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The Transverse Acoustic Impedance of He II* 
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The complex shear acoustic impedance of liquid He H has been measured at 
frequencies f(=to/2~-) of 20.5, 34.1, and 47.SMHz from 3 0 i n k  to the 
;t-point Tx (2.176K). The impedance Z was found from the temperature 
dependence of the quality factor and the resonant frequency of a thickness 
shear mode quartz crystal resonator immersed in the liquid. The relationship 
for a hydrodynamic viscous liquid Z ( T ) =  (1-i)(~rf~pn) 1/2 was used to 
measure the temperature dependence of the viscosity rl(T) using tabulated 
values of the normal fluid density pn(T). Deviations from hydrodynamic 
behavior occurred when the viscous penetration depth was less than the 
superfluid healing length, the phonon mean free path, and the roton mean 
free path. Near the X-point, Z(T) /Z(T~, )  was frequency dependent and a 
value for the superfluid healing length a = (0.10 + O.01)e -2/3 nm was found, 
where e = (Tx - T ) / T x .  The effects of van der Waals forces near the crystal 
surface were also observed and a layer model was used to interpret the 
measurements. Below 1.8K only rotons contribute significantly to Z and we 
determined the roton relaxation time as ~'r = 8.5 × 10-14T-1/3 exp(8.65/ 
T) sec. Below 1.2 K, tO~'r > 1 and we investigated the breakdown of hydrody- 
namics in this region. For T <  0.6 K the resonant frequency of the crystals 
decreased by Af/f = 2 × 10 -7 but the origin of this effect is not yet known. 

1. INTRODUCTION 

Ultrasonic techniques have been widely used to investigate the proper- 
ties of condensed matter. In solids, both longitudinal and transverse sound 
polarizations are propagating modes. In a liquid the transverse mode is 
usually a strongly damped viscous wave whose properties can be determined 
from measurements of the complex shear specific acoustic impedance Z = 
R -  iX.:~ We present here measurements of Z for superfluid 4He at SVP 

*Financial support provided by the SERC, Bedford College, and the Central Research Fund, 
University of London. 

tPresent address'. Oxford Instruments Ltd., Osney Mead, Oxford, England. 
:~For a time-dependent phase factor e -i~t as used here, the imaginary part of Z is negative. 

In electrical circuits it is more usual to use e i~t, which changes the sign of the imaginary 
component in all expressions. 
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from 30 mK to the A-point at frequencies f (= w / 2 ~ )  of 20.5, 34.1, and 
47.8 MHz. Preliminary results have been published previouslyJ 

From two-fluid hydrodynamics 2 Z is related to the viscosity ~7 and the 
normal fluid density Pn by 

Z = R - i X  = (1 - i)(~rfnp,,) 1/2 (1) 

Our experiments show that, while Eq. (1) is generally valid for He lI, 
interesting deviations occur in three regions where the viscous penetration 
depth ~ = (~/Trfpn) ~/2 becomes smaller than the phonon mean free path, 
the roton mean free path, and the superfluid healing length, respectively. 

The impedance Z was found from measurements of the temperature 
dependence of the quality factor Q(T) and the series resonant frequency 
f~ (T)  of an AT-cut quartz crystal resonator immersed in He lI. Similar 
measurements above 1.2 K have been performed by Yang 3 at 24 MHz, 
whose results, at rather high power levels, were strongly power dependent, 
and by Borovikov 4 at 25 MHz, who concluded that Eq. (1) was valid and 
could be used to determine 7t. Similar techniques have also been used to 
study liquid 3He,5 the superfluid film in a dilution refrigerator, 6 the onset 
of superfluidity in thin films of 4He,7 and of 3He in 4He,8 and the properties 
of dilute mixtures of 3He in 4He.9 

2. E X P E R I M E N T A L  T E C H N I Q U E S  

2.1. Quartz Crystal Resonators 

The resonators used in these experiments were thickness-shear mode 
AT-cut quartz crystals. These are commerically available but several were 
generously selected and donated by the GEC Hirst Research Centre, 
Wembley, London, England. The crystals were fiat disks, of diameter 
9.0 mm and thickness 0.25 mm, with 2.5 x 2.5 mm rectangular gold elec- 
trodes as shown in Fig. 1. The fundamental resonance was at 6.83 MHz, 
but for the thickness of gold plating used, 150 nm, this is not an energy- 
trapped mode, 1° and had a low Q value. For the third (20.5 MHz), fifth 
(34.1MHz), and seventh (47.8 MHz) harmonics the acoustic energy is 
trapped by the electrodes and Q values greater than 105 were obtained. 
The gold plating, whose transversely vibrating surface interacts with the 
liquid helium, was very smooth, showing no structure on a scale of 10 nm 
as seen in an electron microscope. The crystals were used in their commercial 
mounting with two Be-Cu springs making contact with the electrodes via 
conducting epoxy resin. 
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Fig. 1. The experimental cell used for the measurement of the transverse acoustic 
impedance of He II. 

The resonant frequency and Q factor of the crystal were found using 
the transmission circuit shown in Fig. 2, in which the crystal was placed in 
series with a coaxial line connecting a 50-12 cw transmitter (a Hewlet t-  
Packard 8640B signal generator) and a 50-fl  receiver (a Miteq U A - 4 A -  
1210 low-noise preamplifier and a diode detector) whose dc output S was 
proport ional  to the transmitted rf power. A typical resonance curve at 
20 MHz is shown in Fig. 3. The parameters  measured during an experimental  
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Fig. 2. Schematic block diagram of the feed back Circuit used to lock on to a 
particular resonance of the quartz crystal. 
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Fig. 3. The  received signal S (O) as a function of frequency, showing the third harmonic 
resonance at 20.5 MHz of an AT-cut  quartz crystal resonator  immersed in liquid helium 
at 0.5 K. The  line is the calculated response using the equivalent circuit shown. The Q 
of this crystal is 2.1 x 105. 
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run were the power S,, (T) and frequency fm (T) of the maximum transmit- 
ted signal as functions of the temperature T. In order to relate these to the 
properties of the liquid helium in which the crystal was immersed we used 
the equivalent circuit 11'12 appropriate to an AT-cut crystal close to resonance 
as shown in Fig. 2. It consists of the static capacitance Cq (=0 .730+  
0.006 pF) of the crystal in parallel with the motional inductance L (=0.18 H 
at 20 MHz), the motional capacitance C (=3.4 x 1 0  - 4  pF at 20 MHz), and 
a resistance rq (~50 f~) that determines the intrinsic Oq of the crystal. An 
ideal crystal (rq = 0) exhibits a series resonance at f0 = 1/2zr(LC)I/2 and a 
parallel resonance (or antiresonance) at fo, where d i fp=f° - f  ° ~  
f°C/2Cq (=4830 Hz at 20 MHz). 

