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The scalar kinetic equation for Bogoliubov quasiparticles in the B phase of 
superfluid 3He is discussed and the collision integral is represented in a 
compact form. For the cases of shear and second viscosity and diffusive 
thermal conductivity the problem is reduced to solving one-dimensional 
integral equations. The quasiparticle interaction enters via weighted angular 
averages of the normal state scattering amplitude. The effect of strong coupling 
renormalization of the gap function is accounted for. The transport coefficients 
are exactly related to relaxation parameters that describe how the system tends 
toward local equilibrium. For low temperatures the transport parameters are 
evaluated exactly, including corrections of order T/Tc. The results are com- 
pared with those of a previous paper in which an approximate form of the 
collision operator was used, as well as with results of a variational approach 
and with recent experimental data. 

1. INTRODUCTION 

Dissipative parameters of superfluid 3He-B have been investigated 
experimentally at temperatures down to T > 0.3 Tc. On the theoretical side 
considerable effort has been spent in finding analytical results for the 
transport coeffieients at the transition 1-4 and at low temperatures. 5-1° 
However, there is no systematic representation of transport theory. In 
particular, it is desirable to have a theory that shows how the known angular 
dependence of the transport problems under consideration can be separated 
off exactly, leaving one-dimensional integral equations in the energy variable 
along the lines of the treatment of Fermi liquid transport theory by Jensen 
et al. 12 and Sykes and Brooker. 13 These integral equations can be solved 
exactly in the normal phase, in the superfluid phase very close to To, and 
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at low temperature. In particular, the zero-temperature limits of shear 
viscosity and thermal conductivity are known, due to the work of Pethick 
et al. 5 In this limit, however, for temperatures T <  0.2To, to be specific, it 
has been shown 6'14 that the mean free path of the thermal excitations of 
the system, the Bogoliubov quasiparticles, becomes comparable with a 
typical size of the sample container. Therefore, a bulk theory that only 
accounts for quasiparticle scattering as the dominant dissipative process is 
not applicable in the low-temperature limit. It is therefore desirable to have 
exact results for temperatures well above 0.2 To. 

It turns out that corrections to the zero-temperature expressions for 
all relevant transport parameters in first order in T~ Tc can be given exactly 
in terms of weighted angular averages of the normal state quasiparticle 
scattering amplitude. As will become clear later, the inclusion of finite- 
temperature corrections - T / T ~  to the various transport and relaxation 
parameters extends the region of applicability to temperatures up to, say, 
T.~O.5Tc. 

The first calculation of finite-temperature corrections for shear viscosity 
and thermal conductivity by Pethick et al. 5 were restricted to the s-wave 
approximation for the quasiparticle scattering amplitude. More recently, 
Hara et al. 9 have calculated the T~ T~ correction to the shear viscosity within 
the variational approach. 

Most experimental data in the hydrodynamic regime are on the shear 
viscosity, 15-19 but there are also recent and partly preliminary data on the 
second viscosity and thermal conductivity 19'2° with which we can compare 
our theory. Finally, there are ultrasound attenuation data on the tem- 
perature-dependent width of the order parameter collective mode, 21 which 
provide an independent check of the theoretical prediction for the relaxation 
rate of Bogoliubov quasiparticles. 

The purpose of this paper is threefold. Our first aim is to derive 
one-dimensional integral equations for all relevant spin-independent trans- 
port parameters from the scalar kinetic equation for Bogoliubov quasiparti- 
cles, as first been discussed in Refs. 6 and 7 (hereafter referred to as I). 
This requires in particular the derivation of the explicit form of the 
Boltzmann collision operator at arbitrary temperatures. A discussion of the 
exact properties of the collision operator clearly shows the equivalence of 
the dissipative parameters of shear and second viscosity and thermal conduc- 
tivity with relaxation times describing how the associated currents tend 
toward their local equilibrium values. 

Our second aim is to solve the integral equations analytically at low 
temperatures and give exact results for the finite-temperature corrections 

T~ T~ for all the relevant spin-independent transport and relaxation times 
of the B phase. It should be pointed out that these results can be entirely 
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written in terms of weighted angular averages of the normal state quasipar- 
ticle scattering amplitude ("scattering parameters") and the magnitude of 
the gap at zero temperature ("strong coupling parameter"). As these 
parameters cannot be calculated quantitatively from first principles yet 
(although considerable effort has been spent on this problem22-26), it is 
evident that our exact low-temperature results, when compared to ~6xperi- 
ment, provide new information about the scattering parameters and the 
zero-temperature gap. 

Our third aim is to demonstrate that the simple approximate form of 
the transport parameters derived in I for arbitrary temperatures agrees well 
with the exact results at low temperature and is in addition consistent with 
the variational results. The results for the transport parameters presented 
in I are therefore seen to be due to a well-controlled approximation, and, 
because of their simple structure, are suited for the practical computation 
of dissipative parameters of superfluid 3He-B at arbitrary temperature. 

The paper is organized as follows: In Section 2 we derive transport 
equations for the coefficients of shear viscosity, second viscosity, and thermal 
conductivity from a scalar kinetic equation for Bogoliubov quasiparticles. 
Section 3 is devoted to a detailed analysis of the scalar Boltzmann collision 
operator and the derivation of one-dimensional integral equations with 
respect to the energy variable for each transport problem. In Section 4 we 
discuss exact properties of the collision integral, where the conservation 
and nonconservation properties are particularly pronounced. From the 
latter we derive expressions for the relaxation times for the normal fluid 
density and the normal component of momentum and energy current. In 
Section 5, the integral equations are solved exactly in the limit of low 
temperature, including finite-temperature corrections in first order in T/To. 
Filaally the results are discussed and compared to other work in Section 6. 
Various approximations for the scattering parameters are considered and 
the influence of a possible strong coupling enhancement of the gap at zero 
temperature on the results for the transport coefficients is studied. The 
section concludes with a detailed comparison of our theory with recent 
experimental results on shear viscosity, second viscosity, and thermal 
conductivity. 

2. SCALAR TRANSPORT EQUATIONS FOR 
BOGOLIUBOV QUASIPARTICLES 

Consider a pair-correlated Fermi liquid such as superfluid 3He subject 
to a (plane wave) external perturbation of frequency to and wave vector 
q. It has been shown in Section 1 that if to and VFq (VF is the Fermi velocity) 
are small compared to the gap freqlaency A/h (so-called macroscopic limit), 
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the condensate is in local equilibrium with the external perturbation. Dis- 
sipative processes are then associated with the dynamics of the thermal 
excitations of the system alone, the so-called Bogoliubov-Valatin quasi- 
particles (BQP). They are characterized by momentum hk, spin h,r/2, energy 
Ek = [~2 q_ [A(T)12] 1/2, and an equilibrium distribution u ° = 
[exp(Ek/kBT)+l[ -1. Here "r={rx,~'Y,r z} is the vector of Pauli spin 
matrices, ~:k = h2k2 /2m*- t  z is the normal quasiparticle energy measured 
relative to the chemical potential/z, and A(T) is the gap, which is isotropic 
in the Balian-Werthamer (BW) state, believed to represent superfluid 
3He-B. 

The transport of mass, momentum, energy, and spin may be described 
in terms of a BQP density matrix ~'k~.~' (r, t), representing the state of the 
quasiparticle system subject to a space (r) and time (t) dependent external 
driving force. In order to study the linear properties of the system, it is 
sufficient to restrict oneself to a plane wave external perturbation, 
~exp [ i(q.  r- tot)] ,  of small amplitude. One may then consider the BQP 
distribution function 8~,k~,(qto)=Vko,~,(qo))--u°6~,, linearized with 
respect to global equilibrium. 8t'k~, obeys the following linearized scalar 
kinetic equation for BQP, derived in I: 

to 8Uk~' (qto)--q " Vk(SVk~ + 8Ek~" ) 

z (1) 

In Eq. (1), 8Ek,~, denotes the change in the quasiparticle energy matrix 
induced by the perturbation, ~Pk is the energy derivative of the Fermi function 

0u°= 1 sech 2 E_.___~__k 
3Ek 4kBT 2kBT 

and Vk =VkEk = (~k/Ek)hk/m* is the group velocity of BQP. The rhs of 
Eq. (1) is the linearized scalar collision integral, from which the (out- 
scattering) term containing the relaxation rate rq (Ek) of BQP has explicitly 
been extracted. The second (in-scattering) term is governed by a scalar 
collision operator Bqp acting on the deviation of the BQP distribution from 
"local" equilibrium, 8u~= 8Vk- 6Uk °c, where 6vk °c= -~0k ~Ek. The explicit 
form of r q and Bqp will be specified later. 

We turn now to the superfluid component of 3He-B, which, in the 
macroscopic limit may be described by only a few phase variables associated 
with the spontaneously broken symmetries of the condensed state: the 
global phase variable q~ (gauge symmetry) and the rotation axis fi and angle 
0 describing the relative orientation of the spin coordinates with respect to 
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the orbital ones (relative spin-orbit symmetry). In equilibrium the con- 
densate is then characterized by an off-diagonal mean field (unitary gap 
matrix): 

A~,~, = A(T)d0(k) • o '~ ,  ; cr = i~ir  2 (2) 

where A(T) is the magnitude of the gap and d°(l~) is a unit vector in spin 
space rotated from k by an angle 00 = cos -1 ( -  1/4) ("Leggett  angle") about 
some arbitrary axis fi: 

ao(l~) = R(fi, Oo)k e ~e° (2a) 

with It an (orthogonal) rotation matrix. In the spin-independent case the 
linear response of the superfluid component to the perturbation can be 
written as 

where 

6ak¢¢,(qw) = 6d(qw) • o'¢~, (3) 

^ ^ 

6d(qw) = A(T)do(k) • 2i&,b(qw) (3a) 

with &b(q~o)= 4~(q~o)-~bo (the factor of 2 in the definition of the phase 
variable &b is a matter of convention). 

