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We calculate the rate at which bubbles nucleate in 4He when the liquid is at 
negative pressure. Previous calculations have predicted that at low temperatures 
(T-<0.3 K) the nucleation rate remains low until a pressure of  roughly - 1 5  
bar is reached. We show that this result is incorrect, and that at a critical 
pressure Pc (~- - 9  bar) the liquid becomes macroscopically unstable. We have 
made a calculation of  the nucleation rate allowing for this effect. It is shown 
that the effect of  quantum nucleation is small and probably hard to observe 
experimentally. Finally, we demonstrate that one can understand the pressure 
dependence of  the phonon dispersion relation by a simple model. This model 
uses a parameter which also enters into the nucleation calculation. 

1. I N T R O D U C T I O N  

In this paper  we discuss the physical properties of  liquid helium at 
low temperatures and negative pressures. This work was stimulated by the 
experimental  and theoretical investigations that have been made of  the 
nucleation of  bubbles in helium under tension (for a review of cavitation 
in quantum liquids, see Ref. 1). In general, one expects that the nucleation 
rate F (per unit volume and time) is a very rapidly increasing function of 
the tension applied to the liquid. Consequently, in any particular experiment 
which studies a certain volume V of liquid for a length of time ~-, one can 
determine a fairly definite negative pressure P, at which bubbles first 
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nucleate. The nucleation rate at P. must be such that there is an appreciable 
probabili ty that a bubble will nucleate in V in time ~-. Thus 

r ( e . ) w - -  1 (1) 

When only homogeneous nucleation is considered, previous calculations 
of  F have predicted that a large negative pressure is required to produce 
nucleation. 2 For example, if V is 10 .3 cm 3 and ~" is 10 -5 sec, P, should be 
- 6  bar at 2 K and - 1 7  bar  at 0 K. (We describe these calculations in the 
next section.) In most experimental studies, nucleation has been found to 
occur at much smaller negative pressures. 1'3 This discrepancy has been 
explained in terms of heterogeneous nucleation at electron bubbles or 
vortices. Very recently, careful measurements by Nissen et aL 4 in the tem- 
perature range 1.6 K to the lambda point have given much larger values of  
P, ,  and the values are in reasonable agreement with the predictions of  the 
homogeneous nucleation theory. In these experiments a very small volume 
is studied, which greatly reduces the chance of heterogeneous nucleation. 

I f  heterogeneous nucleation can indeed be avoided, it should be poss- 
ible to study the homogeneous nucleation rate over a wide range of tem- 
perature. Of  particular interest would be the rate at very low temperature 
(below 20.3 K) where the nucleation has been predicted to proceed via 
quantum tunneling, rather than thermal activation. In this paper  we 
reexamine the theory of homogeneous nucleation in helium. We find that 
the earlier theories are incorrect in that they take no account of  the equation 
of  state of  liquid helium in the negative pressure regime. For example, we 
determine that liquid helium-4 becomes macroseopieally unstable before a 
negative pressure of  - 1 0  bar  is reached. Thus there is no possibility that P, 
can rise at low temperatures to a value as large as - 1 7  bar, as predicted by 
Akulichev and Bulanov. 2 In the next section, we give a brief review of 
previous theories, and in Sec. 3 we make an estimate of  the equation of 
state for negative pressures. The calculation of the nucleation rates is in 
Sec. 4. Finally, in Sec. 5 we show that the behavior of  the liquid at negative 
pressures gives an interesting insight into the seemingly unrelated 
phenomenon of anomalous phonon dispersion. 

2. NUCLEATION THEORY 

The standard theory of the nucleation of bubbles 2'3 proceeds as follows. 
To form a bubble of  radius R in the liquid requires a free energy 

F(  R ) = 47rR2o~ - 4 ~ R 3 1 p  I (2) 

where a is the liquid-gas surface free energy and IPI is the magnitude of 
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the (negative) applied pressure. There is thus an energy barrier 

16~Ot 3 
A F =  31pi---- 5- (3) 

which occurs at a radius Ro given by 

2a 
Ro =~-~ (4) 