The effect of the liquid helium is to introduce an extra series electrical 
impedance z = r -  ix, which is proportional to the transverse acoustic imped- 
ance of the helium Z = R -  iX and is temperature dependent. A figure of 
merit can be defined for the crystal in the helium as M = (2~rfCqrs) -1, where 
rs = rq + r is the total series resistance of the equivalent circuit. At 20 MHz 
M varied from 210 to 50 as the temperature increased from below 0.5 K 
to the A-point. For M>> 1, Cq can be neglected to a first approximation 
and the total transmission system, including 50-f~ transmitter and receiver, 
behaved as a simple series resonant circuit with resonant frequency fs and 
0 -1 given by 

Q-I=Qql +Q~I +QH~=(rq+ IOO+r)/o)L=AS~I/2 (2) 

where the three contributions to Q-1 come from the crystal, the circuit, 
and the helium, respectively. Here A is a constant for the system and was 
determined directly from the transmission resonance curve in Fig. 3. Hence, 
during an experiment, Q-1 was found directly from S,,. The liquid helium 
decreases both Q and the resonant frequency by 

Q~ql e =4R/ncrRq; A f = f  ° - f ,  =2fX/ncrRq (3) 

where Rq is the transverse acoustic impedance of the quartz 13 (Rq = 8.862 x 
106kgm -2 sec -1, >>R,X) and n is the harmonic number of the crystal 
resonance. 

The effects of Cq are allowed for by applying circuit corrections to the 
measured values of S,, and fro. First the frequency fm of the maximum 
transmitted signal differs slightly from the series resonance frequency f~ 
(where the impedance of the LCrz branch of the crystal equivalent circuit 
is real) by 

fm -fs  = --Afp(rs + 200)/M2rs (4) 

and thus measurements of fro(T) were converted to f , (T).  Also, S,, is larger 
than expected for the simple series circuit and the values were multiplied 
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by a correction factor 

a = 1 - 2(rs + 200)/M2(rs + 100) (5) 

before Q-1 was calculated from Eq. (2). These corrections were small, 
particularly for Sin, but became significant at higher frequencies. The 
equivalent circuit used has been shown 14 to describe the response of these 
crystals over a wide frequency range, and the line in Fig. 3 shows the 
calculated response, which agrees well with the measured curves for that 
crystal. 

In order to monitor Sm (T) and fm(T) continuously a feedback circuit 
was used to "lock-on" to a particular crystal harmonic. A block diagram 
of the electronic system is shown in Fig. 2. The HP 8640B rf signal generator 
was frequency modulated at a low frequency of 75 Hz (less than the inverse 
decay time of the crystal fs/Q) and the resultant small-amplitude modula- 
tion in the signal S was detected by a Brookdeal 9503 lock-in amplifier 
and phase sensitive detector (PSD), whose dc output changed sign as the 
rf frequency passed through fro. This output was used to control the HP 
8640B via the dc frequency modulation facility and thus lock-on to the 
frequency fm of the maximum signal. The frequency resolution was then 
0.1 Hz as measured on a Philips 9513 frequency meter. The magnitude of 
the frequency modulation could be made sufficiently small so to have 
negligible (<0.5%) effect on the values of Sin. An alternative system was 
also used, which phase-detected the rf transmitted signal and used the 
quadrature phase component (which changes sign at resonance) to lock the 
HP 8640B onto the resonance. The two systems produced identical results, 
but the first was preferred, as it was independent of any rf phase shifts in 
the system. 

2.2.  The  Sonic  Cel l  

The basic components of the sonic cell are shown schematically in Fig. 
1. The cell body consisted of two sections of oxygen-free high-conductivity 
(OFHC) copper, which were sealed together with an indium O-ring. The 
crystal was held in its commercial mount and connected by short lengths 
of Niomax CN 61/05 superconducting wire to two coaxial feed throughs, 
which were sealed with Stycast 1266 epoxy resin. The rf signal was transmit- 
ted and received via two 50-~ Cu/Ni coaxial lines 15 to room temperature. 
The cell was thermally anchored to the mixing chamber of an Oxford 
Instruments dilution refrigerator capable of reaching 15 mK. The coaxial 
lines, the 4He capillary fill line, and all electrical leads were thermally 
anchored to the heat exchangers and mixing chamber of the dilution unit. 

The experiments were performed by filling the cell with liquid 4He 
until the crystal was covered but with the liquid surface within the cell at 
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all temperatures. Thermal contact between the liquid helium and cell body 
was achieved largely via a silver sinter block (supplied by Oxford Instru- 
ments, Oxford, England) and this gave a thermal relaxation time that was 
very small at high temperatures but rose to 1 sec at 50 mK. The heat leak 
directly into the liquid helium was measured to be 20 nW. The rf power 
dissipation in the crystal was typically 2 nW, giving a temperature differential 
between the crystal and the liquid helium estimated to be less'than 0.3 mK 
at 0.1 K and less than 0.03/zK at 1 K. 

The temperature was measured using 100-lI, 1/2-W Speer resistors 
and 100-12, 1/8-W Allen-Bradley resistors as secondary thermometers to 
cover the range from 30 mK to 2.2 K. These resistors were calibrated against 
the vapor pressure of liquid 4He, a CMN thermometer itself calibrated with 
an NBS SRM767 unit with superconducting fixed points at 1.180 K (A1), 
0.851 K (Zn), and 0.519 K (Cd) and a 6°Co nuclear orientation thermometer 
below 50 mK. Checks for drift of the resistor calibration were made by 
comparison with a calibrated Ge thermometer. The A-point of liquid He 
at 2.176 K was also used as a fixed point. All thermometry was done using 
the EPT-76 temperature scale.16 The error in the temperature measurement 
is estimated to be less than 2% between 0.04 and 1 K and less than 1% 
above 1 K. 

3. R E S U L T S  

The procedure during an experiment was to cool the cell to 1 K, fill it 
with liquid 4He, and then to lock on to a particular harmonic of the crystal 
and to measure SIn(T) and fro(T) from 30 mK to the A-point. The signal 
S,n increased dramatically below TA but became temperature independent 
below 0.6 K. The frequency fm also increased below T~ (by about 81,105, 
and 125 Hz at 20.5, 34.1, and 47.8 MHz respectively), reaching a plateau 
near 0.5 K. It then decreased slightly (by only 3 Hz at 20.5 MHz) down to 
the lowest temperature reached. The circuit corrections were then applied 
to the data, using Eqs. (4) and (5). These corrections were maximum at 
the A-point but were very small for Sin, being typically only 0.04, 0.18, and 
0.44% at 20.5, 34.1, and 47.8 MHz respectively. The corrected values of 
Sm(T) were then converted to values of Q-I(T), as plotted in Fig. 4, using 
the measured scaling factor A in Eq. (2). At 20.5 MHz the typical values 
of Q-1 at 0.5 K and TA were 6.1 x 10 .6 and 1.30 x 10 -5, respectively. The 
circuit corrections to fm (T) were larger, particularly at the higher frequen- 
cies, being typically 2.9, 7.5, and 12.5 Hz at 20.5, 34.1, and 47.8 MHz, 
respectively, at T,. Hence values of f,(T) were obtained as plotted 
in Fig. 4. 

