times typical of the ¹⁹F T_1 value also served as a means to enhance these ³He signals for like intervals. Starting with a 13-MHz ($H_0 \sim 4 \text{ kG}$) ³He resonance, the field was ramped up to 10 kG, where the spin systems were allowed to equilibrate for several hours. At this field, the equilibrium magnetization for both the ¹⁹F and ³He was, of course, 2.5 times that for the 4-kG field. Upon returning the field to 4 kG and monitoring the ³He signal, we observed this enhanced magnetization to persist for times again typical of a ¹⁹F T_1 . Without the contact to the ¹⁹F reservoir, however, this enhanced ³He magnetization would have vanished after only a few ³He T_1 intervals (i.e., after just a few seconds). It should be apparent that any method of enhancing the substrate magnetization could offer a means to achieve enhanced ³He signals as well. One such approach has already been attempted on this substrate, and has met with encouraging results.²³

L. J. Friedman, T. J. Gramila, and R. C. Richardson

The two-bath picture offers one simple framework to view the processes underlying the curves displayed in Fig. 3. It has already become apparent that the strong ${}^{3}\text{He}{}^{-19}\text{F}$ link allows the two systems to rapidly equilibrate. A further question still arises concerning the time required for this equilibrium to occur. To address this it need only be recalled that the T_1 measured for ${}^{3}\text{He}$ directly was only 40 msec. The natural interpretation might therefore be that this 40 msec was in fact just a measure of this equilibrium time required for the small ${}^{3}\text{He}$ reservoir to thermalize with the ${}^{19}\text{F}$ spins.

To test this picture, we performed the experiment summarized in Figure 4. The ¹⁹F population was first inverted with a 180° pulse at the fluorine frequency, leading in addition to a ³He inversion as was described earlier. The solid line in Fig. 4 represents this same sort of slow ³He recovery we saw in Fig. 3b. In this instance, we sought to drive the ³He magnetization away from its equilibrium with the ¹⁹F reservoir (i.e. away from the solid curve). For this we applied pulses at the ³He resonant frequency to directly invert the ³He spins. The intention here was to measure the time required for the surface interactions to pull the ³He magnetization back into equilibrium with the ¹⁹F reservoir (i.e., back to the slow recovery curve). The dashed lines in Fig. 4 clarify the sort of ³He response seen following the 180° pulses applied at the ³He resonant frequency. We observe that after any 180° pulse at the ³He frequency, the ³He spins quickly return to

Fig. 4. The ³He magnetization versus time. This is another variation of the experiment shown in Fig. 3b. A 180° rf pulse is applied initially at the ¹⁹F frequency. The ³He spins are rapidly inverted by the magnetic coupling at the interface with the ¹⁹F. If 180° pulses are applied at the ³He frequency while the ¹⁹F is recovering to equilibrium, the ³He reverses its direction of magnetization but then recovers to the polarization apparently determined by the ¹⁹F substrate. The rapid recovery, illustrated with a dashed curve, has a 40-msec time constant.

equilibrium with the ¹⁹F reservoir. This is evident from the short interval required for the dashed and solid lines to merge. This interval was measured with standard T_1 -type pulse sequences. The time constant for these dashed curves was thus found to be roughly 40 msec, in agreement with the previous measurements of ³He T_1 values. In this context, what was pictured as a ³He T_1 measurement could be represented as one of the dashed lines in Fig. 4 recorded at a sufficiently long time on the solid curve so that $S(t)/S(0) \approx 1$ (i.e., with the ³He and ¹⁹F spin reservoirs in thermal equilibrium with the lattice). The interpretation suggested by this is merely that the 40-msec interval in both instances represents the time required for the ${}^{3}\text{He}^{-19}\text{F}$ equilibration. The direct measurement of the ${}^{3}\text{He}$ T_{1} would therefore not be a good indication of contact between the ³He and a lattice reservoir. The processes being probed are, in fact, quite different from those normally thought to govern a T_1 measurement. Note, in addition, that the processes relevant for the ³He T_1 measurement do little to alter the net number pf $({}^{3}\text{He} + {}^{19}\text{F})$ spins aligned with the field. Since the solid curve in Fig. 4 slowly returns to thermal equilibrium with the lattice reservoir, it is evident that there must also be some lattice link that does change this net number of aligned spins. Section 3.2 will deal more fully with this aspect.

It is noteworthy that the ¹⁹F-³He coupling thus far appears active at lower temperatures. Again working with the DLX6000 substrate, Hammel *et al.*²⁴ and Chapellier²⁵ have observed ¹⁹F-³He communication extending into the millikelvin temperature range. Some initial suggestions²³ for a possible coupling mechanism would have predicted the ¹⁹F-³He link to virtually vanish in this regime. The fact that the communication remains means that these interactions of ³He with nuclear spins in a wall may be important for those experiments performed even at the lowest temperatures.