In the following, we restrict ourselves to the spin-independent case, 
leaving the evaluation of spin-transport parameters to separate papers, lO,27 

In order to identify and calculate the mass transport parameters of 
3He-B one starts from the linearized phenomenological two-fluid hydrody- 
namic equations, 2s'29 which can of course be derived from an entirely 
microscopic point of view. 3°'31 One has the conservation laws of mass 

momentum 

and energy 

¢o 6p = q .  g = q .  ( pnV" + psv s) (4a) 

o~g = q(vrl°~ + vr') (4b) 

w 6e = q ( j ~ ¢ +  j'~) (4c) 

and a quasiconservation law for the additional hydrodynamic variable &b 
representing the broken gauge symmetry. From &b one defines the super- 
fluid velocity 

vS = h iq 6¢  (4d) 
m 
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which obeys the acceleration equation 

oJv ~ = l q ( ~ / ~  1°¢ + 6/~') = l q ~ / ~  (4e) 
m m 

where 6~z :=/hw 84~ is the associated shift in the chemical potential (of 
Cooper pairs). The dissipative responses to gradients in a normal velocity 
field v"(rt) = v" exp [ i (qr -  wt)] 

' - ~6/jqv ) (5a) Ilij=-in(qjv? +qiv7 2 

a temperature field T(rt) = 6T exp [i(qr-wt)] 

j'~ = -iKq 8T (5b) 

and normal to superfluid counterflow 

1 
- -  8/.t' = - i~'3qps(v s - vn) (5C) 
m 

are characterized by the coefficients of shear viscosity ~7, diffusive thermal 
conductivity K, and second viscosity ~3; here Pn and Ps are the mass densities 
of normal and superfluid fraction, and p = pn+ps is the total mass density. 
In writing down Eqs. (5a)-(5e) we have dropped terms containing the 
second viscosities ~'1 = ~4, ~2, since these dissipative parameters can be shown 
to be at least of order (Tc/Tv) 2 due to the small possible deviations from 
particle-hole symmetry in a superfluid Fermi liquid. Our first aim now is 
to derive constituent relations between the dissipative parts of the currents 
and the external fields, allowing for a classification of the spin-independent 
transport parameters in terms of certain moments of the microscopic scalar 
collision integral. The external fields may, in our case, be considered to 
consist of (1) a temperature field T(r, t) coupling to the energy (or entropy) 
current, and (2) a velocity field vn(r, t) coupling to the momentum current. 

In this case it is readily verified that the local equilibrium distribution 
of BQP is of the form 6 

6Z'~°c = --~k 6Ek + ~pk ( p " vn +-~ 6T) (6) 

where 6Ek is the change in the quasiparticle energy. Now in order to 
establish the relevant spin-independent transport equations, we start from 
Eq. (1) and perform an expansion to lowest order in the gradients and in 
the deviation of the normal component from local equilibrium 6 v ' - w ~ ,  
according to the Chapman-Enskog procedure. Doing this, we may replace 
8Vk on the lhs of Eq. (1) by its local equilibrium form (6) and obtain the 
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following transport equations: 

_~k 6v,k _ ~  B q &"p_ i¢k Ck [ 1 vk-~3T 

1 ( . 2 n'~l 
--~pivk~ qjvi + qiv 7 - 5  i, qv ] J = -3Ik (7) 

Finally, the dissipative parts of the various currents in Eqs. (5a)-(5c) can 
be expressed as averages over the deviation of the BQP distribution from 
local equilibrium in the following form: 

III i = 2 E hk~vkj-~ ~v'k 
k IZk 

E fk 

8/x' = -  1--:-2Y, fk av~, 
/~F k Ekk 

(8) 

In order to hove expressions for the transport parameters ~7, K, and ~3 we 
separate off the angular dependence of the distribution function &'k in Eq. 
(7) by making the following ansatz: 

o 
8v~k = ZEk'~k ~--~ ~b~(Ek)q • ( g - p v  n) - i q .  vkr ° 4~K (Ek) 8T 

. l~:k 0 n ~ 2 - t '~  --ff~k plvkjzNdp,(Ek)(qNi + qivj --~ $qq " yn) (9) 

Here ~bc(Ek), ~bK(Ek), and ~b,(Ek) are dimensionless functions of the energy 
variable Ek only (and of course of temperature and pressure) and completely 
characterize the transport parameter under consideration. This is seen by 
inserting (9) into the expressions (8) for the currents, performing the angular 
integrations, and defining weighted energy averages according to 

Ifoo 1 foo sech 2 Ek . 
(" • "). := d¢k~ok . . . .  4k---T .]-oo d¢k 2kT " " (10) 

Thus the problem of calculating the shear viscosity 

~7 = (1/15) @p~NF((¢2/E 2) 4~,(E) r°) ,  (1 la) 
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the second viscosity 

~'3 = (1/m2NF)((~Z/E a) ebc(E)r°), (1 lb) 

and the diffusive thermal conductivity 

v: = (n/m*T)(~24),,(E)~-°), o ( l lc)  

consists in deriving and solving scalar integral equations for the dimension- 
less functions ~bn, $c and q~. This is provided by a detailed analysis of the 
collision integral appearing as the rhs of Eq. (1), which will be the topic of 
the next section. 

3. SCALAR COLLISION INTEGRAL 

We start our analysis of the collision integral on the rhs of the kinetic 
equation for Bogoliubov quasiparticles 

6Ik{6~"k} := __~_qk + y. Bq 6@ (12) 
Tk P kp ~P 

with a brief discussion of the structure of the Bogoliubov quasiparticle 
relaxation rate 1/r  q, which has already been given in I. Essentially 1 / r  q is 
given by an expression similar to that of normal (Landau) quasiparticles: 

1 ('n'kT) 2 
• q . 8 N ~  .. }~ ( 2 ~ ) 3 8 3 ( k l  + k2 - k3 - k4) Ws°Ut ( 1 2 ;  3 4 ) f ( 1 2 3 4 )  (13 )  

k2,...,k 4 

Here W °ut (12; 34) is the superfluid transition rate, which can entirely be 
expressed in terms of the dimensionless normal state (singlet and triplet) 
scattering amplitude A0.a(1234), 

W1 [ ~1/~3 /t~2//'4~ A2-I - W ]&2~/~3~z4 A4 
W°Ut (12; 34) = W -  i tE1/33 + \  EzE4 ] D E ~ 4  (14) 

Here 
1 2 W =  zzr(Ao + 3A~) (15a) 

is the normal state transition rate, the angular average of which determines 
the normal state quasiparticle lifetime. W~ and Wo are new transition rates 
characterizing quasiparticle scattering in the presence of the triplet con- 
densate, 

WI = ¼7r[ ( Ao + A O( Bo + B1) + 4A~B1]c3 (15b) 

WD = --W2c2~ + W3 c2 + W4c ] (15c) 
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Here 

and 

B0,1(1234) = Ao,l(kl, -k4, k3, -k2) 

g~(A1 - A o )  W 2 ~ 1  2 2 

W 3 = 1,n-(A 1 + A o ) A  1 

W4 = ½~r( A1 -  Ao)A1 

cj=kl  "kj; j = 2 , 3 , 4  

The function f(1234) contains the energy 8-function and the usual fermion 
occupation factors, 

f(1234) = 2~r6(Ex 1 ~k at- ~2E2 - ~3E3 - p, aE4) (2¢rkT)3 

×f(E1)f(l~EE2)[1 - f(/~aE3)][1 -f(l~4E4)] (16) 

In Eq. (14) the "particle-hole" variables/-h = +1, i -- 2, 3, 4, reflect the pole 
structure (to = :izEk/h) of the single-particle spectral function. 

As the momenta kl . . . . .  k 4 of scattering quasiparticles are essentially 
restricted to the Fermi surface, it is convenient to write the scattering 
amplitudes in terms of Abrikosov angles 0 and ¢, which may be defined as 

C3 -- C4 
cos o =c~=f~r ~ c o s  ¢ : =  - -  

": 2, 1 : C 2  

In terms of these variables, the summation on momenta kz, k3, k4 can  be 
shown to be convertible into an integration over energy variables ~2, ~3, ~4, 
making use of the momentum 6-function: 

~,, ( 2 ~ . ) 3 t $ 3 ( k 1 + k 2 _ k 3 _ k 4 )  . . . .  N__~ e~oj_oo d~:2 d~:3 d~:4 t'j02~r d . 2 ( "  "')a 
k2k3k 4 32EF 27r 

where (I) 2 is the azimuthal angle in the local coordinate system with I~1 as 
the z axis, and the brackets (.-")a denote the following angular average 
with respect to the variables 0 and ¢: 

1 f =  d0sinO r E = d e  Io f 2 = d ¢  
( ' " ) " = 2 J o  cos(0/2) Jo 2~r . . . .  2 dc°S2Jo  2 ~ ' " '  

If we finally extract the normal state quasiparticle lifetime at the Fermi 
surface 

r ° (T) - 32EFh 
(~rkT)2(W) a (17) 
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from the expression for r~, the Bogoliubov quasiparticle collision rate may 
be written in the compact form 

1 1 
= --~N{IO(Ek) -- To[Ii(Ek) + I2(Ek)] + 6oI3(Ek)} (18) 

with dimensionless isotropic relaxation rates 

In(Ek) = o~2~1.t4 fO d~2 d~3 d¢4 f(  lZ34) k,(1234) 
(18a) 

kn(1234) = 6n,o+ ~ , /2~2-/~4 , ] E1E2E3~E4 n,3 

Here 
4 
~' Aj==--A2+A3+A4 
]=2 

s denotes the parity of the distribution function 8u~ with respect to the 
operation k ~ -k:  

6U(k s)' = 1( 6v~ + S 6U'(-k)) (20) 

and the projector p~, is defined by 

1 + ~  1 - ~  
p~,= s - -  

2 2 

In order to give an explicit expression for the transition rate wi"(1234) 
one has to distinguish the cases in which the distribution function is even 

Thus, in the superfluid state, the angular dependence of quasiparticle 
scattering cannot entirely be separated from the energy and temperature 
dependence. Hence the new superfluid scattering parameters 3'0 and 8o in 
Eq. (18) are defined as ratios of angular averages of transition rates W, 
WI, and WD: 

"~0 "~" ( WI)a/( W)a, 60 -~- ( WD)a/( W)a  ( 1 8 b )  

We turn now to the second (in-scattering) part of the collision integral 
[Eq. (12)], which in the spin-independent case can be written in the compact 
form 

io o E B~p 8u'p=~k v d~:2 d~:3 d~:4f(1234) ,?0 .~ 
p ~)p N //.2... ,1~4 

W~ (1234) 6v(k))' (~j) 
/'2~r r/Ak 4 
/ t~W'2 Et  s ~/gkl ( 1 9 )  

X J0  27/" ]=2 p~j ( W ) a  
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or odd with respect to the replacement of the energy variable ~k ~ --~k. 
Introducing the parity t by 

6u~ ') = ½[6Z, k(£k ) + t 6uk(--£k)] (21) 

one obtains for the two cases t = + 1 

4 
Y3 p~j W~ (1234) 6u~,s(£j) 

j=2 ~Okj 

4 s 8~,~,S(~j____~) l + t  
= W°Ut(1234) Y,' Pm 

j=2 ~Okj 2 

4 W -  k2P~3 'WI ] l - tT  +<,r_ .-., _= <, , , , . , . , (<,)  ¢3 (22) 

where the quantities W °ut and k, have been defined by Eqs. (14) and 
(18a), respectively. 