The transverse acoustic impedance of He II should be zero at T = 0, 
as the pure superfluid will exert no viscous drag or loading on the crystal. 
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Fig. 4. Measurement of O-~ and the frequency shift nf at 20.5 MHz (third 
harmonic) of an AT-cut quartz crystal resonator immersed in liquid helium. 
The low-temperature limiting values Qo 1 and fo are found from the data 
below 0.6 K. 
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This is confirmed by the temperature  independence of 0 -1 below 0.5 K, 
where Q - I ( T <  0.5 K ) =  Oo 1, the residual value for the immersed crystal 
and circuit, fs(T)  also increases to a limit fo below 0.5 K (for a discussion 
of the small decrease in fs below 0.3 K, see section 4.4). We therefore 
ascribe the changes in O -1 and f, above 0.5 K to the effects of the liquid 
and we can use Eq. (3) to derive the real and imaginary parts of the 
transverse acoustic impedance of He  II  f rom 

R ( r )  = [O-1 (T)  - 0 0 1 ] n ' r r R q / 4  (6a) 

X ( T )  = [fo- fs( T) ]mrRq/ 2 fo (6b) 

The values for R and X at 20.5, 34.1, and 47.8 MHz from 0.6 to 2.2 K 
are shown in Figs 5 and 6. 

This analysis assumes that the baseline values of Qo 1 and f0 are 
themselves temperature  independent above 0.5 K. In order to check this, 
an experiment was done with the cell evacuated. This is difficult since even 
very small amounts of 4He, forming less than an atomic monolayer  On the 
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Fig. 5. Measurements of the real part R of the transverse acoustic 
impedance of He II at 20.5, 34.1, and 47.8 MHz. The upper line (- - -) 
shows the ballistic limit for rotons, Eq. (17) with a, = I. The lower line 
(-. -) shows the ballistic limit for phonons, Eq. (11) with ap = 1. 

crystal surface, can have dramatic effects on both Q-1 and the resonant 
frequency. However,  in the cleanest cell we could achieve, the changes in 
Q-1 and fs from 0.5 to 2.2 K were less than the experimental  errors and 
we conclude that the crystal properties were tempera ture  independent in 
this range. Mossuz and Gagnepain :7 have also investigated the tempera ture  
dependence of the resonant frequency of quartz crystals and found, at 4.2 K, 
(1/f) dr~ dT ~< 4 x 10 - 9  K-: .  Even if the frequency variation remained linear 
in T down to lower temperatures,  the total frequency shift below Tx at 
20 MHz  would be less than 0.2 Hz. However ,  it was noticed that Q-1 with 
no liquid present was typically 5 .0x  10 -6, slightly less than the value of 
6.1 x 10 -6 quoted above for Qo 1. Even the mechanical vacuum of He  If 
has some effect on the residual losses of the crystal. The exact origin of the 
intrinsic Q-1 of these crystals is unknown, but a substantial part  comes 
from the " leakage"  of vibrational energy trapped beneath the electrodes 
into the periphery of the crystal. 1° Mode conversion could then generate 
longitudinal sound waves in the liquid. Also, if the resonance mode were 
not pure shear, then a longitudinal component  of vibration could excite 
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Fig. 6. Measurements of the imaginary part X of the transverse acoustic 
impedance of He II at 20.5, 34.1, and 47.8 MHz. 

sound waves, though this effect should be very small. In either case a 
contribution to Q-1 would occur that was proportional to the longitudinal 
acoustic impedance pul, where p is the total liquid density and ul is the 
speed of first sound, pul increases by only 7% 18 below T~ and the resultant 
change in Qo 1 would be less than 1% of the total contribution at T~ from 
the transverse acoustic impedance, and therefore has been neglected. 

The measurements reported here are at SVP and thus the pressure on 
the crystal will be temperature dependent,  rising to 0.05 bar at the h-point. 
We have measured the pressure coefficient of these crystals to be 
( l / f )  d f / d P =  1.48x 10 -6 bar -1, which gives a total frequency change of 
1.5 Hz at 20.5 MHz below TA. Consequently all the data in Fig. 6 have 
been corrected for the SVP variation. The quality factor (20 was found to 
be independent of pressure in this range. 

The random errors in measuring O -1 and fs are estimated to be +1% 
and +0.2 Hz, respectively. The errors in R and X at the h-point are typically 
+2%,  but the values of X are much more susceptible to systematic errors 
because of the corrections applied. 

The rf power used to excite the crystal was normally - 5 3  dBm, which 
gave a power dissipation in the crystal at the lowest temperatures of 2 nW, 
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similar to the power level used by Borovikov. 4 An increase in the power 
to - 4 3  dBm produced no change in the results for R and X. This contrasts 
with the strong power dependence found by Yang 3 above 1.2 K at high 
power levels from 16 to 2500/zW. 

As given in Eq. 
two-fluid model is 

4. ANALYSIS  A N D  DISCUSSION 

4.1. Effective Viscosity 

(1), the transverse acoustic impedance using the 

Z = (1 - i)(¢rfnpn) 1/2 = R - i X  

Since p . (T)  is well known for He II we can use the values tabulated by 
Brooks and Donnelly is and Maynard 19 to define effective viscosities 7/1 and 
~/2 from our measurements of R and X: 

r/x(T) = R 2 ( T ) / r r f p n ( T ) ;  r/2(T) = X 2 ( T ) / r r f p n ( T )  (7) 

(N.B.: r/1 and 7/2 are not the real and imaginary parts of a complex dynamic 
viscosity. We quote values of r / in  cgs units poise, because of the universal 
use of this unit; the SI unit for dynamic viscosity is Pa sec, where 1 poise 
= 0.1 Pa sec). The effective viscosities derived from the 34.1-MHz data of 
Fig. 5 and 6 are plotted in Fig. 7 and show the features seen at all frequencies. 
Also shown in Fig. 7 are the values of the viscosity of He II as measured 
by Tough et al. 2° using a low-frequency vibrating wire viscometer. The 
value obtained at the A-point for 7/l(Ta) is 24 .0+0 .4 / ,P ,  in reasonable 
agreement with the accepted value of 24.7/zP. 21 This shows that the quartz 
crystal is acting as a good high-frequency viscometer. The values of 7/2(T,) 
are rather larger, 27.5 + 0.4/.tP at 20.5 MHz, but we consider these to be 
less reliable as measurements of the viscosity both because of the corrections 
applied to X and because of other factors discussed below. Both ~/~ and 
r/2 decrease rapidly below Ta, as do the low-frequency measurements. Below 
1.9K, r/1 remains approximately constant, though exhibiting a small 
maximum, before decreasing rapidly below 1.2 K. The value of r/2 decreases 
steadily at all temperatures and is smaller than ~h below 1.5 K. The low- 
frequency viscosity, however, has a minimum value near 1.5 K and increases 
exponentially at lower temperatures, a feature not seen in our data. 