The sort of coupling evident through the ³He inversion experiments showed no sign of being present in the fluorocarbon bulk. Working again at 1 K and 4 kG, we checked for, but did not detect, communication between the 1% abundant ¹³C and ¹⁹F spins. The ¹⁹F/¹³C number ratio was comparable to that in the ³He version of this experiment. While monitoring the ¹³C signal, however, we observed no changes when the ¹⁹F spins were inverted through application of a 180° pulse. Curiously, the ¹³C T_1 was only a few seconds (even with the ¹⁹F T_1 on the order of 10³ sec), so there was no means to check for surface communication between the ¹³C and ³He. That is, since the ¹³C diffusion time was larger than the T_1 , any surface effect would never be sensed by the bulk ¹³C. Still, the bulk properties were insufficient to produce any trace of ¹³C-¹⁹F coupling comparable to that observed for the ¹⁹F-³He systems at the surface. Although we cannot unambiguously identify the reservoirs and their coupling responsible for the ³He-¹⁹F communication, it is nonetheless quite evident that some surface property must play an essential role.

3.2. Coverage Experiments

The inversion experiments described in Section 3.1 demonstrated that the magnetization of the substrate ¹⁹F spins could be transferred to the surface ³He spins. It might not be too surprising, then, if fluorine recovery times were somehow altered by the presence of this strongly coupled reservoir. Figure 5 reinforces this notion by displaying the temperature dependence for the ¹⁹F T_1 values in the presence and absence of adsorbed ³He. With the cell empty of any ³He, the ¹⁹F T_1 values are more than an order of magnitude larger than observed for the cell when ³He fills the pores. Figure 5 is itself a clear sign that some sort of communication occurs between the ³He and substrate nuclei. Thermal contact with the substrate did not in this instance introduce any ambiguities, as the ¹⁹F susceptibility agreed well with the resistance thermometer for both runs, and the ³He susceptibility matched that of the published bulk values²⁶. In addition, the long ¹⁹F T_1 values were unaltered when ⁴He was added to the cell instead of ³He. Apparently, the ³He spin was the ingredient necessary to produce the short ¹⁹F relaxation times. The qualitative difference between the two curves in Fig. 5 brings to mind the T_1 curves for ³He alone seen in restricted geometry experiments.^{6,7} For without ³He in the cell the ¹⁹F T_1 appears to continue increasing as the temperature is lowered. But the T_1 measured for the cell filled with ³He shows the same flattening out at the lower

Fig. 5. Time constants T_1 of 19 F with and without 3 He adsorbed on the surface. The 3 He plating results in an order of magnitude change in the 19 F time constant and a qualitative difference in the temperature behavior.

temperatures as was seen for the ³He itself. This strongly suggests that the ³He relaxation channels have been opened to the ¹⁹F through the surface communication, hence resulting in a ¹⁹F T_1 behavior that mimics that of ³He. Since these previous studies have seen such ³He T_1 values to start decreasing again at still lower temperatures, it would be interesting to monitor the ¹⁹F T_1 behavior throughout these same regions to determine whether the ¹⁹F T_1 behavior does likewise.

The large T_1 differences seen in Fig. 5 were measured for the limits where a cell was either completely empty or full of ³He. It seemed that further details concerning the ¹⁹F–³He interaction might be obtained by varying the ³He surface coverage more slowly between these two extremes. Figure 6 summarizes the ¹⁹F T_1 values obtained at 1 K and 4 kG as small doses of ³He were successively added to the cell. The curve reveals there to be an unexpected amount of structure at these submonolayer doses. For very low coverages the ¹⁹F relaxation rate appears rather insensitive to the presence of ³He on the surface. After some critical coverage, however, further ³He additions result in a rapid increase in $1/T_1$ followed by a very sharp minimum and a broad maximum. The slowly decreasing tail evident further out on the curve continues for at least twice the ³He dose required for the preceding broad maximum. The "intrinsic" relaxation rate efficiency available to the ¹⁹F spins is indicated by the zero-coverage point at $1.8 \times 10^{-4} \sec^{-1}$.

Fig. 6. Changes in the 19 F relaxation rate with a varying amount of 3 He on the substrate. The experiment was performed at 1 K with a 19 F resonant frequency of 16 MHz.

L. J. Friedman, T. J. Gramila, and R. C. Richardson

The experiments in this and the preceding section provide a means to model the general pathway required for the ¹⁹F relaxation. Figures 5 and 6 indicate that once the ¹⁹F spins have been saturated, the primary means for refreshing the magnetization arises from the ³He adsorbed on the surface. The T_1 measured for the ¹⁹F will therefore be governed by the times required in the series pathway that brings magnetization from the surface to the bulk. This pathway includes both the ³He-¹⁹F surface communication and the ¹⁹F spin diffusion within the fluorocarbon bead itself. The measured T_1 values, however, are sufficiently long that such diffusion has time to maintain a fairly uniform bulk magnetization throughout the recovery: the bottleneck for the ¹⁹F relaxation must therefore be associated with what happens on the surface.

