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The properties of liquid helium-4 are investigated in a mean-field approximation 
using a finite-range effective interaction. The long-range part (i.e., r > 2.556 A) 
coincides with the standard Lennard-Jones potential and the hard core is 
phenomenologically renormalized. The model reproduces the static polarizabil- 
ity of bulk liquid, as well as the actual surface energy of helium at zero 
temperature. The surface width is found to be 5.8A. A comparison is made 
with the earlier work of Ebner and Saam. 

1. INTRODUCTION 

The successful use of density-functional methods in the context of 
nuclear physics has renewed the interest in similar studies on liquid helium. 
Various properties of the liquid 3He, 4He, and 4He-3He mixtures have been 
investigated in a number of recent works, and the comparison with ab initio 
calculations, when possible has been found satisfactory. The general 
framework of these studies in the time-dependent Hartree-Fock theory, 
together with the use of effective interactions of Skyrme type, the parameters 
of which are fitted so as to reproduce various properties of the actual system 
under investigation. 

Reference 1 presented a study of surface properties of liquid 3He and 
liquid 4He at zero temperature along the lines mentioned above. Although 
the density profile and the width of the surface was found in good agreement 
with the calculations of large clusters by Pandharipande et al. 2, it was 
pointed out that the average field did not have the correct 1/z 3 asymptotic 
behavior above the surface. This feature has little consequence on the 
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energetics of the clusters because the surface tension is one of the quantities 
used to fix the parameters of the functional and also because the density 
is vanishingly small in this region of space. However, the scattering of free 
atoms by the helium surface is extremely sensitive to the asymptotic behavior 
of the potential well and indeed less sensitive to the surface width, at least 
in the range of incident perpendicular momentum considered in Ref. 3. It 
was concluded in Ref. 1 that the density-functional approach developed in 
that paper could not be used to describe the scattering of free atoms by the 
surface. 

This undesirable feature is due to the zero-range nature of the Skyrme 
interaction, which is also responsible for another shortcoming. The fact that 
the fluid has a characteristic microscopic length, namely, the size of the 
interatomic potential hardcore, is completely ignored. This makes doubtful 
its use in situations where the liquid is perturbed on a microscopic scale, 
close to an impurity for instance. 

The aim of the present paper is to introduce for liquid helium a novel 
density functional with an effective interaction having a correct long-range 
behavior and reasonable short range characteristics and which matches 
actual properties of liquid helium. 

Earlier attempts of this kind exist, with the description of the surface 
density profile as a goal. 4 After the early works of Gross, Regge, Padmore, 
and Cole 5-7 Ebner and Saam 8 developed such an approach introducing a 
nonlocal term in the density functional. They obtained a surprisingly low 
unrenormalized surface tension (0.002 K A-2 the experimental value or = 
0.274 K ~-2)4, which led them to conclude that the zero-point motion of 
the surface is an essential part of the surface energy and to compute it 
through a sophisticated renormalization procedure. In their approach, the 
nonlocal effective interaction was derived from an approximate theory of 
the fluid. 9 Such an approach is indeed well known for classical fluids, 1° for 
which various approximation schemes have been proposed. 

Our approach is much simpler and more empirical: it consists in 
modeling the fluid with a simple effective interaction, provided it is able to 
reproduce actual properties of liquid helium. In some way, the model 
interpolates the known properties of helium in less known situations. Our 
results are different from those of Ref. 8 and lead to different conclusions 
about the origin of the surface tension of helium. 

2. CHOOSING THE FINITE RANGE 
EFFECTIVE INTERACTION 

Let us first briefly recall the structure of the Skyrme interaction. The 
energy density Esky is the sum of three types of components: an attractive 
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term, a density-dependent repulsive term, and a quadratic gradient term 
with a constant coefficient 

Indeed, the presence of the gradient term implies that the interaction is not 
really zero-range. In the density functional theory for classical fluids, 1° it 
corresponds to a gradient expansion limited to quadratic terms, giving a 
Van der Waals theory of the interface. For a quantum fluid, one must add 
to fsky an inhomogeneity correction to the quantum kinetic energy density 

Eq= d~r~m IVq~I2 (2) 

where ~b(r)=~/p(r). The equation of state of the liquid and the surface 
tension are correctly reproduced with the set of parameters 

b = -8 .8 8 8 1  x 102 K ~  3 (3a) 

c = 1.04554 x 10 v K .~3(1+~) (3b) 

d = 2.383 x 103 K ~5 (3c) 

3,=2.8 (3d) 

The density is obtained by minimizing the grand potential 

~-~ = G -6- ESky - - / zN (4) 

(/x is the chemical potential, N the number of particles; the integral is taken 
over a fixed volume, and only zero temperature is considered). This gives 
the equation 

h 2 
2 m h 6 +  Usky(r)~b = p,~b (5a) 

where Usky(r) is the mean field 

Usky(r) = bp + ( l +2) cP'+V - 2dA p (5b) 

From Eq. (5a) it is clear that the density decays exponentially above the 
surface. Hence, through self-consistency, the mean field (5b) has the same 
exponential behavior and cannot follow a power law. 