Vibrating wire viscometers measure the hydrodynamic viscosity, which 
below 1.8 K has been given by Khalatnikov 22 as a sum of the roton viscosity 
r/r and the phonon viscosity r/p, 

n = nr  + np (8)  
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Fig. 7. The effective viscosities n~ and n2 as derived from the data for 
R and X at 34.1 MHz in Figs. 5 and 6, using Eq. (7). The line shows 
the hydrodynamic viscosity as measured with a vibrating wire vis- 
cometer, Ref. 20. 

From 1.5 to 1 .8K,  r/r >> ~/p and is almost tempera ture  independent (see 
Section 4.2). Below 1.5 K the phonon-ro ton  scattering decreases exponen- 
tially and hence ~p increases. However ,  at 20 MHz and higher frequencies, 
the experimental  conditions are often in the nonhydrodynamic region, where 
to~- > 1, giving relaxation effects, and I~ 6 > 1, giving nonlocal effects, where 
~" is a relaxation time and l is the mean free path of the excitations in the 
liquid. In this region the concept of viscosity and penetrat ion depth become 
inappropriate,  though the acoustic impedance Z, as seen by a quartz crystal 
resonator,  remains well defined as 

Z = I I / u  (9) 

where I-i is the shear stress on a surface whose tangential velocity is u, 
though the measurements  of Z may be expressed as an effective viscosity. 
For a gas of excitations Z must be derived from the kinetic equation. For 
a single species of excitation Z is a function of tot, which also determines 
l/6. In the collisionless, or ballistic, limit, when toz >> 1 and I~ 6 >> 1, II  equals 
the transversd momentum flux away from the surface, and from simple 
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kinetic theory Eq. (9) becomes 

Z ~  = R~o = a p n e / 4 ;  w r  >> 1 (10) 

where Z is then real and independent of f, pn is the normal density of the 
excitations whose mean speed is ~, and a is the fraction of the excitations 
that are diffusely scattered at the surface (or absorbed and remitted). As 
o)r decreases, R (oJ~-) also decreases and in the hydrodynamic limit, w~" << 1, 
Z must be given by Eq. (1). We know of no calculations of Z for a roton 
or phonon gas based on the Boltzmann equation similar to those for a 
Fermi gas or a Fermi liquid, z4 

In He II the situation is complicated by the presence of two types of 
interacting thermal excitations, phonons and rotons. For T >  1 .6K our 
experiments are in the hydrodynamic regime, but ~p is then very small. At 
lower temperatures, the rapid rise in the hydrodynamic phonon viscosity 
has almost disappeared at 20 MHz, leaving only a very small peak in ~71(T). 
Following Nadirashvili and Tsakadze, 25 we believe this is due to the large 
values of lp/6,  where lp is the phonon mean free path. They found that the 
effective phonon viscosity, as measured with a vibrating wire viscometer at 
2150 Hz, was reduced from the hydrodynamic value for values of I~ 8 ~ O. 1. 
For completely independent phonons and rotons we might expect two 
penetration depths, 3, = (~?r/~fpr) 1/2 and 8p = (~?p/7rfpp) 1/2, where p, and 
pp are the normal fluid densities of rotons and phonons, respectively. But 
as the phonons are scattered mainly by the rotons above 0.9 K,  22 they will 
reach equilibrium with the rotons, with 8 = 8~ = (Vr/~rfp,,)1/1 since p, ~ p, >> 
pp above 1 K. Calculating the phonon mean free path from the theory of 
Khalatnikov~ 22 we estimate that Ip/8 ~ 1.5 at 1 .6K,  rising to 35 at 1 K. 
Thus, at 1.8 K both phonons and rotons should be in the hydrodynamic 
region, but the phonons will make a negligible contribution to both ~ and 
Z. Below 1.5 K the phonons will enter the collisionless or ballistic region 
with an acoustic impedance given by 

R ~  = Otppul 4 = 1 . 0 6 a p T  4 kg m -2 sec -1 (11) 

The maximum collisionless limit (ap = 1) is plotted in Fig. 5, and is a 
small fraction of our measured values at all temperatures. If we interpret 
the small maximum in the effective viscosity nl as due to the phonon gas, 
then ap~<0.3 for phonon scattering at the smooth gold-plated crystal 
surface. The phonon contribution to our measured values of Z is therefore 
small and has been neglected in the discussion below. 

4.2.  R o t o n  Viscos i ty  

Below 1.9 K our experiments measure the effective roton viscosity. 
Figure 8 shows the effective viscosities ~1 and 7/2 as measured as a function 
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Fig. 8. The effective roton viscosities *h and ~2 at 20.5, 34.1, and 
47.8 MHz from 0.6 to 1.5 K showing the breakdown of hydrodynamics. 
Theoretical calculations for ~7~ ( - - - )  and r12 (-" -) from Eq. (21) are 
shown for the three frequencies, 

of temperature from 0.6 to 1.5 K at 20.5, 34.1, and 47.8 MHz. For simplicity, 
we have used the total normal fluid density in calculating the effective 
viscosity. If we use only the roton part of p, in Eq. (7), then our values of 
~7(T) increase slightly but by less than the error bars at all temperatures. 
We identify the plateau region for ~71 between 1.2 and 1.5 K as giving the 
value of the hydrodynamic roton viscosity ~r, which has the value 12.5 + 
0.4 tzP, in good agreement with other determinations based on the minimum 
in the hydrodynamic total viscosity 25'26 and the value of 11 .8 /zP deduced 
from capillary heat conduction measurements by Brewer and Edwards. 27'28 