The inversion experiments (Section 3.1) have indicated the dominant feature in the ¹⁹F-³He communication to be the easy transfor of magnetization between the two spin systems. But this single process cannot significantly alter the total (³He+¹⁹F together) fraction of spins aligned with the H_0 field and thus cannot thermalize the spin baths with the lattice reservoir. There must instead be mechanisms that directly alter only the ¹⁹F or ³He magnetization alone. In the latter case, the ¹⁹F relaxation would be a two-step process requiring the initial exchange of magnetization with ³He spins and the subsequent relaxation within the ³He bath. We shall term the second step "direct": by this we mean a process for which the ³He magnetization changes without altering that of the ¹⁹F. A two-step fluorine T_1 so determined could be expressed as

$$T_1^{\text{meas}} = (T_1^{IS} + T_1^{I})(N_S/N_I) \tag{1}$$

with $I = {}^{3}\text{He}$ spins and $S = {}^{19}\text{F}$ spins. Here the T_{1}^{IS} represents the mixing time of the ${}^{3}\text{He}$ with the ${}^{19}\text{F}$ bath and T_{1}^{I} is the direct relaxation time for the ${}^{3}\text{He}$ spins alone. The N_{S}/N_{I} factor arises since each of the N_{I} ${}^{3}\text{He}$ spins on the surface must bear the burden of relaxing N_{S} ${}^{19}\text{F}$ spins in order that the latter equilibrate. Adsorption experiments set this ratio to be roughly 300 for the (0.8) ${}^{3}\text{He}$ coverage (Fig. 6) corresponding to a ${}^{19}\text{F}$ T_{1} of 10 3 sec, so that

$$T_1^{IS} + T_1^I \approx 10^3 / 300 \text{ sec}$$
 (2)

or

$$T_1' \approx \text{few seconds}$$
 (3)

since T_1^{IS} is only around 200 msec (see Figs. 3c and 4, where the 1.1 kG measurement of T_1^{IS} was 40 msec). We may thus identify Eq. (3) as defining the time scale for the direct relaxation of ³He alone. The same time scale would hold if we assumed that the ¹⁹F relaxed directly through its interaction with ³He [i.e., a one-step surface relaxation process as opposed to Eq. (1)].

Figure 7 illustrates the reservoirs and time constants included in the relaxation processes. The most efficient relaxation for the bulk ¹⁹F is pictured as occurring through the intermediate surface reservoirs. The two-step process of Eq. (1), for example, follows a pathway from the ¹⁹F bulk through the ¹⁹F and ³He surface spin reservoirs, and finally to the thermal lattice. The availability of this pathway makes it evident that Eq. (3) at least puts a lower bound on T_1^I . The strong ${}^{19}\text{F}-{}^{3}\text{He}$ contact (characterized by $T_1^{IS} \approx 200 \text{ msec}$) ensures that a ${}^{3}\text{He}$ T_1^I shorter than a few seconds would have to result in a ¹⁹F relaxation time shorter than measured (i.e., shorter than 1000 sec). If some direct ¹⁹F relaxation (noted in Fig. 7 with a T_1^S time constant) acts in parallel with the two-step process of Eq. (1), the T_1^{meas} for the bulk ¹⁹F signal may be seen as placing a lower bound on both this $T_1^{\rm S}$ and the $T_1^{\rm I}$ of the ³He as well. The $T_1^{\rm meas}$ for the bulk ¹⁹F signal may in this sense be seen as a measure of the ³He relaxation processes. We suspected this earlier from the similar temperature dependences of the ¹⁹F and ³He relaxation times, and Fig. 7 provides a means to consider why such similarities might arise.

This general model for the surface relaxation suggests that we may view the ¹⁹F behavior as a probe of the ³He T_1^I . The initial flat region (followed by the knee) could conceivably arise from several effects. One obvious possibility is that the $1/T_1^I$ process is a cooperative phenomenon for which the ³He atoms must actually see their neighbors. Low doses would then have little effect on the relaxation efficiency, since the spins would be too far apart on the surface for this to occur. But the same insensitivity could result if the ³He surface mobility is an important factor governing the $1/T_1^I$ efficiency. The flat region might then arise if the initial doses were

Fig. 7. The various spin and thermal reservoirs of the system communicate with different time constants.

more tightly bound to the surface than later ones. A surface mobility influence would probably also be seen at monolayer completion in addition, since closely packing ³He atoms would change the character of the motion from the lower coverages. A greater mobility for ³He layers beyond the first could then affect the ¹⁹F T_1^{meas} as well, although the weaker interaction of these distant layers with the surface would have to impede any relaxation efficiency. These considerations made it necessary to make a better determination of the ³He monolayer dosage.