There are many ways to construct a finite range effective interaction. 
For instance, one can replace the gradients Vp in the Skyrme interaction 
by finite differences (p(r)-p(r ' ) ) ,  weighted by an appropriate function. 
This is the way followed by Ebner and Saam in Ref. 8, where they relate 
the weighting function to statistical functions of the fluid using reasonable 
assumptions. 
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We take here a simpler, but in some sense more radical, point of view. 
We discard from the functional any term with a zero range. More precisely, 
the energy is now written as 

E= Eq + Eb + E~ (6) 

where Eb and E~ are the nonlocal generalizations of  the contributions of 
bp2/2 and cp2+~'/2 to  Esky. E b is now taken as a two-body interaction term 

Eb =~ d3rd3r'p(r)p(r')V~(Ir-r'l) (7) 

It is indeed natural to take for V~ the standard Lennard-Jones potential 
describing the He -He  interaction (e = 10.22 K, ~ = 2.556 ~),11, screened in 
a simple way at distances shorter than a characteristic distance h 

V t ( I r - r ' l )=ae  ~ \l~_r,i/ j f o r l r - r ' l ~>h  (8a) 

Vt(Ir-r '[) = V~(h) for [ r - r '  I < h (8b) 

The parameters h is adjusted so that the space integral of Vt is equal to b 

h = 2.377 A (9) 

Hence for smoothly varying densities, the expression (7) is equal to the 
contribution of  the first term of  the rhs of (1) to Esky, but the shape of  the 
two-body interaction at long distance as well as at short distance is more 
realistic. The shape of  the screened core potential (8b) has been arbitrarily 
taken as a power law. The choice of the fourth power is not critical and is 
justified below. 

For the second term, E~, we use a prescription similar to the "weighted 
density approximation" introduced in the studies of  classical fluids by 
Tarazona 12 

Ec= f d3r2P(r)(/sr)l+~' (10a)  

where/5, is the "coarse grained density," defined by averaging p(r) over a 
sphere with a radius h 

fir= f da r p(r)Hh(r-r ') (10b) 

*Better potentials are available (for instance, Ref. 11 or Ref. 15). However this choice is not 
as critical as for ab initio methods, because the effective potential will be tuned to reproduce 
actual properties of helium. However, exponential potentials are not appropriate as discussed 
in See. 5, 
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with 

3 
nh (r) - 4~rh3, for r < h (10c) 

l-[h(r) =0,  for r >  h 

The term E~ is always positive, and accounts for the internal kinetic 
energy as well as for the increasing contribution of the hard core when the 
density is increased. When fir is expressed in terms of p(r) through (10b), 
it appears clearly that (10a) describes many-body correlations with a range 
of the order of h. 

The energy of the inhomogeneous liquid now reads 

E = f d3r ~( r )  ( l l a )  
3 

where 

2 1 
~(r)=~mlVdpl2+~ f d3r'p(r)p(r')Vl(Ir-r'l)+2P(r)(~r)l+r ( l lb )  

It is a mean-field description of the fluid, incorporating finite-range 
interactions with a correct long-range behavior and incorporating correla- 
tion effects in a phenomenological way. There is no adjustable parameter 
left. Although some choices may appear arbitrary, they meet several essential 
requirements. First, the equation of state of bulk helium is correctly 
described over a wide range of densities by keeping the proved values of 
b, c, and y. Second, we will show now that the density-density response 
function of the model fluid is very close to that of real helium around the 
equilibrium density po, for wavevectors going from 0 to 4/~-1. 