In the backscattering integral we thus have to classify with respect to 
the parities s and t. As it turns out, the case t = +1 is important for the 
discussion of the conservation properties of the collision integral, whereas 
an inspection of the ansatz (9) for the distribution function, describing the 
transport problems of interest, shows that t = - 1  in all these cases (vis- 
cosities: s = + l ;  thermal conductivity: s = - l ) .  In order to be able to 
introduce integral operators one now has to interchange energy variables 
in Eq. (19) using the symmetry of the function f(1234) such that the 
distribution function depends on ~2 only. The angular dependence of 6u~, 
is simplified by first expanding in spherical harmonics and then performing 
the ¢2 integration, with the result: 

6ub(¢2) =E  (2/+1) af~pe,(~. ~) 6u,O(¢z)pt(k .ks) (23) 
t 47r 

One is then left with the following set of new angular averages (with respect 
to 0 and ¢) of the scattering cross sections W, WI, and WD: 

1 
/~  := (W)a  ( W [ - s e l ( c 2 )  +el(c3) +Pt(c4)])a 

1 
Yt :='(--W~a( WlPl( C3))a 

1 W a~ : = ( - - ~ (  ,[-set(c2l+P,(c4)])a 

8~ := ,.1--~.,(WD[-SPt(c2) + Pt(c3) + Pt(c4)]). (24) 
tW~a 
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Now we introduce integral kernels by first realizing that the collision integral 
does not depend on the parities s (momentum) and t (energy) separately 
but only on the product 

r = s  • t 

Thus we introduce 

f0 o P ~ ( ' I ,  ~2)= ~ (rp~) ~ d,3 d~4f(1234)kn(1234) (25) 
• ~2  /~ 3 ¢/,4 t 

with k. from Eq. (18). With the aid of the integral kernels (25) we can 
define linear integral operators via 

i0 o (~r~, ~')(~i) = d,2 P~  (,1, ~2)~(,2) (26) 

with an appropriately chosen function of energy ~b(,). Inspection of Eq. 
(18) together with (22) and the manipulations described above show that 
only the following two linear combinations of integral operators ~(r~ com- 
pletely characterize the backscattering term of the scalar collision integral: 

R~ ~ = A ~(o ~/ ~(r)Fo~(r) oLI kJ1 ~ - ~ ( 2 r ) ] - - ~ l [ ~  r) ' - t - (~(r) 'q-I-R(r)O~(r)  -- a zj 2 J ~ tJ l zl 3 
S~ r) - x (r) o~(r) __ - ,,t ~o Yl~(f y (27) 

where the primed integral operators ~"  are trivially generated from ~ by 

~"  = ~{k~(1234) ~ k,(E1, -~3E3, -/.62E2, txnE4)} 

which is due to the exchange of variables mentioned above. 
The final result for the backscattering integral now has the compact form 

Z Bqp 6@ 
p ~Op 

__@k{ql f ~ p l ( ~  ( ~ l j ; ( r )  I - z . ~ ] ( 2 / + 1  ) .~) RI -r), ; t = + l  (28a) 
~Pp / 

if 8@ is even in the energy variable ~:p, and 

'1 ~Ok f ~ [ (r, ~:P 6/2;(r'), 
= E - - ~  z---~-~ ~ (21+1) PI(K°P) i  S`-  ' ~  ~p ]" t= --1 

(28b) 
if 6@ is odd with respect to ~:v ~ -~z  

We can now go back to the transport equation (7) of the preceding 
section. Together with the ansatz (9) for the distribution function and the 
explicit form of the collision integral (28b), one obtains, after having 
performed the angular integrations, the following set of integral equations 
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for the dimensionless functions ~b, (shear viscosity) 

r° cb,~(E)= rq(E)[ l +( S~2+),-E-~6,)(E) ] (29a) 

for ~b c (second viscosity) 

ro qb,(E)= rq(E) [ l +( S~o+), ~2 ~-5 ~b,) (E) ]  (29b) 

and for ~bK (thermal conductivity) 

1 ~:2 
"r° q~,,(E) = "cq(E) [ l +--'~( S~-),--~qS,,) (E) ] (29c) 

Now the problem of evaluating the mass transport parameters is completely 
determined because the viscosities and thermal conductivity are expressed 
as energy averages over the functions ~b [Eqs. (11)], which are solutions of 
the integral equations (29). Thus we are left with the solution of the integral 
equations for ~b,, ~bc, and ~b~. Before turning to this problem it is necessary 
to study some important symmetry and conservation properties of the scalar 
collision integral for Bogoliubov quasiparticles derived above. This is the 
topic of the following section. 

4. EXACT PROPERTIES OF THE SCALAR 
COLLISION I N T E G R A L  

It should first be noted that the integral operators ~+) defined by Eq. 
(26) have the property of reducing to the dimensionless relaxation rates 
In(E) making up the Bogoliubov quasiparticle relaxation rate (18) when 
applied to a constant c: 

(~+),  c)( E) = ( ~+), c)( E) = cln( E) (30) 

The collision integral for different parities of the distribution function is 
given by certain linear combinations of integral operators ~+'-) ,  the 
coefficients being new angular averages over the normal state quasiparticle 
scattering amplitude, defined via Eq. (24). The scattering parameters A~- 
and A1, apart from the quantity (W)a, are known to determine the pressure 
dependence of the normal state shear viscosity and thermal conductivity, 
respectively. The parameters ~,/, ~ I +'-), and a I +'-) only occur in the superfluid 
phase, where they account for the possibility of more complicated scattering 
processes in the presence of p-wave Cooper pairs. For lowest I values, using 
the definition (24), these parameters are collected in Table I. From this, 
one immediately observes that the integral operator R~ r) defined by Eq. 



440 Dietrich Einzel 

T A B L E  I 

Special Values for the Scattering Parameters from Eq. (24) 

l xF AT sT aT 8T 8T r~ 

0 1 3 0 23'0 80 38o 3'0 
1 1 h~- 3'0- 3'1 a l  8o 31 3'1 

(27) for lowest I reduces to the relaxation rate for Bogoliubov quasiparticles 
when applied to a constant c: 

l i b ( + )  11 ,  o(+) c)(E1) C 
0 ~'xO ' c ) ( E 1 ) - - -  o I , 'x l  , = ' r q ( E 1 )  

'/'N TN 
(31a) 

and when applied to the Bogoliubov energy Ek: 

~6-o (R~o -),E)(E1) = E, N rq(E1) (31b) 

In order to study the conservation (or nonconservation) properties of the 
collision integral we write down equations of motion for the quasiparticle 
contributions to densities and currents starting from the kinetic equation 
(1). For the homogeneous case (q = O) one generally obtains 

022 • g(k)a(stk) 8Vk = --i2 E g(k)a(¢k) 8Ik 
k k 

hk momentum density 

Ek  energy density 

~k 
density 

g(k)a(&) = - -  Ekm 
mass 

~k energy current E---kk E k  V k 

KPiVk} momentum current 

of BQP (32) 

In order to calculate the appropriate moments of the collision integral 
according to the rhs of Eq. (32) we multiply Eq. (28) by some arbitrary 
function of energy a(~) and the spherical harmonics Yu,,(k) for fixed I and 
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E 
kl,P,l 

m. After  some algebra involving exchange of variables we find 

E a(sel) Ytm(kl) 6Ik(tz1E1) 
kl,bl,1 

Ylm(ki) Vii l+l+(-1)lsp[~l(e~-r),a)(IZlE1)] 
= 6 < - ' -~k  2 r ° 

k i ,,tl. 1 

if ,Sv' is even in energy (t = +1) and 

a(~l) Ytr~(fq) Mk(/ZlE,) 

(33a) 

kl,/~l 

X - - T k -  k 2 E 1  ../.O 

if 8 #  is 0dd in the energy variable ( t = - 1 ) .  In deriving Eqs. (33a) and 
(33b) we have made use of the symmetry properties rq(E)= rq(l.~E), 
p. = + 1, for the Bogoliubov quasiparticle relaxation rate and 

( ~ ) , * ) ( E 1 )  = - '  (') 

(with some arbitrary function of energy ~b) for the integral operators ~([). 
From Eq. (33a) together with Eq. (32) one obtains for the case 

a(~:) = hkF, 1 = 1, t = +1, and s = - 1  momentum conservation of the normal 
component:  

~o2 ~ hk ~vk = 0 (34) 
k 

and for the case a(~k) = Ek, l = 0, s = 1, and t = 1 energy conservation of the 
normal component: 

w2 ~ Ek 6Vk = 0 (35) 
k 

As a consequence of the conservation properties (34) and (35), the collision 
integral vanishes in general when applied to some function a • k + bEk with 
arbitrary constants a and b. We may therefore replace 6v' under the collision 
integral by 6 v - 6 v  I°c, with 6v ~°c given by Eq. (6), which is equivalent to 
saying that the scalar collision integral describes relaxation toward the true 
local equilibrium distribution (6). 

In contrast to momentum and energy, the quasiparticle mass, energy 
current, and momentum current are derived from distribution functions 
that are odd in the energy ~k, and an inspection of Eq. (33b) shows that 
these quantities are not conserved. In order  to relate these nonconservation 
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properties of the collision integral to the existence of the nonvanishing 
dissipative parameters of bulk and shear viscosity and diffusive thermal 
conductivity we first define transport times according to Eqs. (11a)-(11c): 

r¢ := ( ( ,~2 /E2) , f ¢ (E) r ° )~  (36a) 

r, := ( (¢2 /E2)dpn(E) ' r ° )~  (36b) 

r~ := ( ( ¢ k / 2 k T c ) 2 ~ K ( E ) r ° ) ~  (36c) 

Then we note that via the transport equation (7) the collision integral 6Ik 
can be related to these transport times in the following way: 

• ~:k{ 1 ~pq' 

Vk'jq' i 1  p'Tr q''vk 
+ Ek(n/m,)(----2k--Tc)2r, ' _ p~v~-~vr-nT-~5 + "  ") (37) 

Here ap q' = -rnNv a/z', j~', and rr q' are the deviations of quasiparticle mass 
density, energy current, and momentum current, respectively, from their 
local equilibrium values. 

Finally, we take moments of Eq. (37) for these quantities according 
to the classifications (32) and obtain as a final result the following relaxation 
equations for the densities of mass, energy current, and momentum current 
of the normal component: 

totSPq = 2to ~ ' - -mtS l"k  Ek --t \ E  - - ~ / ,  r: ........... (38a) 

2 *q' 

- -  = -- t " . ~'ZT-,-,-,-,~ ~ 2 t o J q = 2 t ° ~ E k V k E k a V k  \(2kTc) /~ '~ (38b) 

,k (¢2) nf 
. . . . .  i --~ (38c) toil q = 2w ~k Ek p, Vkj BVk E ~ % 

with transport times z;, r~, r, given by Eqs. (36) and energy averages (. • .)~ 
defined by Eq. (10). 