The Landau-Khalatnikov 22 theory gives the roton viscosity as 

rlr = p~N, zJ15lz (12) 

where Nr is the roton density and P0 and #~ are parameters of the roton 
dispersion relation ~ ( p ) =  A+(p-po)2/2#x as tabulated by Brooks and 
Donnel ly}  8 Here ~-r is the relaxation time for the dominant roton-roton 
scattering, given by Khalatnikov 22 as 

~.;-a = 2p0lz[ VolZN,./h4 (13) 
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where V0 is a scattering pseudopotential. Hence 7r is temperature indepen- 
dent in this theory. There have been several later calculations, a9 particularly 
by Roberts and Donnelly, 28 who found 

r~ 1 = ~F(1 /  3)( 2k T /  /z )l/2(p~/ 87rpk T)a/3Nr (14) 

where F ( 1 / 3 ) =  2.679 and p is the total density. At SVP this gives 7r = 
10.9 ~ P  at 1.5 K, lower than the measured value. This theory also predicts 
a weak temperature dependence 7r oc Z 1/6, but we are not able to distinguish 
between this and a temperature-independent  roton viscosity, because of 
the temperature dependence of the roton parameters 18 and the error  bars 
on our data. 

Conversely, we can derive a relaxation time for ro ton-roton scattering 
from our data. If we take, 7r as temperature independent, then we obtain 

--1 (1.13 ± 0 . 0 5 )  × 1 0 1 3 T  1/2 e -~'/kT (15a) 

where A= 8.65 K. 18 If we assume the temperature dependence given by 
Eq. (14), then we find 

"gr 1-= (1 .18±0.05)  x 1 0 1 3 T  1/3 e -a /kT  (15b) 

Below 1.2 K the effective roton viscosity decreases rapidly in the 
nonhydrodynamic region, where wr,. > 1 and l,./~ > 1, where l~ is the roton 
mean free path. For rotons l, = rr~7, where z3, is the mean roton velocity 3° 
=(2kT/'rr/z) I/2 [note that Roberts  and Donnelly 2s use the classical ex- 
pression ~r ~ "  (kr/Ix)l/2].,  Since 8 = ('lrfTpn) 1/2 and using Eq. (12) and the 
relation p~ = N~p 2 / 3 k T, we find that I~ 6 = (5 torr / ~r ) 1/2. Thus the normalized 
effective viscosities 71" and 72* should be functions of to~-, 

71" = 71(~oT)/7~; 7 "  = 7e(~O~)/7~ (16) 

where 7~ is the hydrodynamic roton viscosity (WZr<< 1) at the same tem- 
perature. Figure 9 shows a plot of 7* versus wz, for the data in Fig. 8, 
assuming that 7~oc T U6 and that ~'~ is given by Eq. (15b). Note that the 
data for all three frequencies lie on a common curve, within the error  bars. 
An almost identical plot is obtained if we assume that 7r is temperature 
independent and that Zr is given by Eq. (15a). 

Although there are no calculations of the transverse acoustic impedance 
of a roton gas in the nonhydrodynamic region, it is interesting to compare 
our data with some simple expressions. First, we can derive the collisionless 
limit (~oz~ >> 1) from Eq. (10) to find 

Zo~ = Roo = a,p,~r/4 = 1.2 x 10sat e - a / k r  k g  m -2  sec  -1 (17) 

which is independent of frequency and is plotted in Fig. 5 for diffuse 
scattering (ar = 1). The effect of finite to~-~ is to reduce the measured acoustic 
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resistance R below this limit. Second, we can use the theory for a viscoelastic 
liquid, 31 which allows for relaxation effects only by substituting 7 (w z )=  
7 , / ( 1 -  io~z) in Eq. (1) to obtain 

Z ( w z )  = (1 - i)[~rfpnTr/(1 -/to'/')] 1/2 (18) 

which gives 

7"  = (x +~/x)/~o~',; 7"  = (x -x/x) / toz ,  (19) 

where x = w E z ~ / ( l + w : ~ ) .  The viscosity 7"  for a viscoelastic liquid is 
plotted in Fig. 9 and shows a distinctive peak that is not seen in the data. 
Third, we can modify a kinetic theory expression derived by Borovikov and 
Peshkov, 6 which corrects the hydrodynamic impedance for finite values of 
II8: 

(1 - i)( ~If7¢pn) 1/2 
Z(toz) - (20) 

1 + (1  - i)/3l/6 

where 6 = (rlr/~fp,O 1/2, and 13 is a numerical constant. This equation is 
strictly only valid as a correction to the hydrodynamic regime, but if we 
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choose/3 = 2~r/5a~, then it reduces to the correct expressions both in the 
hydrodynamic (~0r<< t) and collisionless (oJr >> 1) regions. In terms of ~/* 
and 7/* it gives 

[_['1 1 +213l/8 "]2 
+ 2 / 3 / / ~ / / 8 ) i J  

~7" = [ 1  + 2131/8-+1 2([31/8) ~] 2 

(21) 

where 1/8 = (5~orr/7r) 1/2. The viscosity r/* from Eq. (21) is plotted in Fig. 
9 (we have assumed ar = 1) and is a reasonable fit to the data. The lines in 
Fig. 8 are the theoretical values given by Eq. (21) assuming that rb oc T 1/6 

and that rr is given by Eq. (15b). The agreement with the measurements 
of ~7~ is good at all temperatures, but the measured values of ~72 increasingly 
deviate from the theory as the temperature increases. We believe this is 
due to the effects of the healing length in He II (see Section 4.3), which 
has a strong influence on X (and hence ~72) but only a small effect on R 
(and hence ~1~)- Although Eq. (21) gives a good account of the roton 
viscosity in the nonhydrodynamic region, a correct theoretical treatment 
would enable a direct determination of rr to be made. 

4.3. The Superfluid Heal ing Length 

The analysis above assumes that the liquid helium that interacts with 
the vibrating crystal is homogeneous and has the same properties as the 
bulk liquid right up to the crystal surface. The viscous wave produced by 
the crystal has a viscous penetration depth 8 = (~//rrfp,) 1/2 that is only 16, 
12, and 10 nm at 20.5, 34.1, and 47.8 MHz, respectively, at the a-point. 
At lower temperatures 8 increases, by a factor of 2.4 at 1.5 K, until the 
nonhydrodynamic region is entered. Any variation in the properties of He II 
over a scale comparable with 8 will have an effect on our measurements. 
In particular, we expect the superfluid fraction to decrease to zero at an 
immersed solid surface. The healing length a(T) is the characteristic 
distance over which the superfluid density ps(x), where x is the distance 
from the wall, reaches its bulk value ps(oo)= p-p, .  A solid wall has two 
main effects. First, the boundary condition for the superfluid order para- 
meter at a plane wall at x =~0 is ~ ( 0 ) =  0. From the Ginzburg-Pitaevskii- 
Mamaladze theory, Gross 32 and Sobyanin 33 have shown that the space 
dependence p,(x) is then given by 

p~(x) = p~(oo) tanh 2 (x/a) (22) 

where a is the healing length, which, on the general principal of scaling, 34 
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is proportional to the phase correlation length £(T). The constant of 
proportionality is not readily calculable from renormalization group 
theory, 34 but on the p_henomenological" Ginzburg-Pitaevskii-Mamaladze 
(GPM) theory 33 a =~/2£(T). Second, van der Waals forces between the 
wall (in our case, the gold electrodes) and the helium atoms produce an 
attractive potential of the form 