3. LINEAR RESPONSE THEORY 

The state of the fluid in an external time dependent potential ~Fext(r , t) 
is determined through the time-dependent Hartree theory. The wavefunction 
~b(r, t) satisfies a nonlinear Schr/~dinger equation obtained by minimizing 
with respect to ~b* the action 

A = ~(t) dt (12a) 
tO 

with 
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In Eq. (12b), E depends on ~b* through p = ~b*&. One readily obtains the 
equation 

ih OC~= h 2 Ot -~-m A~b+ U(r, t)~b +(Y'~xt(r, t)-/z)~b (13) 

where U(r, t) is a mean field equal to the functional derivative of the 
effective potential energy with respect to p(r, t) 

U(r, t) = J d3r'p(r ', t) V~(Ir-r'l) 

C _ + C 
+~(p , ) r  ' + ~ ( l + y )  f d3r'l-Ih(lr--r'l)p(rl)(~,,) r (14) 

For a stationary uniform density, Eq. (13) gives the relation between 
the chemical potential # and the density p 

bp+( l+2)cp '+l=tz  (15a) 

as well as the pressure p 

and the equilibrium density at zero pressure 
- b  11/~ 

po= Lc( l+y) j  (15c) 

The linear response of the system to the perturbation Text is easily 
obtained by linearizing Eq. (13) around the equilibrium density po. Taking 
d~o = v~po+ 6dA p = po + 6p and using (15c), one obtains to first order in &b, 
~p =x/-P-~o(&b + 8d,*) and ~'o~t 

a6~ h 2 
ih ot = - ~ m  Aa~b+~°7/'~xt(r' t) 

+~oo f [ Vt(Ir-r'])+V¢(Jr-r'}, po)] d 3r' ~p(r', t) (16a) 
d 

where 

c 
Vc(Ir-r'l, [p]) =~  (1 + y)(fi~ + ~,)IIh(r-r ')+£2 y(1 + y) 

X f d3rl I I h ( r - - r O I I h ( r - r ' ) p ( r O ( ~ r ~ )  ~-1 (16b) 

The last integral on the rhs of Eq. (16a) results from the first-order departure 
of U(r, t) from the bulk static mean field. A Fourier transform brings Eq. 
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(16a) into an algebraic  equat ion.  We denote  f ( q ,  o~) the Four ier  t r ans fo rm 
o f f ( r ,  t), def ined accord ing  to 

o)= j f ( r ,  t) e -~(q''-~'') d 3 r d t  (17) /(q, 

The dens i ty -dens i ty  response  funct ion 

x(q,  oJ)=  ~P(q'  ~o) 
~x t (q ,  ~o) (18) 

is found  to be  given by  the express ion 

moo 2 h 2 q 2 ,, ,, 
V~(q) - c(1 + T)p~l-[h(q) X- l (q ,  co) = poq2 4 m p o  

- - - -  ^ 2  c T(1 + T ) p J I ' I h ( q )  (19) 
2 

One verifies tha t  the response  o f  the fluid for  large m o m e n t a  goes to that  
o f  the free particles.  In  the  fol lowing,  we are essential ly interested in static 
proper t ies  o f  the fluid ob ta ined  by  letting ~o go to zero in (19). Figure  1 
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Fig. 1. Calculated static polarizability of helium (solid line). The experi- 
mental points are those of Cowley and Woodsfl 3 The dashed line is obtained 
using an exponential potential instead of the Lennard-Jones as explained 
in Sec. 5. 
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represents the compar i son  o f  X-l(q,  to = 0) with the measurements  o f  Cowley  
and  W o o d s )  3 The agreement  is satisfactory. 

It is wor th  point ing out  that  the response X-l(q,  0) depends  only  slightly 
on the power  used to define Vt in the interval r = 0 to r = h. The four th  
power  used gives a slightly better agreement  than lower powers  near  the 
min imum about  q = 2 /~ - ] .  On  the other  hand,  higher  powers  do not  make 
much  difference. 

At this stage, it appears  that a simple dens i ty- funct ional  descript ion 
o f  l iquid hel ium exists that  reproduces  the correct  static response funct ion 
for  the fluid (a round  its equil ibrium density),  the pressure-dens i ty  relation 
(over a wide range o f  pressure and at zero temperature) ,  using a two-body  
effective interaction which is correct  at long distance and reasonable  at 
short  distance. To our  knowledge,  such a result was not  yet clearly estab- 
lished. ~4'* It is indeed essential to have such a descript ion to deal with 
inhomogeneous  situations where the density may  vary on a small scale. It 
is also clear that  we have not  treated precisely correlations between atoms 
at short  distances. Processes such as ordering are not  evidently at hand.  