Since the earlier sample contained a surface area too small for calibration purposes, a 6-cm³ cell was constructed with an anticipated sample surface close to 100 m^2 . Figure 8 displays the ¹⁹F relaxation data for the new cell, with the horizontal axis measured in STP cm³ of ³He per gram of DLX6000 sample in the cell. These data were gathered at 1 K and a 6-MHz ¹⁹F resonant frequency. Note that the same general features that were pointed out for Fig. 6 are again evident here. The minimum at 3.8 cm³/g appears in Fig. 8 to fall only to a level comparable to the rates seen in the long tail (i.e., past 5 cm³/g coverages). It seems likely that the differences between the two experiments are related to the frequency: with the higher ¹⁹F resonant frequency (16 MHz for Fig. 6) the dip is seen to extend far beneath the high-coverage tail. A nitrogen BET²⁷ performed on this sample resulted in an N₂

A nitrogen BET²⁷ performed on this sample resulted in an N₂ monolayer of 2.7 cm³/g. Accounting for the differences in surface areas,

Fig. 8. The relaxation rate of 19 F at 1 K with a resonant frequency of 6 MHz. The same basic structure that was seen with 3 He coverage changes at 16 MHz is also seen in this lower magnetic field. Adsorption experiments indicated that the coverage required for one monolayer of 3 He was 3.8 STP cm³ per gram of DLX6000.

this results in a $2.7 \cdot 13.6/10 = 3.6 \text{ cm}^3/\text{g}$ dose for the ³He monolayer. It seems reasonable to then associate the $1/T_1$ dip of Fig. 8 with some aspect of monolayer completion for the ³He. The subsequent broad maximum (followed by the long tail) then corresponds to ³He additions in the second layer. Any ¹⁹F T_1 sensitivity to a second ³He layer is indeed noteworthy since it signals the presence of efficient relaxation for these ³He atoms more distant from the interface. Ordinarily, the heightened surface relaxation for ³He is associated with the local properties of the surface, such as imbedded paramagnetic impurities: the ¹⁹F data, however, now point to the possibility that the details of the solid layers may themselves represent important ³He relaxation channels.

The region of the $1/T_1$ curve associated with monolayer completion shows an interesting temperature dependence. Figure 9 highlights the

Fig. 9. Measurements of ¹⁹F relaxation rate with ³He coverage at various temperatures. The measurements were made with a ¹⁹F resonant frequency of 10 MHz. The sharp minimum in the relaxation rate seen at low temperatures with a coverage of 4 STP cm³ per gram of DLX6000 disappears as the temperature is raised.

changes seen in these features between the temperatures of 0.4 and 3.6 K. Talbe I in the Appendix lists the 10-MHz data of Fig. 9. As the temperature is increased from curve a through i we see a general smearing of any monolayer-type features. The sharp minimum that is clearly evident in curve a is all but gone by the 2.4 K curve f. Notice, in addition, that the broad maximum and the long tail that follows it rise in height considerably as the temperature is increased. Since these temperatures are well below that at which we could expect significant ³He description, we must consider other possible explanations for Fig. 9.

The changes in the curve might suggest that the ¹⁹F $1/T_1$ features arise in part from the ³He surface geometry. Thermal excitations prompted by the increased temperature could be expected to compete with any tendency to form a well-defined surface structure near monolayer coverages. If the time scale of the ³He motion on the surface influences either the direct ³He relaxation or the ³He-¹⁹F communication, such changes in the surface would then show up in the measured ¹⁹F relaxation rates. It might be interesting to correlate these ¹⁹F $1/T_1$ curves with additional linewidth studies on the ³He or heat capacity measurements in order to further probe what is occurring in this temperature regime and clarify the ³He role in ¹⁹F relaxation.

We have seen how features in the ¹⁹F data occurring at ³He monolayer completion imply that the details of the surface conditions play an important role in the surface relaxation process. This is further reinforced by some trials that involved first preplating the DLX6000 surface with a small ⁴He dose. Figure 10 shows some ¹⁹F relaxation rates measured for rather low ³He coverages at the same field and temperature as Fig. 8. The open circles merely represent a finer grid of points than appear in Fig. 8, so as to emphasize these low-coverage features. We see that the so-called flat region does in fact display a slight nonzero slope and looks fairly linear out to $1.6 \text{ cm}^3/\text{g}$. At this latter coverage the rise in ¹⁹F relaxation rates produces a sharp knee in the curve, as we noted earlier.

To help interpret the cause of this behavior we preplated the surface with a $1.6 \text{ cm}^3/\text{g}^4$ He dose. This quantity roughly matched that required for the ³He to produce the knee in the open circle data. The closed circles in Fig. 10 denote the relaxation rates obtained with the surface so prepared. Note that the horizontal axis excludes the initial ⁴He dose and only indicates the amount of ³He in the cell. If the knee were due to a relaxation channel that relied on ³He–³He spin interactions, the preplating could only have reduced the effect of ³He on the surface: in this case ³He coverages of at least 1.6 cm³/g would still have been required to ensure efficient ¹⁹F relaxation. But we see in Fig. 10 that the closed circle rates rise above those for the plain surface (open circles) at comparable ³He doses. The modicum of

Fig. 10. With the scale expanded from that shown in Fig. 8, we see the effects of ⁴He preplating for very low ³He doses. The ⁴He preplated surface (shown by solid circles) actually result in some ¹⁹F relaxation rates that are larger than those for the surface without ⁴He. In this figure the horizontal axis corresponds only to the amount of ³He in the cell.