U(x)/k  =-dp/x 3 = -1.986/x 3 K (23) 

where k is the Boltzmann constant, x is in nm, and the numerical value 
was measured by Chester and Yang 3s'36 using similar gold-plated quartz 
crystals. This attraction increases the pressure and density of the helium 
near the wall. 36 A layer model is often used in which the first atomic layer 
is though to be solid helium with several statistical layers of liquid helium 
at enhanced pressure and density. For T >  1.7 K the pressure-dependent 
h-line means that the high-pressure helium near the wall may be in the 
normal state. 

The healing length can be defined as that thickness of a completely 
normal liquid helium layer next to the solid wall that would give the same 
excess mass of nonsuperfluid 4He per unit area as observed experimentally. 
Thus the healing length, as measured in various experiments, may have 
contributions from four elements: the phase correlation length, a solid 4He 
layer, a high-pressure normal liquid layer, and a high-pressure superfluid 
layer. 

We can calculate the effects of these phenomena on our experiments 
by defining a local complex transverse acoustic impedance ZL(X), which is 
the impedance that a bulk homogeneous liquid would have with the same 
properties as exist locally at a distance x from the wall. The actual impedance 
at x, Z(x), is found from transmission-line theory. By considering a small 
element of fluid at x it c a n  s h o w n  37'38 that " 

dZ(x) TZL(X)[1 Z2(X) ] [ Z2(x) ] (24) 
d---~ = Z2L(X)j=ip,,(X)W 1 ZZ(x)j  

where 3' is the complex propagation constant for a wave of angular frequency 
o~ in the fluid. For the special case of a local hydrodynamic viscous liquid 
with viscosity 7/(x) and normal fluid density p,(x) Eq. (24) becomes 

dZ(x)/  dx = ipn(x)w + ZZ(x)/ ~7(x) (25) 

This first-order inhomogeneous differential equation is a Riccati equation 
and has no general analytic solution. 3s We have solved it for particular 
functions of ~(x) and p,(x) by numerical integration, using fourth-order 
Runge-Kutta techniques, from the boundary condition at x = 0% Z(o0)= 
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(1--i)(~rfilpn) 1/2, to obtain Z ( x )  and, in particular, the liquid impedance 
seen by the crystal, Z(0). For the special case of a thin homogeneous layer 
(thickness d, normal density PL, impedance ZL) between the crystal and 
bulk liquid (impedance ZB), the incremental change in impedance from ZB 
is 

A Z = -i topLd (1 - Z 2 /ZzL) (26) 

If the layer is a thin film in a vacuum (ZB =0),  then 

A Z  = - k O p L d  = - - iwtr t  (27) 

where OrE is the normal density per unit area of the film and the quartz 
crystal acts as a microbalance 7'8'35 with a frequency shift given by 

A f = --4 f2 trL/ nRq ( 2 8 )  

It can be seen from Eqs. (26) and (27) that the effect of thin (d<< 8) solid 
or liquid layers is primarily to change X and hence produce a frequency 
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Fig. 10. Measurements of A X = X - R  from the data at 34.1 MHz in 
Figs. 5 and 6. The lower line shows the expected behavior from the 
roton theory, Eq. (20), which is valid only below 1.8 K. The extraplo- 
ation of this theory is shown as a dashed line. The upper line shows the 
calculated AX for a superfluid healing length with a =0.10e -2/3 nm 
near Tx. This line has been placed to coincide with the data at the h-point. 



3 2 2  M . J .  L e a ,  P .  F o z o o n i ,  a n d  P.  W .  R e t z  

shift, Eq. (3), in a resonant crystal. Only very close to the h-point  (AT = Ta - 
T < 2 inK) should the healing length exceed 3, when s r diverges as A T -2/3. 
Therefore,  in analyzing our data it is appropriate  to use R (T)  as a reference 
value and to look at the difference AX(T)  = X ( T ) -  R (T),  which is plotted 
in Fig. 10 for the 34.1-MHz data shown in Figs. 4-7. Below 1.5 K, A X < 0  
in the nonhydrodynamic region of the roton viscosity as expressed in Eq. 
(20), which gives the values shown by the line in Fig. 10, tending to a limit 
for oJr~ << 1: 

AX = -2¢r f l f (  lO rlrp/r/ zr) 112 oc - T - 1 / 3  (29) 

This is shown as a dashed line above 1.8 K, where the concept of independent 
rotons is not valid. 

However ,  AX deviates from the roton theory above 1.3 K and increases 
rapidly, becoming positive at 1.55 K and exhibiting a distinct peak below 
Ta. We believe these effects are due to the healing length of He  II  and we 
shall first consider the region close to the h-point.  
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Fig. 11. Measurements of AR*=R(T, , . ) -R(T) IR(T>, )  vs. A T =  
T~ -. T at 20.5, 34.1, and 47.8 MHz. Line a shows the zero-frequency 
limit calculated from the measurements of Bruschi et aL 39 The lines 
b, c, d and e, f, g show the calculated temperature dependences for 
AR* and AX*, respectively, using Eq. (25) for 20.5 MHz (b and 
e), 34.1 MHz (c and f), 47.8 MHz (d and g). 
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Figure 11 shows measurements of the normalised acoustic resistance 
R* =R(T) /R(Tx)  at 20.5, 34.1, and 47.8 MHz just below the A-point for 
A T < 7 . 5  mK. These experiments were done using a chart recorder with 
the A-point as a reference for both Sm and the temperature difference 
AT = T x -  T. The random error in these measurements relative to the 
A-point was ±0.1% in R. Also shown are values of R* derived using Eq. 
(1) from the precise measurements of ~ and pn by Bruschi et al. 39 with a 
vibrating wire viscometer at 1792 Hz. If Eq. (1) were valid, then R* should 
be independent of frequency. But the higher the frequency, the less sharp 
is the change in R* at the A-point. As f increases, the viscous wave samples 
an enhanced normal fluid density as ~ becomes less than the healing length 
a(T). For A T >  50 mK the measurements of R* coincide within experi- 
mental error  at all frequencies, as a(T)/6 << 1 in that region. To analyze 
these data we note that ~/pn and ~ are much less temperature dependent  
than pn or ~7. At 10 mK below T~, p, has decreased by 6.6%, while 8 has 
increased by only 0.7%. We therefore initially assume that ~7(x, T)oc 
pn(x, T) and hence 8 is independent of temperature and position x for the 
data in Fig. 11 and is equal to/~x(f), the value at the A-point given above. 
At any temperature in Fig. 11 the effect of finite frequency is to reduce the 
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Fig. 12. Values of Y, Eq. (30), derived from the data shown in Fig. 11. 
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change in R* and we define a frequency correction factor Y(f, T), where 