We conclude this section by pointing out that we have shown two exact 
properties of the scalar collision integral for Bogoliubov quasiparticles alk: 
First, CSIk leads to conservation of quasiparticle momentum and energy [Eqs. 
(34) and (35)]. Second, the nonconservation property of alk in the cases 
of mass density, energy current, and momentum current of Bogoliubov 
quasiparticles [Eqs. (38a)-(38c)] clearly displays the microscopic origin of 
the relevant dissipative B-phase parameters of shear viscosity 

• 1 = p 2 V 2 N F % / 1 5  (39a) 



Spin-Independent Transport Parameters for Superfluid 3He-B 443 

second viscosity 

~3 = (1/ mZNr)'r; (39b) 

and diffusive thermal conductivity 

K = (n/m*T)(2kTc)Z'r~ (39c) 

In deriving Eqs. (38) and (39) we have established exact relations between 
the transport parameters r/, ~3, and K and the relaxation times %, ~'c, and 
r~, which describe how the associated currents tend toward local equilibrium. 

5. EXACT SOLUTION OF THE T R A N S P O R T  E Q U A T I O N S  
AT LOW T E M P E R A T U R E  

It is obvious that an exact solution of the integral equations (29a)-(29c) 
for the transport times of the superfluid phase is not available at arbitrary 
temperature, as is the case in the normal Fermi liquid, where the eigenfunc- 
tions of the collision operator are known. 12'13 

Exact solutions of the superfluid transport equations are known only 
for a small temperature region very close to the transition temperature 
(where an expansion to first order in A/kTc can be performed) and in the 
zero-temperature limit. It is difficult if not impossible to compare both types 
of results with experiment, because for the former the A/kBTc expansion 
is only valid for reduced temperatures 1 -  T~ Tc <-10 -3, where it is quite 
difficult to measure the latter because the exponential low-temperature 
divergence of the Bogoliubov quasiparticle mean free path restricts the 
applicability of our bulk transport theory to temperatures T~ T~ > 0.2, as 
pointed out in I and also in Ref. 14. 

It is nevertheless possible to obtain exact solutions of the scalar 
Boltzmann equation at finite temperatures, starting from the zero- 
temperature results, which can be shown to be applicable for temperatures 
well above T/T~ =0.2. This is essentially due to the fact that at low 
temperatures the fermion occupation factors f(1234) [cf. Eq. (16)] charac- 
terizing the energy and temperature dependence of the collision integral 
restrict the main contribution to 5 c integrals to an interval of width kT<< A 
around the Fermi energy. This can be seen by expanding the Fermi function 
at low temperature 

- - + . . .  (40) f (Ek)=exp kT 2 A k T  8 \ A k T ]  A 

Therefore typical values of fk are small compared to the energy gap A(T) 
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and one may expand the Bogoliubov quasiparticle energy Ek a s  

E k = A [ I + x  2kT x4(kT~2+.  q 
-A----2- \-A-- ] " ' /  ( 41 )  

where we have introduced a dimensionless energy variable 

x = &/(2akT)  1/2 (41a) 

adopting the notation of Pethick et al. 5 Using these definitions, we can write 
any energy average of some function eg(~), weighted with the derivative of 
the Fermi function ~k =--af(Ek)/aEk, at low temperature as 

ff°°oc ~ ( ( X 4 ~ )  / (qb) = d~k¢krb(¢k)=Yoo(T) 6(x) 1+-~- (41b) 
o 

where Yoo(T) is the zero-temperature limit of the Yoshida function 

Yoo(T) = lira (1)~ = (2~ra/kT) '/2 e -a/kr (42a) T--*0 
and the brackets (.. ")G denote a normalized Gaussian average: 

2 fo° ('" " ) o = ~  dxe -x2. . .  (42b) 

In particular one obtains 

(x2n)6 r (n  + 1/2) 
F(1/2) ' n =0,  1, 2 . . . .  (42c) 

where F is Euler's gamma function. 
The coherence factor ~:/E causing the Bogoliubov quasiparticle velocity 

to vanish at the Fermi surface appears as a weighting factor in the expressions 
for the transport times defined by Eqs. (36). It can be expanded as 

~2 kT /  2_4x4~q_ .  
E 2 - - ~  2x " ") (43) 

Therefore, the mean square of the Bogoliubov quasiparticle velocity, accord- 
ing to Eqs. (42) and (43), vanishes as 

V 2 = I) 2 ( ~ 2 / E 2 ) ~ / ( 1 ) , p  = v 2 kT/A ~ T (44) 
in the zero-temperature limit. 

From the arguments given above, it is clear that we can solve the scalar 
Boltzmann transport equations by an iteration to at least first order in the 
small parameter kT/  A ~ T~ To. 
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In order to do this, we first expand the argument of the Bogoliubov 
quasiparticle energy 8-function to first order in kT/h,  using Eq. (41), as 

E 1 +/~2E2 - /d ,3E 3 -- ~4E4 

= (1 +/z2-/z3 -/~4)h[ 1 + x 2 + tz2x22 - ~3x 2 - ~t,L4 X2 

- ½ ( k T / a ) ( x  4 + 4 - 4 -  4x4)] (45) 

where we have dropped terms of relative order exp (-A/kT).  With (45) 
the integral operators ~ and ~ '  [defined by Eq. (26)] can be expanded to 
first order in kT/h as 

8 -¢ 
( ~ ( : ) , d P ) = ~ I o o  E (rP.2)81+.2,.a+.. 

/~,2.../-t4 

i0 io x dx2 dP(x2) dx3 dx4 ,=2!-I exp \ - -~-  -~- -~---1 kn 

~ ( X 2 ..-1- ],£2 x2 -- ].L3 x2 -- ],L4 x2 X 

1 k~(x 4 .jt_l.~2X4__l~3X4__[.L4X4) } (46) 
2 

where I00 is the energy-independent, zero-temperature limit of the 
dimensionless relaxation rate Io(Ek) [cf. Eq. (18a)]: 

3 [ h ~  3/2 
Ioo(T) = T-,olim Io(Ek) = ( 2 ~ ' ~  \k--T] e-a/kT -- 2¢r3 kTA Yoo(T) (46a) 

and the quantity kn was defined by Eq. (18a). A similar result for the 
integral operator ~ '  is obtained from Eq. (46) by replacing k, by 

k" = k,(E1,-/z3E3,-~2E2, ~4E4) 

Next we expand both the integral operators ~(,~) ( ~ ) ' )  and the function 
qb to lowest order in kT/A according to 

(I) (X) = (I)0"~ ~ 1 ~  1 (X) 

(47) 
kT (~) 

( ~ ) ,  ~b) -- -~o~J . ( o ) , a ~  ,~(~) 1) +-~-[(~n(o), qb1(x)) + dPo(~l) ,  1)] 

Here we have anticipated that dp does not depend on energy at zero 
temperature. For the evaluation of the zeroth order integral operators we 
expand qb(x) in a power series as 

• (x) = Z Ck x2k (48) 
k 
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Thus, the integrations in (46) are elementary; the results can be written in 
the following compact form: 

(~'~ ~)(x) ~" n(O), 

I'(k + 1/2) [- = go E ck Bk(x)(ano+ 6.,3) 
k r(1/2) ~_ 

2 a 
- ~ - l ( a n ,  l - - ~ a n , 2 ) - - ~ (  n,O'~-an, l"~-an,2"~-an,3)~ ---r] 

(~r~' ~)(X) • -' n(O), 

F(k + 1/2) IBk(X)(a.,o + a.,1 + an,2 + an 3) = Ioo Y, Ck k F(1/2) t 

2 6 , l + r  1 - r  --"~[( n,l'at-an2)T't-(an,O"l-an,3)T] } (49) 

where r is the product of parities s (momentum k) and t (energy s e) as 
introduced by Eq. (25). Here Bk(x) is a polynomial of degree 2k, 

= ! + 2  ~ (k] r(k-l+l/2)x21 ( 5 0 )  

Bk(x) 3 3,=o\I/r(k-1)r(1/2) 

with the important integral property 

(Bk(X))o=I; k = 0 , 1 , 2  . . . .  (50a) 

The evaluation of the first-order integral operators ~{~ is somewhat tedious 
because one has to account for the first order in the energy &function as 
well, but straightforward. The result for the case r = +1 reads 

(aa(+) 1)(x) c" n(1), 

__ [ O~(+)' --  t ~ n m ,  1 ) ( X )  

= I°°[3(1+x2)( 6"°+6n3"+ Tanl~-an2) 2x26. ,  + a n 2 3  ( l + 2 x  2) 6.3 ] 

(51) 

The result for (-) ~,(1) turns out to be only important for the (kT/A) 2 
correction to the diffusive thermal conductivity and will not be considered 
here. 

Now we have established the complete mathematical basis necessary 
to solve the integral equations for bulk and shear viscosity and thermal 
conductivity exactly to first order in kT/A. 



Spin-Independent Transport Parameters tot Superfluid 3He-B 447 

First, using the relation (~+),  1)=I , ,  we find the following low- 
temperature results for the dimensionless relaxation rates I,,(Ek) [cf. Eqs. 
(18a) and (46a)]: 

Io(x) = loo[1+ 3 -~--(kTl+x2)] 

i [I+L k-:-r(3-5x=)l I1(x)=-3 I°° a a .l 
(52) 

-eL [l+l kT +3x2)] /2(x) - ~  oo ~ -~--(-1 

1 kT. 1+5x2)] I3(x) = Ioo[1-~ -~( 

(52), we find, together with Eq. (18), for the relaxation rate of F r o m  

Bogoliubov quasiparticles at low temperature 

l=ri°){l+k~T[3(l+x2)-(l+2x2)8°-Z°/3llTq Wo .1J (53) 

Here 

~.o =Ioowo= 3Wo ,--,/~\3/2e-a/kT (53a) 
7 .(0) (2"/7") 1/2 ~ kTl 

is the zero-temperature limit of the Bogoliubov quasiparticle relaxation 
rate, the pressure dependence of which beneath the zero-temperature gap 
is contained in the quantity 

Wo = 1-23~o + 80 (53b) 

where ~o and 8o are the superfiuid scattering parameters introduced by Eq. 
(18b). 