The rate of  nucleation by thermal activation over this barrier is thus 

F, = F ° e x p ( - 1 6 ~ a 3 / I p I 2 k T )  (5) 

where F ° is the attempt frequency. To calculate the rate of  nucleation by 
quantum tunneling in the WKB approximation, one has to evaluate the 
integral 

fo ~' dR (6) I = ( 2 m * F / h 2 )  1/2 

where R1 is the radius at which F becomes zero. From (2) 

g l  = 3 a / l P [  (7) 

where m* is the effective mass. Lifshitz and Kagan 5 show that 

m* = 4"rrR3p (8) 

where p is the density of the liquid.* Then 

1357r261/2pl/2a 4 
I - 32h[p[7/2 (9) 

and the nucleation rate is 

F o = F~ e x p ( - 2 I )  (-10) 

where F~ is a prefactor. 
The prefactors F ° and F~ are discussed in Refs. 2, 3, and 5. We have 

used the results given in Ref. 2 to find the total nucleation rate (we used 
the surface energy measured by Eckardt et al.6). We then calculated the 
pressure Pn at which nucleation will occur for three different values of  Vr 
( V = volume, r = duration of  experiment). The result is shown in Fig. 1. 

In this calculation there are several assumptions. There are, for example, 
uncertainties about the prefactors and the possible effect of dissipation on 
the nucleation rate. In addition, it is important to recognize that the formulas 
for the barrier AF for classical nucleation and the WKB integral I are not 

*The density of the gas is considered to be negligible. 
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Fig. 1. Calculated pressure at which nucleation of bubbles occurs as a function of 
temperature. The three curves are for different values of the product V~" (V= 
experimental volume, ~" = duration of experiment). Calculation is based on Eqs. (5) 
and (10) using prefactors given in Ref. 2. 

o f  complete ly  general validity. For  example,  the derivation o f  A F  is based 
on the assumpt ion  that  nuclea t ion proceeds via the format ion and growth 
of  an "'ideal bubble ,"  i.e., a spherical volume containing a region of  essen- 
tially zero density (gas). This assumpt ion  is not necessarily true; it may  be 
energetically favorable for the "bubb le"  to contain hel ium at a density 
intermediate between the liquid and gas densities since this lowers the 
surface energy. To consider  such possibilities, we first estimate the properties 
o f  liquid hel ium under  condit ions of  negative pressure. 

3. E Q U A T I O N  O F  S T A T E  F O R  N E G A T I V E  P R E S S U R E  

For positive pressures the most  accurate data  that relate to the equat ion 
o f  state are the sound  velocity measurements  o f  Abraham et  aL 7 They 
measured  for T < 0 . 1  K the quanti ty 

Ac(P)  = c ( P )  - c(O) (11) 

where c ( P )  is the sound velocity at pressure P, for 39 values o f  pressure in 
the range up to t h e  freezing pressure. They then used an earlier estimate 
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of  c(0) by Whitney and Chase 8 to calculate values of  c(P)  itself. The 
fractional uncertainty in c(0) is estimated to be +4 x 1 0 - 4 ;  random errors 
in c(P)  are roughly +3 x 10 -5. From c(P)  one can obtain the equation of 
state from the relations 

p ( p ) = p ( O ) +  Io P dP  
c2(p ) (12) 

, [ " P ( p ' ) ~  , 

E (p ) = E (po)-t- Jo --p-z-- ao (13) 

where E ( p )  is the energy per unit mass. Thus, to find the equation of  state 
for negative P, it is sufficient to estimate c(P) .  

To do this we have used several methods, and the results are summarized 
in Fig. 2. In Fig. 2a we show the results of  least squares fits of  the form 

c( P)  = ao+ a~P +.  • • + amP" (14) 

with m -- 2 to 7. Because there are many points near to P -- 0, we weighted 
each point by the spacing to its neighbors. The series of  fits converges very 
slowly and suggests that there may be some form of singularity for negative 
pressure. To investigate this further, we have also fit the data to Pad6 
approximations of  the form* 

Ao+ A1P +" " "+AMP m 
c(P)  - (15) 

I + B ~ P + .  • . + BmP m 

with m = 1 to 3 (Fig. 2b). These fits again suggest that some sort of  singularity 
occurs for negative pressure, i.e., they suggest that at pressure Pc (Pc < O) 
c goes to zero, possibly as 

c ( p ) o c ( p -  P)~ (16) 

where ~, < 1. To unders tand  why such behavior should occur, consider the 
dependence of the energy E per unit mass on the molar  volume V. We 
expect this to look qualitatively similar to a plot of  interatomic potential 
versus atomic separation, i.e., as sketched in Fig. 3. Thus, for some V = Vc 
there is an inflection point (assuming for the moment  that E is an analytic 
function of V) at which d E / d V  has a maximum value. Hence, at Vc the 
pressure reaches a minimum value Pc and the bulk modulus B becomes 
zero. Thus, near Vc 