Y(f, T)=[1-R*( f ,  T)J/[1-R*(O, T)] = Y(a/6) (30) 

and we use the data of Bruschi et al. 39 to define R*(0, T)= 
[7 (T)pn(T)/7Ap~] 1/2, where 7, and p~ are the viscosity and density at the 
A-point. The values of Y(f, T) obtained from our data are shown in Fig. 
12. As expected, Y tends to zero for AT small (a >> 6, the high-frequency 
limit) and to one for AT large (a<< 6, the low-frequency limit). For the 
special case of a healing length a(T) that is a function of temperature only 
and a penetration depth 3 that is a function of frequency only, then Y(f, T) 
is a function only of the ratio a/6, whose precise form depends on the 
superfluid density profile p, (x/a). [This conclusion was checked by numeri- 
cal integration using Eq. (25)]. We can then deduce the temperature 
dependence of a(T), except for a constant factor, as follows. At Tx and 
frequency f2 (point A in Fig. 12) the measured value of Y(f2, 7"1) corres- 
ponds to an unknown value of a(Tl)=K, say. Then at Tz (point B) we 
have a(T2)= (81/62)K since horizontal lines correspond to constant a/& 
Similarly, at T3 (point C) we find a(T3) = (33/~2)K, while at T4 (point D) 
we have a(T4)= (62/6263)K and so on. By analyzing the data at the three 
frequencies in this way, we derived the values of a(T) shown in Fig. 13, 
which have a temperature dependence close to AT -2/3. 

This critical exponent has been found in a number of experiments 2~ 
and comes from the phase correlation length, which has been given by 
Halperin and Hohenburg 4° as 

~(T)=m2kT/4,n'h2ps; ~ ( T ) = ~ o  e-2/3 for e<< 1 (31) 

where rn is the mass of a 4 He atom, and e = A T~ T~. Near T~, a (T) should 
be proportional to 8 -2/3 as observed experimentally. The absolute values 
of a(T) shown in Fig. 13 were found by scaling the best fit line to a = 
0.10e -2/3 nm, as explained below. 

Having established the temperature dependence of a (T), we can now 
develop the analysis beyond this phenomenological approach by numerically 
integrating Eq. (25)with the superfluid density profile given by Eq. (22), 
and hence 

pn(x) = p --p,(x) = p + [pn (oo) - p] tanh 2 (x/a) (32) 

where the normal density at the crystal pn(O) is put equal to the total density 
p. We also assume that the local viscosity has the same functional form as 
On(X) 

7(x) = 7(0) +[7(oo) - 7(0)] tanh 2 (x/a) (33) 

where 7(00) is the bulk value in the superfluid and ~/(0) is the local viscosity 
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Fig. 13. Values of the superfluid healing length a(T) obtained from 
Fig. 12 as described in the text. The line shows the best fit value 
a = 0.10e -z/3 nm. 

in the normal layer at the crystal surface. Near Ta, the temperature depen- 
dence of p,(oo) and ~7(oo) are taken from the data of Bruschi et al. 39 The 
temperature dependence of ~7(0) is not known below TA, so for these 
calculations we have assumed that ~ ( 0 ) =  ~7~ and is temperature indepen- 
dent. This assumption is probably unrealistic, so we also performed the 
calculations with rt(0) proportional to T and to T 2. The results were almost 
identical close to Tx and the differences at lower temperatures were small. 
We also assumed that a (T)  was proportional to ~(T),  Eq. (31), and, near 
the A-point, a = ao e-2/3. 

Having determined p,,(x) and ~7(x) we integrated Eq. (25) to find Z(0) ,  
the measured impedance, for various values of a0. The results for R*(f ,  T) 
are shown as lines in Fig. 11, with the overall best fit to our data being 
obtained for 

a = (0.10 + 0.01) E - 2 / 3  n m  (34) 

The temperature dependence of X*  is also shown in Fig. 11 and, for 
a/8  > 1, is quite different from the real part of the impedance. We were 
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not able to make such precise measurements of X*  close to TA. However,  
as shown in Fig. 10, a peak was seen in A X = X - R  below Tx whose 
magnitude was proportional to f For A T >  50 mK the real part of the 
normalized impedance R* is essentially equal to the low-frequency limit. 
The calculations of ~ X  at 34.1 MHz, with a =0 .10  nm, are shown in Fig. 
10, using the right-hand scale, where AX = 0 at the A-point. AX increases 
almost discontinuously at T~ to a maximum (proportional to f )  near 2.1 K. 
The value of this jump in ~ X  is proportional to a0 and the good agreement 
with the data confirms that a0 = 0.10 nm as deduced from the measurements 
of R. 

As the temperatur6 decreases, the healing length due to the phase 
correlation length, Eq. (31), becomes very small and is only 0.30 nm at 
1.8 K, less than the thickness of a statistical monolayer of 4He of 0.36 nm. 21 
In this region the influence of the van der Waals forces should predominate. 
Close to the A-point the potential, Eq. (23), might be expected to produce 
a layer of normal liquid of thickness d given by 33 

d = do e-1/3 = 0.29e -1/3 nm (35) 

But Sobyanin 33 has shown that the combined effect of van der Waals forces 
and the phase correlation length is to produce a superfluid density profile 
of the form 

ps(x) = ps(ce) tanh 2 [ ( x -  b)/a] (36) 

where a = ~/2s e and 

b = d2/(a + d) = d~/(ao+ doe 1/3) (37) 