I 

A 

v 

t- 
(o 

1.0 
O q. 
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Fig. 2. Calculated radial density profile around a helium atom with infinite 
mass. The dashed line represents the radial distribution of real helium. ~7 

*Let us mention nevertheless the work of Ref. 14, in which the linear response function is 
modeled directly, without specifying an explicit Hamiltonian for the fluid. 
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In order to test the ability of our model fluid to behave like liquid 
helium, even outside the linear response regime, we solved Eq. (13) taking 
for "Vext the He-He potential. 15 This gives the density distribution around 
a fictitious helium atom with infinite mass. 16'* We expect to obtain a radial 
density profile close to the radial distribution function g (r) of liquid helium. 
The result is shown in Fig. 2, together with g(r). 17 The profiles are very 
similar. In particular, the model reproduces the oscillations of g(r). They 
are more pronounced than in real helium. Note however that neither the 
symmetrization principle nor the zero-point motion of the fictitious helium 
atom producing the potential have been taken into account. 

4. THE FREE SURFACE 

We now turn to the problem of determining the surface tension and 
profile of the free surface. It corresponds to solving Eq. (13) in its static 
form (O~b/Ot=O) and without external field (T'e~t=0) for the specific 
geometry we are interested in: the interface is taken as flat, parallel to the 
x-y plane, the liquid being in the region of negative z. The convolution 
integral appearing in the mean field U(r) of Eq. (14) can be performed 
analytically over the variables x and y. Equation (13) then reads as 

h 2 d2¢(z) 
- -  + U(z)¢(z) = ~ ¢ ( z )  (20) 2m dz 2 

where the self-consistent field U(z) is given by 

U(z) =4"rrea 2 +h p(z') dz' \-5 \ ~ -  z'] -2 ,1 \~-  z'] 

f ? ~ f f  8 0 / 6 5  1 0/6 + 4~-ea 2 p(z ' )dz ' ( ( -~ (~)  - - ~ ) - - ~ ( ( ~ ) - I ) ( Z - ~ ) 6 )  

Z - - Z  C + t - T - 1 7 +~-~(1+71 dz' 1-  --h-- o(z)(pz,) +-~(pz) (21) 
d z - - h  

Note that for large and positive values of z, p(z)~-O and only the third 
term of Eq. (21) is nonzero. The mean field is 

2,n-e0/6po 
U(z) = 3z 3 (22) 

It has the correct asymptotic behavior. 

*This is a usual way of computing g(r) for classical fluids. 
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Equation (20) is solved using the "imaginary time-step method," well 
suited for the numerical determination of a ground state. Given an arbitrary 
wavefunction ~0, applying the evolution operator exp(-(i/h)Ht) for an 
imaginary time t = - ihr gives for large r 

lirno~ e-~]~o)-  e-Eo~l~po) (23) 

where Eo and 1@o) denote the energy and the wavefunction of the ground 
state we are looking for. The algorithm is thus the following. We start with 
an initial guess [~p(o)). One chooses a time step Ar and iterates the recusion 
relation 

? [q~(.+l)) = e-.a~lq~(.)) ___ \ 1 

The ground-state energy Eo is the limit of the series of numbers En, defined 
as 

E n (~°(n)lHl~p(n)) ~'~/1 (q~(~)l~°(~+l))'~ (25) 

The time step Az is related to the mesh in r space. One can show that 
Az should be smaller than the inverse of the largest eigenvalue of the 
discretized Hamiltonian. By considering the kinetic operator only, one gets 
the upper limit 

(Ax) 2 2m 
AT"sup 4 fi2 (26) 

where Ax is the discretization interval. A value of Az-~ 0.05AZsup gives a 
good convergence. 

The above procedure solves Eq. (20) for a given potential U(z). We 
have yet to ensure self-consistency. This is done, as usual, by another cycle 
of iterations: start with a trial density, calculate the field U(z), solve for 
q~(z) as described above, calculate the new U(z) etc. 

The surface energy is 1 

o" = J dz(Yg(p) -lzp) (27) 

/ o  

and is found to be equal to 

o- = 0.277 K A -2 (28) 

Remarkably, this is in excellent agreement with the value quoted in section 
1 for the measured surface tension of helium extrapolated at zero tem- 
perature. 4 The density profile and the mean field U(z) is shown in Fig. 3. 
The thickness tlo_9o is 5.8/~. 
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Fig. 3. The calculated density profile atthe free surface andthe corresponding 
mean field. 