B~: V c -  V (17) 

P - P c o C ( V c  - V) 2 (18) 

• This is an estimate based on  the error  in the time delay and on the point  to point  fluctuations 
in the fit o f  the data to a smoo th  curve (see Fig. 2b or  Ref. 8). 
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Fig. 2. Fits to sound  velocity as a funct ion of  pressure.  X 
denotes experimental  data of  Abraham et  al. 7 (A) Poly- 
nomial  fits (Eq. (14)) for m = 1 to 7. These form a monoton ic  
sequence. (B) Pad~ approximant  fits of  c to P (Eq. (15)) 
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rn = 1,2,3.  
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Fig. 3. Qualitative form of the energy as a 
function of volume. V c is the volume at which 
the pressure has its maximum negative values. 

ENERGY 

VOLUME 

Thus,  since the densi ty  remains  finite 

coc( V~- V) '/~ 

oc ( P -  Pc) 1/4 (19) 

This suggests that  we could  make a bet ter  fit to the data  using 

c4(p ) = C4(0){ Co~- C1P +" " " + CmPml :+ j (20) 

This is shown in Fig. 2c for m = 1 to 3. For  m = 2 the value of  Pc is -8 .87  bar,  
and  for m = 3 it is -8 .37  bar. The rms devia t ion of the data from the fit 

decreases by a factor of  15 going from m = 1 to m = 2, bu t  by only  45% on 

going from m = 2 to m = 3. Thus,  we will use Eq. (20) with m = 2 as our  
est imate of  c(P)  for P < 0. The values of the parameters  in the fit are (in 
cgs uni ts) :  

Co = 1.000624 

C1 = 1.626051 × 10 -7 D1 = 2.30240 × 10 -s 

C2 = 5.617522 x 1 0  -15  D 2 = -6 .27846 x 1 0  -17  (21) 

The value of Vc is f ound  to be 36.3 cm 3 mole -1. 
The sound  velocity in 3He has also been  measured  as a func t ion  of 

pressure 9 bu t  the data are no t  as accurate. We have made  several fits to the 

data  and  it appears  that  Pc lies between - 2  and  - 4  bar. 

For  he l ium-4 we have tried to examine  the assumpt ion  that E has a 
s imple inflect ion point ,  i,e., the form near  Vc 

E ( V ) ~ - E ( V c ) + ( V -  V c ) E ~ + ( V ~ -  V)3E3 + . . .  (22) 

where E1 and  E 3 a r e  constants .  If  the cubic term is replaced by a factor 
( V~ - V) ~ with 7 > 2 one  finds that near  Pc 

c o C ( P - P c )  ~ (23) 
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Fig. 4. Equation of state of  liquid helium as estimated by the method described 
in the text. 
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with v = ( y / 2 - 1 ) / ( y  - 1). To try to determine v f rom the experimental  data  
we use a me thod  described by Baker. 1° We make a Pad6 fit o f  the form 

d log e ( P )  C o + t i P + "  • "+c,,,P r~ 
- ( 2 4 )  

dP 1 + d~P +.  • .droP" 

This will have a pole at Pc and the residue at the pole is the exponent  v. 
For  r n = l  we find Pc = -9 .49  bar  and v = 0 . 3 3 1 ;  for m = 2  the values are 
Pc = - 9 . 2 4  bar  and ~, = 0.312. The sum of  the squares o f  the errors changes 
by only 0.03% on going f rom m = 1 to 2. These fits are thus in reasonable  
agreement  with the earlier estimate (8.87 bar) for Pc. The value o f  ~, differs 
apprec iably  f rom 1/4. I f  v is actually 0.312, then the exponent  y in the 
energy must  be 3.66 instead o f  3. It is not  clear whether  these differences 
are significant, and we are not  aware o f  any theory  of  nonanaly t ic  terms in 
the energy of  a quan tum system at low temperatures  near to an instability 
point.  