Very close to Ta, as for the data in Fig. 11, b is temperature independent, 
b~  d~/ao=0.84 nm<< a, and has negligible effect on our calculations for 
A T < 7 . 5  inK. Some of this normal layer will be solid 4He, which would 
produce only a temperature-independent  frequency shift, Eq. (28), and not 
be detected in our experiments. Below 2.0 K, b-~ d and the phase corre- 
lationlength can be neglected. The short range of the van der Waals forces 
means that the effect of the enhanced pressure and density near the crystal 
surface is to increase X, but not R, giving a finite value for AX even in 
He I, as seen in Fig. 10. The absolute value of AX above TA is uncertain 
because of the unknown extrapolation of the roton theory, Eq. (29), and 
the possibility of systematic errors in X between 0.5 and 2.2 K. Using the 
theory given by Oestereich and Stenschke, 36 we calculated the density and 
pressure P(x) profiles [P(x)~6 .1 /x  3 bar, where x is in nm] for the van 
der Waals potential in Eq. (23). From our measurements 41 of Z as a function 
of presure in He I we then derived Zi.(x) just above Th. By numerically 
integrating Eq. (24) from the edge of the solid layer we estimated z~X at 
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Ta as 13 kgm-2sec -1 at 34.1 MHz, which is comparable with the value 
found from the data in Fig. 10. In the superfluid state ZL(X) is strongly 
temperature dependent and difficult to estimate. To demonstrate the effects 
of the van der Waals forces we have calculated the impedance change that 
would be produced by a homogeneous viscous layer i nm thick with the 
properties of the bulk liquid at a pressure P between the quartz crystal and 
the He II at SVP. The local acoustic impedance ZL(T) in the layer was 
taken from our measurements of R(T) for bulk 4He at pressures of 6.7, 
13.1, 20.3, and 24.8 bar. 42 The normal fluid density of the layer depends 
only on P and T and was taken from the tabulations by Brooks and 
Donnelly. 18 The results are shown in Fig. 14. Just below 2.176K (Ta at 
SVP) AX increases as ZB decreases, while ZL and PL remain constant and 
the acoustic mismatch factor ( 1 -  Z 2/Z 2) increases. When the layer itself 
becomes superfluid then both ZL and PL decrease, bringing AX down to 
zero at low temperatures. For a layer whose pressure was a smooth function 
of x the sharp transition would be rounded. Below 1.8 K the experimental 
temperature dependence of AX is close to that of a 0.6-nm layer at 24.8 bar 
(or a thicker layer at a lower pressure). However, it must be stressed that 
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the calculations treat  the liquid helium as a continuum on a distance scale 
comparable  with the atomic dimensions of 4He. 

4 . 4 .  B e l o w  0 . 6  K 

At temperatures below 0.6 K the ballistic loss of energy f rom the quartz 
crystal into the roton and phonon gases is negligible and the crystal is in a 
mechanical vacuum of He  II. As expected, Q ( T )  was temperature  indepen- 
dent in this region. But in all our experiments, with three separate crystals, 
the resonant frequency f ( T )  decreased again below 0.5 K, as shown in Fig. 
15 for the third, fifth, and seventh harmonics. The fractional frequency shift 
was very small (Af / f  < 2 × 10 -7) even compared with the effects of viscous 
loading and was the same for all harmonics. Our  initial interpretation I was 
that it was due to the thermal mobilization of a layer of 4He atoms on the 
crystal surface at low temperatures,  giving a frequency shift through the 
microbalance equation (28), 

A f / f = -4 ( f  / n )o( T) / Rq (38) 

where o-(T) is a temperature-dependent  areal mass density. The data below 
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0.6 K are well described by 

or(T) = o-(0)[1 - exp (-19/kT] (39) 

where O = 0.15 + 0.01 K and o-(0) = (6.3 + 0.4) x 10 -8 kg m -2, which is com- 
parable with the areal density of 5.3 x 10 -8 kg m -2 of a statistical monolayer 
of 4He atoms at normal fluid density. In order to confirm that this effect 
was due to 4He, a run was performed with the cell evacuated and the crystal 
thermally anchored through the mounting. The effects in a vacuum (and 
also in low-pressure 3He and 4He gases) were complex and not very 
reproducible. The frequency and O were temperature independent down 
to 0.5 K, but at lower temperatures, particularly near 0.2 K, both positive 
and negative frequency shifts occurred of the same order of magnitude as 
those shown in Fig. 15. These shifts depended on the thermal history of 
the crystal and could be changed by a burst of high power (1 mW) at 4.2 K 
or by thermal cycling. This suggests the effects were associated with the 
surface of the crystal though no helium could be detected in the cell with 
a mass spectrometer. However, since even a submonolayer of 4He selectively 
adsorbed onto the crystal could undergo various transitions, 43 the presence 
of an otherwise undetectable quantity of 4He cannot be ruled out. When 
liquid 4He was subsequently admitted to the cell the results again became 
reproducible. 

The origin of these effects has not yet been determined, but certainly 
these crystals are very sensitive to small amounts of both 4He and 3He. 

5. CONCLUSIONS 

In this paper we have presented measurements of the properties of 
liquid 4He using a quartz resonator immersed in the liquid. In the hydro- 
dynamic region the crystal acts as a high-frequency viscometer and measure- 
ments of the transverse acoustic impedance, particularly the real part, can 
be used to determine the temperature-dependent viscosity rt(T). Below 
1.9 K only the roton viscosity is measured, the contribution from the 
phonons being small. Below 1.2 K the transition from hydrodynamic to 
nonhydrodynamic behavior was observed as I/8 and oJ~ > 1. We point out 
the need for a correct theoretical treatment of the transverse acoustic 
impedance of a roton gas. 

The transverse acoustic impedance is also sensitive to the 
inhomogeneity of the liquid helium produced by the solid crystal surface. 
Measurements close to the A-point give a value for the healing length 
a ( r )  --0.10e -2/3 nm, which has the same temperature dependence as, and 
is comparable in magnitude to, other characteristic lengths determined from 
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measurements  on thin films in confined geometries or of ultrasonic at tenu- 
ation. 21 However,  we believe that our result is a good estimate of the healing 
length produced by the phase correlation length alone since, near T~, ~(T) 
is much larger than the range of the van der Waals forces. Also, the geometry 
in our experiments, a plane solid surface, is ideal. If  we accept that a = x/2~:, 
as on the G P M  theory, then a theoretical value for a0 = 0.038 nm can be 
found from Eq. (31), but as pointed out by Hohenberg  et aL 34 the choice 
of the numerical constant in Eq. (31) is conventional and ~0 may be larger 
by a factor of 47r! 

Between 1.3 and 2.0 K the healing length is dominated by the van der 
Waals forces, which produce enhanced pressure and density within a few 
nanometers  of the crystal surface. This layer increases the imaginary part  
of the transverse acoustic impedance and below 1.8 K is equivalent to a 
thin layer of thickness 0.6 nm at a pressure of 24.8 bar. 

Below 0.6 K the frequency of the crystal resonantors decreased by a 
small amount,  comparable  with the shift produced by the freezing of one 
monolayer  of 4He atoms, but no clear interpretation has been found. 
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