⁴He must therefore in some sense aid rather than hinder the ³He in relaxing the ¹⁹F nuclei. Trials run with only ⁴He doses, however, produced no discernible changes in the ¹⁹F relaxation rates. This puzzle may be clarified by plotting the data in a somewhat different manner.

The two sets of data for still higher coverages are compared in Fig. 11, where the horizontal axis now indicates the total quantity of ${}^{3}\text{He} + {}^{4}\text{He}$ in the cell. The striking aspect of these curves is that the general features are so much alike. We see peaks in both curves at the $5 \text{ cm}^3/\text{g}$ coverage. and the dip at $3.8 \text{ cm}^3/\text{g}$ for the pure ³He run appears as a flat region in the ${}^{3}\text{He} + {}^{4}\text{He}$ data. The ${}^{4}\text{He}$ dose included in this second run clearly does not offset the curve from data compiled for ³He alone. Instead, the low ⁴He dose appears to serve the same function as the comparable amount of ³He in the upper curve, although the rates for pure ³He are somewhat greater than those for the mixture. Still larger amounts of ⁴He (past $7.4 \text{ cm}^3/\text{g}$ coverages) are seen to further impede the ¹⁹F surface relaxation, for we see that the data (noted with open circles for these later ⁴He additions) decrease to almost the initial clean surface rate by the time the ⁴He dose approaches a full monolayer. This clearly shows that ⁴He itself cannot contribute directly to the ¹⁹F surface relaxation. In addition, the ¹⁹F-³He interaction must be very short range, since the single ⁴He layer (which displaces the ³He) all but eliminates the enhanced ¹⁹F relaxation induced by the 3 He.

Fig. 11. Comparison of ¹⁹F relaxation rate with helium coverage with pure ³He (upper curve) and with initial plating with ⁴He. The upper curve is the same as Fig. 8. The lower curve shows that with a submonolayer coverage of ⁴He, the same qualitative features are seen in the relaxation rate with helium coverages near 4 STP cm³ per gram of DLX6000. Eventually, when enough ⁴He is added to completely cover the surface, shown for coverages between 7.5 and 10 cm³ per gram, the relaxation rates drops to nearly the value measured for the bare surface.

But the alignment of the two curves says that the low ³He and ⁴He doses appear to have similar functions. The role for the initial $1.6 \text{ cm}^3/\text{g}$ dose must therefore be an inert one for both the ³He and ⁴He. That is, the first $1.6 \text{ cm}^3/\text{g}$ merely fills in some surface sites that are unimportant in the ¹⁹F relaxation process. It seems likely that the feature that distinguishes these sites is their greater binding energy. This binding energy first ensures that the initial doses occupy these sites preferentially and in addition leads to the reduced relaxation efficiency for any ³He thus bound. The ³He filling such sites might be less mobile than later doses and for this reason contribute less to the ¹⁹F relaxation. It is in this sense that the data of Fig. 11 again suggest a possible role for ³He surface motion in the relaxation processes these experiments probe.

A somewhat similar explanation for the effect seen in Fig. 11 is merely that the ³He motion is involved in the relaxation in a manner that becomes more efficient at higher coverages. Relaxation theory language would express this by saying that the T_1^I relaxation is most efficient when the time scale of the motion (which modulates the interactions with the ¹⁹F) matches the Larmor frequency for the ³He. In such an instance, nothing distinguishes some fraction of the surface sites, but rather a certain degree of surface crowding is necessary for efficient ³He relaxation. Initial ⁴He doses would merely need to behave as the ³He in their ability to impede the motion of the subsequent ³He doses. The lower rates for the ³He + ⁴He run in Fig. 11 then arise because of the lower density of ³He on the surface, even though the individual ³He atoms provide efficient relaxation.

We have seen that the communication between the ³He and ¹⁹F spin systems accounts for the dominant ¹⁹F relaxation mechanism. Variations in the ¹⁹F relaxation rate may in fact be interpreted as stemming from changes in the relaxation of the adsorbed ³He. A similar assertion, however, cannot be made for the mechanism of bulk ³He relaxation. Previous experiments^{19,20} dealing with the effects of oxygen addition revealed that the ¹⁹F rates could be markedly altered without showing any changes in the ³He relaxation. The conclusion from this must be that the bulk ³He does not depend on the substrate spin relaxation as a thermalizing source of magnetization. It will soon be apparent that the ¹⁹F magnetization, in addition to its T_1 , is not an important factor for bulk ³He relaxation.

We have seen that the approach that relies on the ¹⁹F data to study the ³He is useful in another sense. The time constants we extract from a ¹⁹F T_1 contain information about the ³He relaxation process that is not immediately accessible through experiments on the ³He alone. In addition, the general ¹⁹F features noted by varying the ³He coverage have provided hints as to what aspect of the surface is important for ³He relaxation. For instance, the experiments with a monolayer of ⁴He show that the range of the ${}^{19}\text{F}-{}^{3}\text{He}$ interaction is very short. More information of this sort will turn up in the next section, where we again use the ${}^{19}\text{F}-{}^{3}\text{He}$ link as a surface probe.