We turn now to the integral equations (29a)-(29c) for the mass 
transport parameters, which can be written in compact form as 

,rO E(1-r)/2 ~T(X ) 

,,_A] (54) =E(1-r)/2~'q(E) 1-= kol ,E--~= "~r,t*Jjj 

where ~r=qb, ,@¢ for parity r = + l  and qbr=qbK for parity r = - l .  
Equation (54) is solved iteratively by expanding the integral operators SI ~) 
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and the solutions (I) T in powers of k T / A :  

(55) 

It should be noted that the iteration procedure becomes particularly simple 
in the present case of spin-independent transport as the integral operators 
St are applied to the quantity ~2/E2,  which, because of relation (43), is 
already at least of order k T / A .  The  zeroth-order solutions of Eq. (55) in 
the three cases of interest are identically given by the zero-temperature 
limit of the Bogoliubov quasiparticle collision time [cf. Eq. (53a)]: 

r°  (56) (o) _ 

~'° d)(~) = "rq Ioo( T)  wo 

The first-order correction displays the characteristic symmetry of the trans- 
port problem under consideration: 

~r~) dg~)(x)= z~q°)[-3 (1 + x2)+ (1 + 2x 2) 8o-  y0/3 

1 . 4  w0 
1 [c(r ) X2)(X) ] 

+ i0----0~ 0 ~ '-'1(0), 
(57) 

For l = 0, 2 (r = +1) one obtains solutions for the viscosities 77 and if3; the 
diffusive thermal conductivity is obtained from the case l = 1, r = - 1 .  The 
quantity ~ot(o~,~c(') X ~) is readily evaluated using Eqs. (49) and (27) for the case 
• (x)  = x z to give 

(~.~ x 2) z -  f x~+>( l+xZ) -Y txZ;  r = + l  
oz(o), =~ loo '~A~_)xZ_e t ( l+x2) ;  r = - I  (58) 

Finally, the transport times ~'r with T = 77, ~'3, and K introduced by Eqs. 
(36) are given as integrals over the low-temperature solutions aPT(X) using 
Eq. (43) as 

k T  kT X 2 2 4 k T  o 

The results appear to be of the general form 
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They are collected in Table II together with the result for the Bogoliubov 
quasiparticle relaxation time at the Fermi surface. 

6. DISCUSSION OF RESULTS 

6.1. Relaxation Rate of Bogoliubov Quasiparticles and 
Fundamental Transport and Relaxation Times of the BW State 

The transport and damping parameters of superfluid 3He-B are closely 
related to certain energy averages of the relaxation rate 1/~'q(E) for 
Bogoliubov quasiparticles. Therefore we begin this section with a summary 
of the most important results for this quantity. 

The collision rate 1/'rq(E) defined by Eq. (18) characterizes the time 
scale for collisions between Bogoliubov quasiparticles in a situation where 
the frequency or and the wave vector q of the external perturbation are 
small compared to the gap frequency A/h and the inverse coherence length 
,01 , respectively. 

It is isotropic for the Balian-Werthamer state and can be expressed 
by four different dimensionless relaxation rates I,~(Ek, T), n =0, 1, 2, 3, 
which depend on the quasiparticle energy Ek (T)= [ ,2  +A2(T)] 1/2, and 
temperature: 

T° ( T) Iq(E)= ~'q(E) =I°(E)-T°[II(E)+I2(E)]+3°I3(E) (61) 

Here ~.o (T) = 32Erh/(~ks T)2( W)a is the normal state quasiparticle lifetime 
at the Fermi surface ( , = 0 )  and the functions In(E) are defined by Eq. 
(18a). The angular dependence of quasiparticle scattering in the superfluid 
state cannot be entirely separated from its energy dependence. Thus 3'0 and 
3o are ratios of angular averages of superfluid scattering amplitudes, which 
have been introduced via Eq. (18b). 

In general the functions In(E) can only be evaluated numerically. At 
low temperatures, however, the methods described in Section 5 can be 
applied to obtain, up to first order in kT/A, 

I°('k)=l°°(T)[l+3( I+2kTA,I'2 ~k_k~] 

S IL°°(T){l+[~(l+ ,2 ,~_ ,~ l~} 
II('k) = .., 2kTh] kTh.] 

(62) 

I2(,k) =-~ oo( 2kTA] 

13('k)=l°°(Z){l"l-[3( 1+2kTA,]'2 ~-(I"-I-kTA]j'2 ~lkZ~A j 
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From Eqs. (62) together with the general form (60) for the transport and 
relaxation times we find for the inverse lifetime of Bogoliubov quasiparticles 
at the Fermi surface (E = A) at low temperature 

- o 1 - Cq (63) 
. rq (E  =A) ~'q 

where 

rq° = lim~._,o , rq (E)  = #llooWo (64) 

Wo = 1 - 2"/0 + 80 (64a) 

and the coefficient of the first-order correction Cq is given by 

80-3'0/3 3 
Cq - - -  (64b) 

w0 4 

This coefficient can be analytically evaluated within the s-wave approxima- 
tion (isotropic quasiparticle scattering) for the scattering amplitude to give 

- c q  = 13/28 =0.46 (isotropic scattering) (64c) 

The scattering of quasiparticles in 3He-B is, however, far from isotropic. 
There are various ways of generating more refined approximations for the 
quasiparticle scattering amplitude. The first extension of the s-wave result 
can be achieved by including a p terrfi as proposed by Dy and Pethick. 32 
The results for the normal state transport parameters evaluated within the 
sp-wave approximation generally agree better with experiments at vapor 
pressure than with those at intermediate and high pressure, where they are 
below the experimental results by about a factor of two. In I we therefore 
adopted the point of view that scattering parameters that are very sensitive 
to a pressure variation (such as (W)a, A~, A;) are to be determined from 
other experiments. 

Meanwhile there have been many new ideas to find better approxima- 
tions for the scattering amplitude. The first is the so-called "effective 
potential approximation" by which the angular dependence of the scattering 
amplitude is approximated in the form 

A s ( O ,  0b)= Ws(~m • ~3) + (-1)sWs(Pl " P,) 

Here s = 0  (1) in case of the singlet (triplet) component, 0 is the angle 
enclosing the momenta Pl, P2 of incoming particles, and ~b is the angle 
between the planes containing the incoming (Pl, P2) and outgoing (P3, P4) 
momenta, respectively ("Abrikosov angles"). The Legendre expansion of 
the functions Ws(~l • P3 ,4 )  contains coefficients that can be related to the 
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Landau parameters. 33 The first two coefficients of this expansion just repro- 
duce the sp approximation of Dy and Pethick. An spd approximation 
generated from the effective potential form of the scattering amplitude has 
been applied by Ono et al. 34 and Hara 11 for the evaluation of the superfluid 
shear viscosity and thermal conductivity. 

A similar treatment with the l = 3 term included has been performed 
at melting pressure by Sauls and Serene. 24 For the evaluation of transport 
parameters in this paper we use scattering parameters taken from a recent 
paper of Pfitzner and Wolfle .  26 In their work the quasiparticle scattering 
amplitude is calculated from a generalized Landau-Bethe-Salpeter equation 
using the polarization potentials of Aldrich and Pines 35 as input. The solution 
guarantees exchange symmetry explicitly and improves in that respect on 
a similar calculation by Bedell and Pines. 25 

Table III lists the results for the scattering parameters obtained in 
various approximations, if available from the original papers. 11,24,26,32 We 
shall come back to this table whenever the pressure dependence of transport 
parameters is considered. 

Let us now return to the first-order correction Cq of the BQP relaxation 
rate [Eq. (64b)]. From Table III it is seen that this quantity neither depends 
very much on pressure nor on the approximation used in its evaluation. 

In Fig. I we plot the numerical results for the relaxation rates I , ( E  = A) 
taken at the Fermi surface (solid lines) vs. A/kT. Also shown in this figure 
is the relaxation rate Iq of Bogoliubov quasiparticles normalized to the 
normal state lifetime ~.o (T) (upper solid curve), which has been generated 
from the Ins using scattering parameters 3'o = 0.1 and 80 = 0.3, appropriate 
for intermediate pressure. 

A comparison of Io with Iq in Fig. I shows that the terms in Iq multiplied 
by 3'o and 80 partially compensate each other such that the contribution of 
Io to the full relaxation rate dominates at all temperatures. The dashed 
lines close to the In are the corresponding low-temperature forms, which 
are obtained from Eq. (62) by putting Ck = 0. It is seen from this comparison 
that the validity of the low-temperature approximation for the relaxation 
rates In(E = A) is restricted to values A / k T ~ 2 . 5 .  

In what follows, we summarize our results for transport and relaxation 
times, plotting them vs. reduced temperature T/To. This requires a specifica- 
tion of the temperature dependence of the gap function A(T). We introduce 
a "strong coupling" parameter by 

~sc = A(O)/kTc (65) 

and, as in I, use the interpolation formula 

• - 

A(T) = a(O) tanh ~ ~ Cr~ \ T / J (66) 
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Fig. 1. Dimensionless relaxation rates for Bogoliubov quasi- 
particles of the BW state at the Fermi surface vs. A/kBT as 
defined by Eq. (18a). The upper solid line represents the full 
quasiparticle relaxation rate for E = ~ according to Eq, (18). 
The dashed lines are the low-temperature forms of I n from 
Eq. (62). 

for the gap function, where AC/CN is the specific heat discontinuity. It 
turns out that in the weak coupling (BCS) limit, where 6so = 1.76 and 
AC/CN=1.43, A(T) from (66) is off the values for the gap function 
tabulated by M/ihlschlege136 by at most 1.5%. 

In Fig. 2 the agreement of the weak coupling gap function A(T) from 
Eq. (66) (lowest curve) with M/ihlschlegel's values (points) is visualized. 
Also shown in this figure (upper curves) is the gap function, normalized to 
kBTc for three gap renormalization parameters 6so = 1.82 (10 bar), 2.0 (20 
bar), and 2.10 (30 bar), the pressure dependence of which is predicted by 
Bloyet et al. 37 from an analysis of a spin relaxation experiment. It should 
be noted that the zero-temperature gap according to the "weak coupling 
plus" model of Serene and Rainer 22 turns out to be much less enhanced 
when the pressure is raised: 8so = 1.80 (10 bar), 1.83 (20 bar), and 1.85 
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Fig. 2. Gap parameter of 3He-B normalized to kaT c for various 
values of the gap renormalization parameter ~sc = A(O)/knTc vs. 
reduced temperature from Eq. (66). Points are values from 
Miihlschlegel's table, 36 shown for comparison. 

(30 bar). There  is no argument  explaining the discrepancy between the 
"weak  coupling plus" results and the spin relaxation experiment. 