The value (28) is not very sensitive to details of the model used for 
the fluid, provided that it meets the criteria enumerated at the end of  Sec. 
2. For instance, changing from 1 to 10 the power law of  the two-body 
effective potential between 0 and h changes the value of  cr by only +1%. 
The weighting function (10c) can be replaced by a gaussian distribution 
(such that its Fourier transform matches fIh(q) to reproduce (19): the 
appropriate width is 1.07 A). We have tested also other types of  effective 
potentials, physically less sensible (having for instance an attractive 6- 
function part at zero range) but also giving the right response function. We 
also got a value for cr close to the experimental one. Hence, it is felt that 
the value of the surface tension follows necessarily from three properties 
of  bulk liquid: the equation of state, the density-density response function, 
and the Van der Waals nature of the two-body interaction. 

From this result, one can get hints about the origin of  the surface 
energy of  liquid helium. The contribution of  the quantum kinetic energy 
Eq to o" is found to be only 6%. The essential part of or comes from the 
contribution of Eb+ Ec - /xN .  More precisely, we have plotted in Fig. 4 
~ ( p )  - /xp  as a function of z, as well as h21V ~bI2/2m, which is the contribution 
to the quantum kinetic energy associated with the surface. Whereas the 
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Fig. 4. Free energy density ~g[p]-tzp (dashed line) and quantum 
kinetic energy density h21~Tq~[2/2m (solid line) in K A -3, as a function 
of z. Dotted line: p(z) in A -3. 

quantum energy is indeed located near the steepest part of  the density 
profile, the main contribution to the surface energy is located inside the 
fluid and decays only slowly with the distance from the interface as 1/z  3. 
This is quite analogous to the situation in classical Van der Waals fluids: 
the surface energy originates essentially from the lack of  Van der Waals 
attraction due to the missing half-space of liquid above the surface. 

5. C O M P A R I S O N  WITH PREVIOUS WORKS 

The comparison with the calculations of  Stringari and Treiner is 
straightforward. The same equation of state for bulk helium is used here, 
so that the only difference is the replacement of  the Skyrme interaction by 
a finite-range potential. The surface thickness obtained in the present work 
is slightly smaller than was found in Ref. 1:5.8 .A. rather than 7 A. The 
difference in the profiles lies essentially in the outward region of space, 
which shows larger gradients with the finite-range interaction than with a 
zero-range one. The latter appears,  so to speak, to be more rigid. Indeed, 
in k-space, a Skyrme interaction has a kLdependence  unrealistically large 



Inhomogeneous Liquid 4He 43 

for large k's, whereas the Fourier transform of a finite range interaction 
obviously goes to zero. If  one thinks of a development in powers of k, the 
k 2-component generating the I Vpl 2 term in the density functional is repulsive 
and opposes large gradients; on the contrary, the ka-components, generating 
higher order derivatives, would be attractive. 

The comparison with the work of Ebner and Saam is not so simple, 
because their values of the energy density of the fluid e ( p )  as well as the 
effective interaction are determined indirectly through the theory of Mihara 
and Puff from the bare interatomic potential. For this last quantity, they 
have taken an exponential potential: 

V ( r )  = Eo  a ( e - r / "  - 3' e-C~r/a) (29) 
r 

with Eo = 8.95 x 105 K, 3' = 0.2560, /3 = 0.8000, and a = 0.376/~, which is 
similar to the Lennard-Jones only in the well region. In particular, the 1 / r  6 

long-range tail is missing in this potential. In order to evaluate the con- 
sequences of such a choice, one can either repeat the Ebner-Saam procedure 
with the Lennard-Jones potential or repeat our calculations with the 
exponential potential of Eq. (29) in place of the Lennard-Jones potential. 
In fact, Ebner and Saam avoided the Lennard-Jones potential because it 
brings computational difficulties, so that the second method of comparison 
is much more simple. The appropriate value for h is then 2.40 A. The 
response function is shown in Fig. 1 (dashed line). It is clearly not so good 
and the corresponding value of cr is only 0.19 K A-2. Hence, we are led to 
suspect that the use of  the potential (29) tends to lower significantly the 
value of the bare surface energy of Ref. 8. It would be of interest to reconsider 
the approach of Ebner and Saam, which is, in some way, more fundamental 
than ours, with a more appropriate interatomic potential. 

6. CONCLUSIONS 

It appears possible to describe liquid helium by a density functional 
based on a nonlocal interaction having a correct 1 / r  6 behavior on the long 
range and a simple short-range shape. The effective interaction build on 
this prescription gives a correct response function in the bulk and the right 
surface tension. This modelization of helium is likely to be a useful tool to 
extrapolate actual properties of helium over a wide range of conditions, 
even on nearly microscopic scale. It could be used to study several interesting 
problems such as surface states of  3He atoms, scattering of 3He or 4He 
atoms by the surface, clusters, thin films, and atomic impurities in liquid 
helium. 
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