3.3. Saturation Experiments

The rather dramatic influence that a substrate spin reservoir may have on the behavior of adsorbed ³He has already been shown through the preceding experiments. One question raised by this pertains to the extent to which this particular surface interaction affects bulk ³He properties. In particular, we wished to learn just how far the influence of ¹⁹F–³He magnetization exchange at the interface might penetrate into a bulk ³He sample. The experiment for doing this merely required that we monitor the bulk ³He signal while the substrate ¹⁹F magnetization was altered. Although similar in practice to the inversion experiments (Section 3.1), the presence here of bulk ³He made the situation quite different.

Our earlier inversion experiments were performed with a mere film of ³He. At that time we observed that substrate saturation (M = 0 for the ¹⁹F spins) also resulted in saturation for the adsorbed ³He layer. In an instance where bulk ³He fills the pores it might therefore be reasonable to infer that substrate saturation would still diminish the magnetization of ³He near the surface. Any observation of a smaller ³He signal would confirm the supposition that the ³He spins near the surface had been saturated in response to the substrate treatment.

Working at 1 K and 4 kG, we did in fact observe such an effect on the bulk ³He. Since the ¹⁹F T_1 was still 600 sec with the cell full of ³He, it was very easy to maintain ¹⁹F saturation by merely applying resonant rf pulses every 10 sec. In between these pulses, the ³He signal could easily be monitored. This scheme ensured that no spurious effects could arise from cross-talk between the two spectrometers. When the frequency of the saturating pulses for the ¹⁹F was shifted off resonance, the ³He signal returned to its full size, thus eliminating the possibility that rf heating was the cause of the effects seen. The decrease in the ³He signal under such conditions amounted to 35% of that observed with the system in thermal equilibrium. With the setup used for these measurements it was not convenient to record the time constant with which the ³He signal decayed to 0.65 its original size. In the inversion experiments (Section 3.1) we observed that the ³He-¹⁹F communication occurred at this frequency on a time scale of approximately 200 msec. With the bulk ³He present we could only say that the ³He signal was diminished within no more than 10 sec after the ¹⁹F was fully saturated.

An additional surprise arose from some measurements made on the ³He T_1 under conditions of substrate saturation. Ordinarily, the short T_1

values observed for ³He in restricted geometries are attributed to heightened relaxation at the walls. Following a 90° pulse on the ³He (so that M = 0throughout the sample), this heightened wall relaxation is thought to act as a magnetization source that returns the entire sample to the M_0 value characterizing thermal equilibrium. But with the polarization for the surface ³He diminished as a result of the ¹⁹F saturation, it is evident that the surface may no longer act as a source of magnetization. Indeed, when the magnetization at the surface is less than that in the bulk, the surface instead appears as a magnetization sink rather than source. The saturation condition of the substrate spins might therefore be thought of as a means for decoupling the ³He bulk from the wall relaxation processes. This expectation, however, proved to be in error.

Figure 12 displays two ³He recovery curves plotted in the standard manner so that the T_1 is given by the slope of the lines. The closed circles in the upper curve record the recovery of the entire ³He sample with the substrate and surroundings in thermal equilibrium (i.e., the ¹⁹F spins were not being saturated). These data indicate a T_1 of approximately 10 sec. The ³He signal was then reduced by the aforesaid 35% via ¹⁹F saturation, and the T_1 again measured for this remaining signal. The open circles in the lower curve show that the ³He T_1 in the two instances did not differ. Although the curves are displaced due to the signal reduction following ¹⁹F saturation, the slope for the open circles is not at all close to that typical of T_1 values for bulk ³He (at least 10² sec). Instead, the recorded T_1 appears to remain at the same surface-dominated value seen in the upper curve. This observation is difficult to understand using the simple picture outlined in the preceding paragraph. For, if the surface relaxation for the ³He occurred only at the interface between the ³He and substrate, the ¹⁹F saturation would be expected to decouple the ³He from such processes with much the same effect as a 4 He preplating.

Fig. 12. Recovery curves for ³He measured before (solid circles) and during (open circles) ¹⁹F saturation. Although the ¹⁹F saturation does result in a decreased ³He signal, the T_1 time constant appears to be unchanged.

The overall behavior of the ³He T_1 nonetheless points to the surface region as the means for relaxation. Recall that for a single ³He layer the measured T_1 was only 200 msec, although this was interpreted as the time for communication with the ¹⁹F spins (Section 3.1). However, even the inferred time constant for direct relaxation (\sim 3 sec) was still shorter than the 10 sec measured for the experiments of this section, where bulk ³He filled the pores. In fact, as the amount of ³He in the cell was increased from a monolayer to full pore capacity, the measured ³He T_1 rose from 200 msec to the 10 sec seen in Fig. 12. This qualitatively fits the model in which the higher layers of ³He depend somehow on the surface for relaxation. The addition of ³He sample filling regions far from the surface may thus be seen to result in an overall increase in the measured T_1 since such additions merely burden the efficient centers with more spins to relax. In addition, we have already noted that the T_1 time scale recorded in these experiments is far shorter than bulk values, so a surface role is the natural culprit to suspect.