As we saw in Section 4, the physically relevant transport  times [cf. 
Eqs. (36a)-(36c)]  are expressed as energy averages of the solutions ~br (E)  
• q(E)  of the transport  integral equations with various weighting factors 
("coherence factors" ~2/E2). 

In Fig. 3 we therefore plot the energy averages 

7"01 = ('rq(E)),p ("quasiparticle") (67a) 

Zvl = (zq(E)~2/E2)~ ("viscosity") (67b) 

T T 1  = ('rq(E)~2/4k2T2)~ (" thermal  conductivity") (67c) 

as a function of T~ Tc using the weak coupling parameters  ~sc = 1.76 and 
AC/CN = 1.43 for the gap function according to Eq. (66). 

The results for the three energy averages shown in this figure correspond 
to a crude approximate  solution of the transport  equations (29a)-(29c) for 
shear viscosity, second viscosity, and thermal conductivity, in which the 
integral operators  S~ r), which entirely carry the characteristic symmetry of 
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Fig. 3. Dimensionless fundamental transport times of 
_ 3He-B defined by Eqs. (67a)-(67c). Solid lines are 

obtained with 8so = 1.76 (weak coupling BCS), dashed 
1.0 lines with 8so = 2. The influence of changing 8s= from 

T/Tc 1.76 to 2 on 'rT1 is weak and not shown in the figure. 

the transport  problem under consideration, have been put equal to zero 
("simple relaxation time approximation") .  The results obtained within this 
approximation correspond to those of D6rfle et aL, 4 who started f rom a 
Kubo  formula approach. They are not consistent with any of the exact 
conservation (or nonconservation) properties of the scalar collision integral 
derived in Section 4. But since the momentum and energy current (being 
related to shear viscosity and thermal conductivity) of Bogoliubov quasipar- 
ticles are conserved neither in the superfluid nor in the normal state of the 

Fermi liquid, the results of this t reatment  should give at least qualitative 
agreement  with the exact solution of the Boltzmann equation. 

In the case of the second viscosity, however,  which is closely related 
to the phenomenon of intrinsic relaxation of the normal fluid fraction, as 
discussed in I, things look strikingly different. The normal fluid density is 
not conserved in the superfluid state, and being driven out of its mutual  
equilibrium with the superfluid component ,  relaxes back via quasiparticle 
collisions. The associated relaxation time diverges as the tempera ture  
approaches the transition from below, 2 indicating the conservation of 
quasiparticle number  in the normal state. Therefore  an approximation to 
the collision integral, like the one described above, that is not consistent 
with the conservation properties of the system cannot be expected to yield 
even qualitative agreement  with the exact solutions of the problem of 
intrinsic relaxation, i.e., second viscosity. One can easily verify that the 
second viscosity evaluated within the simple relaxation time approximation 
stays constant as T ~ Tc instead of displaying a divergence proportional  to 
( 1 -  T~ Tc) -1/2, a proper ty  of the exact solution. 2 
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It should be noted that the transport times "Tv1 and ~'xl, representing 
shear viscosity and diffusive thermal conductivity in the simple relaxation 
time approximation, remain finite in the whole temperature range. The 
quantity ~'ox, on the other hand, diverges like T -~ as T-~ 0 and thus describes 
an important property of the two components of the spin diffusion tensor 
in 3He-B, to which To~ can be shown to be the simple relaxation time 
approximation. 10,27 

The dashed curves in Fig. 3 correspond to the same transport times 
evaluated with a strong coupling parameter 3sc -- 2. The effect of renormaliz- 
ing the zero-temperature gap on the thermal conductivity transport time 
rT1 turns out to be negligible in the whole temperature range and is therefore 
not shown in the figure. 

In Fig. 4 we plot energy averages of the inverse lifetime of Bogoliubov 
quasiparticles defined by 

(1)~ (68a) 
rOE (1/zq(E)>~ 

(sC2/E2>m 

r v2  -- ( [ 1 / , r q ( E ) ] ¢ 2 / E 2 > ,  p ( 6 8 b )  

(#2)~ (68c) 
rT2 - [1/ rq(E) ]~2), 

vs. reduced temperature. A common factor (To~T) 1/2 cosh 2 (A /2kT )  has 
been extracted from these quantities in order to render them finite in the 
whole temperature range. 

1.0 

0.8 

Fig. 4. Dimensionless relaxation rates of 3He-B from 
Eqs. (68a)-(68c) multiplied by C(t)  = 
{seth 2 [A(T) /2kBT](T /Tc )  1/2 vs. reduced tem- 
perature. Solid lines are obtained with 6so= 1.76, 
dashed lines with 6so = 2.00. 
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In particular, the quantity 'FQ2 can be interpreted as a characteristic 
energy-independent collision time of Bogoliubov quasiparticles. It enters 
the approximate form of the collision integral in the "two relaxation time 
model" used to solve exactly the single plane boundary problem. 3s Further- 
more, together with the averages Zvl, ra-~, and the relaxation times (67a)- 
(67c) it specifies the "separable kernel approximation" (SKA) introduced 
in I to evaluate quantitatively spin-independent transport parameters of 
superfluid ZHe-B at arbitrary temperature. We shall discuss the properties 
of this approximation later. 

In Fig. 4 dashed lines again correspond to a strong coupling parameter 
6~= 2.0. The strong dependence of the low-temperature transport and 
relaxation times on the gap at low temperature is evident in this figure. 

6.2. The Damping of Order Parameter Collective Modes 

It turns out that one particular (frequency-dependent) energy average 
of the Bogoliubov quasiparticle relaxation rate can be directly compared 
with experiment. The width of the so-called "squashing" and "real S~luash- 
ing" peaks in the zero-sound attenuation, as derived by Koch and W61fle, 39 
is related to the lifetime 

1 1 21-1/ 
"/'H (0) ,  

/ J 

%(Ek) --\-~k] J /¢J (69) 

with w = (12/5)1/2A for the "squashing" mode and w = (8/5)1/2A for the 
"real squashing" mode. 

In Fig. 5 the prediction for rH(w = (12/5) 1/2A, T) is compared with 
experimental data taken at 14 bar by Halperin. 21 We have plotted rH vs. 
reduced temperature using scattering parameters appropriate for intermedi- 
ate pressure and a value for the normal state quasiparticle lifetime r ° (To) = 
1.3 x 10 -7 sec. The agreement is seen to be good in the whole range of 
temperatures for a value 6so = 2 (solid line). The dashed curve is obtained 
with the weak coupling value ~sc = 1.76. 

In what follows, we collect our low-temperature results for the bulk 
shear viscosity, second viscosity, and diffusive thermal conductivity and 
compare them to results obtained in I by means of the SKA method. 

Our general aim in doing this is to show that the SKA results agree 
sufficiently well with the exact results in the limit of low temperatures. The 
good agreement with the exact results for T ~ Tc has already been pointed 
out in I. The advantage of the SKA method, as will turn out below, is the 
transparent structure of the results for the superfluid transport parameters 
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Fig. 5. Lifetime of the order parameter collective modes 
in 3He-B vs. reduced temperature. The solid (dashed) line 
is a numerical evaluation of expression (69) with hw = 
(12/5)1/2A and 8so = 2.00 (1.76). Points are taken from a 
measurement by Halperin. 21 

as compared  to the more  complicated variational procedure.  The  S K A  
t ranspor t  parameters  can all be expressed as simple rational combinat ions  
of some of the six " fundamen ta l "  t ranspor t  times roi, Zw, and rT~, i = 1, 2 
(cf. Figs. 3 and 4) with only normal  state scattering parameters  (A~-, A~) 
entering as nontrivial factors. 

6.3. Shear Viscosity 

The low- tempera ture  result for the shear viscosity, according to Eq. 
(60) and Table  II,  reads 

1 , 2 = z s ( l + c , T k T / A )  (70) r / =  ~/'tm VF~',~, % 



460 Dietrich Einzei 

Here % = 2 ~ / 3 w o ( k T c / A ) 2 r ° ( T c )  is the finite zero-temperature limit of 
the B-phase shear viscosity. The coefficient cn of the first-order correction 
in k T / A  can be expressed in terms of well-known scattering parameters as 

= (3X2 --  'Y2)/W0 (70a) C n --4Cq + 5 + 

Within the s-wave approximation for the quasiparticle scattering amplitude 
cn can be evaluated analytically to give 

- c ,  = 173/98 ~ 1.77 (isotropic scattering) (70b) 

in agreement with the exact result of Pethick et al. 5 The general result for 
c, is, of course, pressure dependent. An inspection of the values for c, (in 
Table III) obtained in various approximations shows that this pressure 
dependence is quite weak. The approximate result for the shear viscosity 
transport time r, using the SKA as derived in I reads, with the abbreviations 
introduced by Eqs. (67) and (68), 

SKA rv l+  Y2 (71) 
rn = ,~2(1/~.o2) Yo /  Y2_A2/~.v2 

where we have defined generalized Yoshida functions 

Yn( T)  = ((~/E)n),  (71a) 

As pointed out in I (for details see Ref. 30) the separable kernel approxima- 
tion, although consistent with the conservation properties of the system, 
does not exactly reproduce the nonconservation equation for the momentum 
current (38c), i.e., the angular dependence of the collision operator is simply 
represented by only one scattering parameter ,~-, which also determines 
the normal state shear viscosity. 

In order to show the deviation of this approximation from the exact 
result at low temperature [Eq. (60)] we expand the energy integrals in (67) 
at low temperatures with the aid of (41b) and (43) to obtain 

where 

./.SKA = r s ( l +  cSKA--~) ; 27r [kT '~  2 
rs = ~--~oo ~-~- } r ° (72) 

Cr tSKA = C.q . . . .  t (5/~t 2 __ ~ 2 ) /  W0 . . ~ _ / ~ 2 _ _  ( 7 2 a )  

The error' introduced by using the SKA thus in general depends on pressure 
and, according to the results collected in Table III, on the approximation 
chosen for its evaluation. 

In Fig. 6 we plot the reduced shear viscosity vs. reduced temperature 
for various values of the scattering parameter )t ~- and the strong coupling 
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Fig. 6. Reduced shear viscosity of the BW state vs. reduced tem- 
perature,  for various strong coupling (8~:) and scattering (h~-) 
parameters  as indicated. Solid lines and the upper  dashed line are 
obtained within the  SKA [cf. Eq. (71)]. The lower dashed line is 
the exact asymptotic result from Eq. (70). Dashed-dot ted  lines 
show variational results a4 for comparison, as discussed in the text. 

parameter 8so. The solid curves are obtained within the separate kernel 
approximation for the collision operator. The upper curves (h2 = 1/5) are 
obtained if isotropic quasiparticle scattering is assumed. The dashed line 
shows the influence of changing the zero-temperature gap from its weak 
coupling value 8so = 1.76 to (5sc = 2. The three lower solid curves are calcu- 
lated using scattering parameters of Pfitzner and W61fle 26 (h2=0 .68  for 
P = 0 bar and ~2 = 0.76 for P = 21 bar). The difference between the lowest 
two solid curves again displays the influence of the gap renormalization 
~sc = 2, which is predicted for P = 21 bar by Bloyet et al. 37 The dashed line 
that merges into the lowest solid line represents the exact result for )t2 = 0.76 
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and 6so = 2. Finally, the two dashed-dotted lines represent the most recent 
variational result of Ono et al. 34 for 21 bar with 6s¢ = 1.76 (upper curve) 
and 3s¢ = 1.95 (lower curve). 

All these curves obtained in various approximations for different pres- 
sures show the characteristic qualitative behavior of the hydrodynamic shear 
viscosity of the infinitely extended volume: a drastic decrease below Tc 
followed by a minimum at intermediate temperature and a finite low- 
temperature limit. 

One can draw several conclusions from Fig. 6. The first is the good 
agreemen't between the exact result for the slope of the shear viscosity with 
the SKA result at the low-temperature end of the graph. Second, there is 
rather good agreement with the results of the variational solution of the 
Boltzmann equation. Keeping in mind, third, that the SKA result deviates 
from the exact result just below T~ (Ref. 1) by typically 1%, as shown in 
I, it follows that for practical purposes the simple SKA, which can be 
generated from the transport times shown in Figs. 3 and 4 and the scattering 
parameters in Table III, gives a good quantitative description of the shear 
viscosity at arbitrary temperature. A further important point is that the 
pressure dependence of the shear viscosity enters via two different theoreti- 
cal inputs: the scattering parameters A2, Y2, etc., and the gap renormalization 
ratio 8s~ = A(O)/kBTc. According to the spin relaxation analysis of Bloyet 
et al., 37 the parameter 6~¢ changes by about 14% above its weak coupling 
value if one raises the pressure from 0 to 21 bar. Our exact theoretical 
result (70) for the low-temperature viscosity shows that ~7- 6~e 2, SO there 
is a 30% change of the shear viscosity of 21 bar due to this effect. If we 
use the scattering parameters of Pfitzner and W61fle and 6sc values given 
by Bloyet et aL, our theory predicts that "he plateau value of the reduced 
shear viscosity decreases monotonically with increasing pressure up to 
melting pressure. Before we compare our theoretical results for the shear 
viscosity to experiment, some general remarks concerning the experimental 
analysis have to be made. 

The shear viscosity can be measured in various ways, in particular by 
Andronikashvili or vibrating wire techniques or by using a conventional 
sound resonator. The existence of container walls makes it necessary to 
theoretically consider surface corrections to the hydrodynamics of the 
infinitely extended volume. In the case of the Andronikashvili cell this 
amounts to studying a stationary Poiseuille flow problem, 4° whereas for the 
sound resonator one has to consider the transverse surface impedance.3S'4° 
The extent to which the liquid feels the surface is governed by the viscous 
mean free path of the thermal excitations. At Tc the viscous mean free 
path lies typically between 1 and 10/zm, decreases below T~, has a minimum, 
and increases exponentially at low temperatures. It has been demon- 
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strated 4°'38 that the finiteness of the mean free path leads to a "slip effect" 
of the normal velocity component at the walls of the container and, associ- 
ated with it, to a correction of order one mean free path over typical 
container spacing to the bulk hydrodynamic results. 

As one is interested in the shear viscosity representing the infinitely 
extended volume, these effects have to be accounted for in order to properly 
eliminate the influence of the surface. 

First we compare our theory with the torsional pendulum and spherical 
viscometer data of Archie et aL 16 In Fig. 7 the solid lines represent the 
theoretical (SKA) prediction for the reduced shear viscosity as a function 
of T~ Tc at four pressures, evaluated with scattering parameters of Pfitzner 
and Wglfle and 6sc values of Bloyet et al. Open symbols represent torsional 
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Fig. 7. Shear viscosity of 2He-B vs. reduced temperature at four 
different pressures. The solid lines are the theoretical prediction 
obtained within the SKA with strong coupling parameters 8so from 
Ref. 37 and scattering parameters taken from Pfitzner and 
W/~lfle. 26 Open symbols are torsion pendulum data, closed symbols 
are spherical viscometer data of Archie et aLl6 Inverted triangles: 
5 bar; circles, 20 bar; squares', 30 bar. 
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oscillator data, and closed symbols data obtained with a spherical viscometer, 
both with a first-order slip correction included, Inverted triangles are 5-bar 
data, while circles and squares correspond to 20 and 30 bar, respectively. 

The agreement between theory and experiment is good for tem- 
peratures above ~0.9  Tc. Below 0.9 Tc the experimental points are seen to 
fall below the theoretical prediction ("droop") .  The discrepancy between 
theory and experiment in this respect is larger for the torsion pendulum 
than for the spherical viscometer data. None of the data sets shows a 
tendency to go through a minimum. The pressure dependence of the 
experimental viscosity data at low temperatures does not display a 
monotonic decrease with increasing pressure as predicted by theory. 

In Fig. 8 we compare with the slip-corrected shear viscosity data 
obtained in a recent vibrating wire experiment by Carless et  al.  19 The 
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Fig. 8. Shear viscosity of 3He-B as a function of reduced tem- 
perature. The solid lines are the same as in Fig. 7. Symbols represent 
vibrating wire data of Carless et alJ 9 Inverted triangles, 0.1 bar; 
closed squares, 2.1 bar; triangles, 10 bar; circles, 20 bar; open 
squares, 30 bar. 
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theoretical curves are the same as in Fig. 7. Different symbols correspond 
to different pressures: inverted triangles, 0.1 bar; closed squares, 2.1 bar; 
triangles, 10 bar; circles, 20 bar; open squares, 30 bar. At pressures equal 
to or larger than 10 bar the experimental points agree very well with our 
theory in their temperature as well as in their pressure dependence for 
temperatures -0.5To. Below that temperature the data points again fall 
below the theoretical prediction ("droop"). It should be emphasized that 
outside the "droop" regime this experiment for the first time confirms the 
prediction of hydrodynamic theory for the shear viscosity with respect to 
both temperature and pressure dependence. 

In Fig. 9 we compare our results with the sound resonator data of Eska 
e t  al .  18 The damping of ordinary hydrodynamic sound is dominated by the 
surface contribution, which can be expressed by the transverse acoustic 
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F i g .  9.  Shear  viscosity of 3 H e - B  vs. reduced tem-  
perature.  Solid lines are theoretical predictions for ( a )  
2 0  and ( b )  3 0  bar, respectively, shown in Figs. 7 and 8.  
Symbols are from first-sound attenuation measurements 
by Eska e t  al .  18 at various frequencies as indicated in 
the figure. 
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impedance. In order to extract ~7 from the attenuation, the surface imped- 
ance has been evaluated in the low-frequency limit (oJr~0). The solid 
curves show the theoretical reduced viscosity at 20 and 30 bar, respectively. 
Different symbols denote different frequencies. At 28 bar the temperature 
TAB (dashed vertical line) separates A-phase from B-phase data. There is 
again fairly good agreement between theory and experiment for higher 
temperatures and a "droop" of the experimental viscosity at the low- 
temperature end. The slight frequency dependence of the experimental 
points at lower temperatures seems to indicate that one is already outside 
the hydrodynamic regime (o9~- - 0) and that here the full expression for the 
surface impedance 38'4° has to be used for the analysis of sound attenuation. 
As far as the "droop" of experimental viscosity is concerned in all cases, 
there is no explanation for this phenomenon. In working out the slip 
correction to the damping in each case purely diffuse scattering of quasiparti- 
cles at the walls of the container has always been assumed. In the normal 
liquid 3He, this assumption seems to be consistent with experiments on 
U-tube oscillations 41 and dispersion of ordinary sound. 18 

The discrepancy in the superfluid migh t be due to a new scattering 
mechanism of (Bogoliubov) quasiparticles at the container walls, different 
f rom the purely diffuse ~o~e,_ which serves to ,enhanc e the s l ip  length and 
reduce the.surface imped~ance, respectively. In any case we believe that this 
discrepancy is due to a surface effect, because the relaxation time rH (cf. 
Fig. 5) taken from a high-frequency experiment, where the surface correc- 
tions should be negligible, does not show any sign of a "droop" at low 
temperatures. 

6.4. Second Viscosity 

We continue our discussion of theoretical results, considering the 
second viscosity ~3. This quantity governs the response of chemical potential 
to normal-to-superfluid counterflow, and is thus a dissipative parameter 
associated with a new (intrinsic) relaxation mechanism only present in 
superfluid systems. 

Let us start with the low-temperature result for the second viscosity: 

¢=rn2----~Fr¢, r¢=rs 1 + Q-~- (73) 

Here NF is the density of states for both spin projections at the Fermi 
surface, and rs = 2~'~'0N (To)~3 Wo6~c. Note that the transport time associated 
with second viscosity has the same zero-temperature limit as the shear 
viscosity transport time %. As the second viscosity derives from a transport 
equation similar to that of shear viscosity but with l = 0 symmetry, the 
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coefficient of the first-order correction c; is obtained from c, [cf. Eq. (72a)] 
just be replacing the scattering parameters ,~2 by )t0---- 1 and ~/2 by ~/o: 

c¢ = -4Cq + (~-  ~o) / Wo (73a) 

An estimate of the slope c¢ of the second viscosity ~3 at low temperature 
within the approximation of isotropic scattering yields the analytical result 

-c¢ = 11/14 = 0.79 (73b) 

The variation of cc with pressure according to more refined approximations 
for the quasiparticle scattering amplitude (cf. Table III) is weak. If one 
applies the separable kernel approximation to the collision operator in the 
case of second viscosity, the result reads 

,r~KA = rVl  _} Y2 (74 )  
(1/zo2) Yo /Y2-1 / rv2  

where the transport times from Eqs. (67) and (68) and the generalized 
Yoshida functions Yn(T) [cf. Eq. (71a)] have been used. The error intro- 
duced by the SKA at low temperatures as compared to  the exact result for 
z¢ can be mathematically expressed as 

r.SKA ,r,-~,", si~,.~. A- ¢. - ~,.tl-~c c x l /  ) (75) 
where 

C~ KA =Cc . . . .  t ( 5 _ T 0 ) / W o +  1 _  (75a) 

In Fig. 10 we plot the second viscosity normalized to r ° (Tc)/rn2NF, 
with the divergence at Tc removed by multiplying with A(T)/A(0), as a 
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Fig. I0. Normalized second viscosity ~3 of the BW state 
vs. reduced temperature. Solid lines are obtained from 
a numerical evaluation of Eq. (74) with strong coupling 
parameters predicted by Bloyet et aL 37 and scattering 
parameters from Pfitzner and W61fle 26 appropriate for 
0 bar (upper curve) and 20 bar (lower curve). Dashed 
lines indicate the corresponding exact asymptotic results 
from Eq. (73). Dashed-dotted lines are obtained from 
(74) with scattering parameters for isotropic scattering. 
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function of reduced temperature. The solid lines are the SKA results 
obtained with scattering parameters from Pfitzner and W61fle 26 (see Table 
III) and strong coupling parameters from Bloyet et al. 37 appropriate for 0 
bar (upper curve) and 20 bar (lower curve). These approximate results 
compare well with the corresponding exact asymptotic results at low 
temperature [cf. Eq. (73)], which appear as dashed lines in Fig. 10. The 
reduced form m 2NF~3/ ' r  ° (To)  of the second viscosity is quite insensitive to 
the pressure-dependent input of the scattering parameters (70, 80). So the 
dashed-dotted lines correspond to the S K A  results obtained with the 
assumption of isotropic scattering. Therefore the pressure dependence of 
the second viscosity ~'3 is seen to be dominated by, besides strong coupling 
gap renormalization, that of the effective mass (entering via NF) and by 
z ° (To), which decreases by roughly an order of magnitude if one increases 
the pressure from 0 to 20 bar, say. 