There are additional questions raised by just the time scale of the T_1 values in Fig. 12. We have modeled the relaxation pathway for both the ¹⁹F and ³He according to the scheme in Fig. 13. Since the surface spin reservoirs are pictured as the strongest link to the lattice, both the ³He and ¹⁹F would have to ultimately rely on the same bottlenecked steps in order to relax. Following a saturation of either spin species, the bulk magnetization would be refreshed as the small surface reservoirs trickled heat into the colder thermal lattice. In addition, with ³He filling in the pores, the size of the two bulk reservoirs would be comparable. This picture, then, would imply that the bulk ³He and ¹⁹F relax at comparable rates so long as both

Fig. 13. Reservoirs communicating during a ³He or ¹⁹F recovery. If both the ¹⁹F and ³He equilibrium rates were limited by the surface bottleneck, the T_1 values for the two species would be comparable.

processes involve the surface bottleneck (which we know to be the case for at least the ¹⁹F). Since the ³He relaxation rates are observed to exceed those for the ¹⁹F by a factor of 10, we need significant additions to this simple picture. There must in fact be additional relaxation mechanisms for the bulk ³He that are not available to the ¹⁹F. Note that this is similar to the situation we faced when confronted with the two T_1 values in Fig. 12. For, with the pathway for surface relaxation supposedly eliminated, the bulk ³He was still able to maintain a short T_1 . Hence, we were left searching for possible ³He relaxation mechanisms apart from those confined to the ¹⁹F.

In contrast to the questions raised above, one conclusion may be drawn from these data. A worry concerning the approach followed in the present study could have been that the very strong coupling between the ³He and ¹⁹F spins might dominate even the bulk ³He relaxation in a manner not typical of other substrates. With an easy exchange of magnetization occurring between the ³He and ¹⁹F at the boundary, one might suspect that the short time recovery measured in a ³He T_1 arose merely from the refreshing effect of the substrate magnetization. But we now see that this is not the case. We have already pointed out that large changes in the substrate T_1 (induced through oxygen addition) had no effect on the ³He. In this section we have seen in addition that when the substrate spins were saturated, there was still no effect on the ³He T_1 . This is somewhat comforting, in the sense that the presence of the substrate spin magnetization cannot be thought to dominate the ³He relaxation behavior. There must instead be other features about the surface that are responsible for the ³He relaxation. The ¹⁹F data then offer a clean probe of the surface, and the questions raised in this and the preceding sections should be relevant for ³He relaxation in other confined geometry experiments.

4. SUMMARY

The present work has employed a fluorocarbon substrate for a study of ³He properties in a confined geometry. By monitoring both the ¹⁹F and ³He spin species we observe a nuclear interaction at the walls that allows the easy transfer of magnetization between these two spin baths. Experiments performed after preplating the surface with a ⁴He monolayer reveal that the nuclear interaction is short ranged.

The link between the two spin baths opens up the surface ³He relaxation channels to the substrate ¹⁹F. Consequently, the relaxation time of the bulk ¹⁹F spins is quite sensitive to the presence of ³He on the surface. Adsorbing a monolayer of ³He on the surface increases the ¹⁹F $1/T_1$ by a factor of 10; intermediate coverages show structure in the ¹⁹F relaxation rates that

identifies aspects important in the surface ³He link to the lattice reservoir. The ¹⁹F-³He spin bath link is seen to result in a saturation of the monolayer ³He signal whenever the ¹⁹F spins are directly saturated by rf irradiation. With bulk ³He present, ¹⁹F saturation results in a diminished ³He signal.

He ³ in cell, μ mol 0.4 K 0.8 K 1.2 K 1.6 K 2.0 K 2.4 K 2.7 K 3.1 K 0 7950 2940 1370 933 661 474 388 314 0 0 0 0 0 0 0 0 45 5930 2020 1090 694 480 322 249 191	3.7 K 211 0 122 1.22 61.1 2.31 59.5 2.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 0 122 1.22 61.1 2.31 59.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 122 1.22 61.1 2.31 59.5 2.75
45 5030 2020 1000 604 480 322 240 101	122 1.22 61.1 2.31 59.5
45 5950 2020 1090 094 480 522 249 191	1.22 61.1 2.31 59.5
1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	61.1 2.31 59.5
85 486 277 227 192 165 117 96.3 76.1	2.31 59.5
2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	59.5
101 205 162 149 130 109 86.9 75.8 67.1	775
2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.15
108 159 139 134 106 93.2 76.2 71.0 62.9	55.0
2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	2.95
116 141 130 111 98.9 83.6 68.5 65.0 60.7	58.0
3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16	3.16
124 135 123 108 90.7 75.8 62.6 59.0 55.3	52.8
3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38	3.38
132 — 131 115 93.7 75.7 60.6 56.1 52.1	50.6
- 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	3.61
140 162 140 128 101 84.4 62.9 56.6 51.5	46.1
3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82	3.82
149 175 155 138 117 96.0 69.6 61.0 51.8	46.9
4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05	4.05
160 135 118 104 88.2 78.6 68.5 64.3 58.3	51.2
4,36 4,36 4,36 4,36 4,36 4,36 4,36 4,36	4.30
176 90.5 89.0 91.1 86.5 82.5 74.7 66.8 63.4	52.9
4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.77 4.72	4.58
191 89.8 87.3 92.4 87.9 83.3 76.0 73.6 63.4	52.7
5.21 5.21 5.21 5.21 5.21 5.18 5.13 5.04	4.81
208 95.5 101 104 97.7 88.4 78.9 69.9 63.6	53.6
5.66 5.66 5.66 5.66 5.64 5.56 5.48 5.34	5.02
222 113 123 115 103 100 78.8 73.4 66.7	52.3
6.06 6.06 6.06 6.03 6.00 5.86 5.74 5.56	5.19
237 129 128 120 105 90.8 78.7 73.1 67.0	55.0
6.48 6.48 6.48 6.43 6.34 6.12 5.97 5.76	5.31
268 148 144 134 105 92.1 80.7 73.1 64.5	56.6
7.32 7.32 7.24 7.10 6.81 6.44 6.21 5.93	5.38

TABLE I The ¹⁹F Relaxation Time T, with Various ³He Coverages and Temperatures⁴

^aThe experiment was performed with a resonant frequency of 10 MHz for the ¹⁹F nuclei. Each position in the matrix shown in the table contains two numbers. The upper number is the measured value of T_1 in seconds. The lower number is the ³He coverage in STP cm³ of ³He per gram of DLX6000.

108

This shows that the wall disturbance is also important in the interstitial bulk region. Curiously, ¹⁹F saturation does not affect the T_1 of the bulk ³He spins.

ACKNOWLEDGMENTS

The authors are grateful to Maurice Chapellier for stimulating discussions on this subject. The research was supported by the Cornell Materials Science Center through NSF Grant DMR 8217227 and by a contract from the Office of Naval Research.

APPENDIX

Figure 9 shows how the ¹⁹F coverage features change with temperature. In Table I we list the data from these various temperature runs taken at $H_0 = 2.5$ kG.

REFERENCES

- 1. W. M. Fairbank and G. K. Walters, in *Proceedings of Symposium on Liquid and Solid* ³He (Ohio State University, 1957).
- 2. R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959).
- 3. G. Careri, I. Modena, and M. Santini, Nuovo Cimento 13, 1779 (1959).
- 4. P. Monod and J. A. Cowen, Service di Physique du Solide et Resonance Magnetique, Centre D'Etudes Nucleaires de Saclay, Technical Report (1967), unpublished.
- D. F. Brewer, D. J. Creswell, T. Goto, M. G. Richards, J. Rolt, and A. L. Thomson, in Monolayer and Submonolayer Helium Films (Proc. Symp. Hoboken, New Jersey, 1973).
- 6. J. Kelly, Ph.D. Thesis, Cornell University (1974), unpublished.
- H. Godfrin, G. Frossati, D. Thoulouze, M. Chapellier, and W. G. Clark, J. Phys. (Paris) 39 (Suppl. 8), C6-287 (1978).
- 8. B. P. Cowan, J. Low Temp. Phys. 50, 135 (1983).
- 9. R. C. Albers, Ph.D. Thesis, Cornell University (1977).
- 10. R. C. Albers and J. W. Wilkins, J. Low Temp. Phys. 34, 105 (1979).
- 11. M. T. Beal-Monod and D. L. Mills, J. Low Temp. Phys. 30, 289 (1978).
- 12. J. C. Wheatley, Phys. Rev. 165, 304 (1968).
- 13. A. J. Leggett and M. Vuorio, J. Low Temp. Phys. 3, 359 (1970).
- 14. R. A. Guyer, J. Low Temp. Phys. 10, 157 (1973).
- 15. D. L. Mills and M. T. Beal-Monod, Phys. Rev. A 10, 343 (1974).
- 16. D. L. Mills and M. T. Beal-Monod, Phys. Rev. A 10, 2473 (1974).
- 17. J. P. Harrison, J. Low Temp. Phys. 37, 467 (1979).
- 18. J. V. Gates and W. H. Potter, Phys. Rev. B 13, 8 (1976).
- 19. L. J. Friedman, P. Millet and R. C. Richardson, Physica 108B, 837 (1981).
- 20. L. J. Friedman, Ph.D. Thesis Cornell University (1983).
- 21. L. J. Friedman, P. Millet and R. C. Richardson, Phys. Rev. Lett. 47, 1078 (1981).
- 22. Y. Goto, Ph.D. Thesis, University of Sussex (1977).
- 23. M. Chapellier, J. Phys. Lett. (Paris) 43, 1609 (1982).
- P. C. Hammel, L. J. Friedman, T. Mamiya and R. C. Richardson, Bull. Am. Phys. Soc. 28, 675 (1983).
- 25. M. Chapellier, Bull. Am. Phys. Soc. 28, 357 (1983).
- 26. H. Ramm, P. Pedroni, J. Thompson and H. Meyer, J. Low Temp. Phys. 2, 539 (1970).
- 27. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938)