Recently, Carless et al. 19 have published the first sets of experimental 
data on the second viscosity at very low pressure. In Fig. 11 their data 
taken at 1.28 bar (circles) are compared with our theory. We have plotted 
~'3 as a function of reduced temperature at 1.28 (upper curve) and at 21 
bar (lower curve). At 1.28 bar we used r ° ( T c ) =  3.22 x 10 -7 sec and NF = 
10.82 x 1038 (erg cm3) -1 as proposed in Ref. 19. At 21 bar we took z ° (To) = 
5.4x 10 -8 sec and NF = 2.04× 1038 (erg cm3) -1. The agreement of the 
experimental points with the theoretical curve is good in general, the scatter 
of the data being, however, quite large close to T~. The second viscosity at 
21 bar is predicted to be roughly an order of magnitude smaller than at 
1.28 bar, basically due to the strong pressure dependence of Z0N (To), and 
is therefore probably more difficult to determine experimentally. 
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Fig. 11. Second viscosity ~'3 of 3He-B at 1.28 bar (upper 
curve) and 21 bar (lower curve) vs. reduced tem- 
perature. Open circles refer to the vibrating wire data 
at 1.28 bar of Carless et  al. 19 
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Finally, it should be noted that our theoretical second viscosity has 
been successfully used by Brand and Cross 42 in their explanation of the 
anomalously large U-tube flow dissipation observed by Eisenstein and 
Packard. 43 

6.5. Dittusive Thermal Conductivity 

This section is devoted to the thermal conductivity of superfluid 3He-B. 
In the low-temperature regime this quantity is given by [cf. Eq. (60d), 
Table II] 

n /~sc /' _ ~ )  
K = ~ - ~  (2kTc)2~'K, r~=--~rskl+cK (76) 

In contrast to the expressions for the viscosities [Eqs. (70) and (73)], the 
low-temperature result for the thermal conductivity multiplied by the 
absolute temperature is independent of gap renormalization effects because 
the parameter/~-c 2 precisely drops out, as seen from Eq. (76): 

m q/" o 
lim r~ - ~Wo rrq (To) (76a) 
T - - , 0  

Therefore the pressure dependence of the low-temperature thermal 
~onductivity Should be expected to exclusively depend on the normalized 
quasiparticle scattering cross section Wo, defined by Eq. (53b). 

According to Eq. (60d) (Table II), the coefficient of the first-order 
correction cK in (76) is given by 

c~ = -4cq +3 + (A1 - 5T1/3) /w o (76b) 

We explicitly give the analytical result for c~ obtained with the assumption 
of isotropic scattering 

= 11/14 (76c) 

which agrees with the result of Pethick et al. 5 
An inspection of Table III shows that the low-temperature slope c~ 

does not vary much with pressure and that isotropic scattering is certainly 
a bad approximation for the evaluation of this quantity. Furthermore, Table 
III shows values for the scattering parameters A1, Yl obtained by Hara 11 
at 21 bar from spd effective potentials with unknown Landau parameters 
treated as free parameters. The row labeled "C" ("D") gives results for 
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the scattering parameters determining the thermal conductivity in the case 
where the variation of the free Landau parameters leads to a maximum 
(minimum) in the variational K (T = 0). 

Next we compare the exact low-temperature behavior of the thermal 
conductivity with the SKA result derived in I, which can be written as 

SKA= . h i /  T'~2[ 1 A2 Yo ( ~ ) 1 ]  -1 
T,¢ 'rTl-t'-'Z--/"~-"] 4" 1-- Y~ (77) 

7:o2 ( 2 k r )  2 Y i  

Here we have introduced 

Y~ ( T) = ((,~/2kT)")~ 

Expanding ~.SKA at low temperatures to first order in kT/A leads to the result 

SKA I~sc [ .}_ cSKA rK --~-- ~-s ~ 1 (78) 

with 

SKA . . . . .  t cK -cK - -  ~ (78a) 
Wo 3 

In Fig. 12 we collect various theoretical results for the normalized quantity 
KT/KcTc as a function of reduced temperature. 

The four solid lines are the SKA results for different scattering para- 
meters. According to Table III, ,~- = 1/3 represents the approximation of 
isotropic scattering, A~---1.19 and 1.33 are the parameters obtained by 
Pfitzner and W61fle for 0 and 21 bar, respectively, and 1.92 is the value 
given by Hara ("D"). For isotropic scattering the upper dashed line shows 
the influence of changing ~sc from 1.76 to 2. The two dashed lines merging 
into the 0- and 21-bar curves in the middle are the corresponding exact 
results evaluated with Eq. (76). Finally, the two dashed-dotted lines show 
the variational results labeled "C" (upper curve) and "D" (lower curve) 
of Hara. 11 

The thermal conductivity of the B phase generally varies smoothly with 
temperature. The question of whether the thermal conductivity KT goes 
up or clown below Tc is seen to crucially depend on the input for the (normal 
state) scattering parameter A~-. 

The agreement of our result obtained within the SKA with the vari- 
ational calculation of Hara (shown here only for Xl- = 1.92) is quite good 
in the whole temperature range. 

At low temperatures, the SKA apparently underestimates the slope of 
KT a bit, as can be seen by comparing with the exact results. 
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Fig. 12. Normalized thermal conductivity of the BW state vs. reduced tem- 
perature. Solid lines and the upper dotted line are the SKA results obtained 
from Eq. (77) for different values of A~ and ~sc as explained in the text. The 
two dashed lines are exact asymptotic results from Eq. (76). The dashed- 
dotted lines show variational results of Hara zl for comparison. 

The influence of strong coupling corrections to the zero- temperature  
gap on the thermal conductivity is quite weak, as can be seen from the two 
upper  curves, and can be neglected for practical purposes. 

Very  recently the diffusive thermal conductivity was observed for the 
first t ime experimentally by H o o k  and co-workers 2° using heat pulse tech- 
niques. The preliminary result of their experiment at 21 bar is compared 
with various theoretical curves obtained within the SKA in Fig. 13. We 
plot the product KT, normalized to its value at Tc vs. reduced temperature.  
Crosses stand for the experimental  points; different theoretical curves 
are obtained for different scattering parameters  A ~-. The experimental curve 
is seen to first go up below Tc and to fall at lower temperatures  with a 
slope much larger than predicted by theory. 

If the slight increase of the experimental  KT below Tc can be taken 
seriously, the data are clearly compatible with a scattering parameter  
A1 ~0 .9 .  This is in contrast to the predictions of Pfitzner and W61fle 
(A~ = 1.33) and Hara  (1 .52<  ;t~ < 1.92) for a pressure of 21 bar. 
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Fig. 13. Normal ized thermal  conductivity of 3He-B 
plotted vs. T~ T c. Solid lines are SKA results for  para-  
meter  values A i as indicated. Crosses  are heat  pulse 
data of H o o k  and co-workers .  2° 

The physical origin of the discrepancy between theory and experiment 
at lower temperatures is not known. It may, however, have an explanation 
similar to the slip effect in the context of Poiseuille flow. More experiments 
at different pressures are in preparation and there is hope that they will 
contribute to clarifying our physical understanding of the thermal conduc- 
tivity. 

6.6. Conclusion 

In this paper we have calculated all relevant spin-independent hydrody- 
namic transport parameters of the infinitely extended superfluid 3He-B. 

The results of I have been completed by the derivation of the exact 
form of the one-dimensional transport integral equations from which these 
parameters originate, and the exact solution of these equations at low but 
finite temperatures. The exact results compare well with those obtained in 
I, where a separable kernel approximation (SKA) for the collision operator 
has been applied. The SKA results for shear viscosity and thermal conduc- 
tivity are in good agreement with the results of variational calculations. 
Thus the SKA is a well-controlled approximation at all temperatures, which 
in addition has the advantage of describing the temperature dependence of 
the resultifig transport parameters by only a few well-defined relaxation 
times and the pressure dependence by only one scattering parameter (A~, 
shear viscosity; A]-, thermal conductivity) and the gap at zero temperature 
6so = A(0)/kB To. 

A comparison of our theory with the experimental data on the shear 
viscosity ~ shows that there are two significant temperature regimes. In the 
regime of higher temperatures the agreement is very good in all cases. At 
lower temperatures, in the "droop" regime, the experimental viscosities 
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deviate systematically toward lower values and thus fail to show the 
minimum predicted by theory. We believe that this discrepancy is due to 
a surface effect, in that it crucially depends on the assumptions on the 
detailed scattering processes undergone by the thermal excitations at the 
surface of the container. These problems have to be left for further investiga- 
tions. Our results for the second viscosity ~3 have now been confirmed by 
experiment. There is also a preliminary measurement on the 'diffusive 
thermal conductivity g, which indicates that the product KT displays a 
maximum below Tc before it goes down much more rapidly as expected 
from the theoretical point of view. 

There is clearly need for more experiments, in particular to clarify the 
role of the surface in different geometries. On the theoretical side, effort 
has to be made in understanding quasiparticle scattering processes from 
the solid surface. 

With the role of the surface in hydrodynamic experiments sufficiently 
known, our theory as presented in this paper can be used to extract 
information on important properties, such as the energy spectrum of thermal 
excitations and the interactions of quasiparticles in the infinitely extended 
superfluid. 
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