Finally, we construct  a simple model  for the equat ion o f  state for 
V >  Vc. To do this we use a method  similar to that  employed  by Ebner  and 
Saam. 11 We consider  the energy per unit volume f as a funct ion o f  the mass 
density p, and  approximate  this by a power  series 

f = a p 2 +  Bp3+ Cp4q - Dp  5 (25) 

Cons tan t  and linear terms do not  appear  because the energy density and 
chemical  potential  should  vanish for p = 0. We then fix the constants  A, B, 
C, and D by the requirement  that f and its first three derivatives be 
cont inuous  at the critical density pc (pc = 4.00260/V~ = 0.11031 g.cm 3). This 
gives (in cgs units) 

A =  -2 .6323 × 10 9 (26a) 

B = 3.18040× 1010 (26b) 

C = -2 .67989 x 1011 (26c) 

D =  8.69650 × 1011 (26d) 

The results for  the energy per a tom and the pressure are shown in Fig. 4. 

4. N U C L E A T I O N  T H E O R Y  R E V I S I T E D  

The s tandard  theory  o f  nucleat ion described in Sec. 2 predicts that  at 
low T, nucleat ion does not  occur  until pressures in the range - 1 5  to - 1 7  bar  
are reached.  However ,  our  estimate o f  the equat ion o f  state predicts that  
the liquid becomes  unstable at a pressure o f  - 9  bar. It is clear that  the 
simple theory  o f  nucleat ion must  be incorrect  and that the nucleat ion rate 
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has to become very large as Pc is approached.  In this section we will calculate 
how this happens.  

The theory of nucleation processes at low temperatures has been 
discussed by Lifshitz and Kagan. 5 Let f (p )  be the free energy density per 
unit volume when the system has a uniform density p. They assume that in 
a nonuniform system, the total free energy can be approximated by 

F{p} = j dV[f (p)  + A (Vp) 2] (27) 

where A is a constant. Let p~ be the density in the initial metastable liquid. 
Then the change in free energy relative to this state can be written 

aF{p} = [ dvE,~(p, pl)+ a(vp) 2] (28) 
3 

where 

(/) (P, Pl) = f ( P )  -- f(Pl) -- (P -- Pl)f'(Pl) (29) 

The inclusion of the last term in Eq. (29) means that one can calculate 6F 
from (28) without having to take account of  the condition 

f ( P - p l )  dV=O (30) 

We can imagine that initially the system is in the state of  uniform density 
pl.  The density distribution {p(r)} is then changed in a continuous way 
until a state is reached in which 6F is negative. It is clear from (28) that 
the first change in the density from the uniform state must give a positive 
6F. Thus, before 6F < 0 is reached 6F will pass through a maximum value 
•Fma x. One can now imagine considering all possible ways of going from 
the uniform state to a state with 6F < 0. Each way will have some value for 
8F,,,ax, and there will be a minimum value for this quantity which we call 
6Fmi . . . .  . This quantity is the nucleation barrier AF. 

In the "s tandard"  theory of nucleation, one assumes that the density 
distribution p(r)  at the saddle point (where the free energy is 6Fmi . . . .  ) has 
the form of a bubble of  radius Ro (see Eq. (4)) with a thin wall, i.e., wall 
thickness << Ro. The interior of  the bubble has density zero, and the profile 
of  the wall is the same as that of  a planar interface. Given these assumptions 
the nucleation barrier calculated from Eq. (28) agrees with the result (3) 
given earlier. It is clear, however, that this result is not general. It is a good 
approximation when the negative pressure is small so that the radius Ro is 
very large. I f  the pressure is sufficiently large, the radius of  the bubble at 
the saddle point configuration will become comparable to the thickness of  
the bubble wall and the standard theory for AF (Eq. (3)) will not apply. 
(Note, however, the comments  we make on this point in what follows). 
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4.1. Nucleation near to the Critical Pressure 

Lifshitz and Kagan 5 (LK) have calculated AF (i.e., 6Fmi . . . .  ) in the 
limit of  pressures very close to the instability point Pc. In this range we can 
expand ~b(p, Pl) as a power  series in which the first two nonzero terms are 

~b(p ,  p l ) ~ l  ,, 2 1 ,,, 3 = ~ f  (P l ) (P-Pa)  + g f  ( P , ) ( P - P l )  

=kf"'(Pc)[ 3(Pl - Pc ) (P-  P,)2 + ( p -  Px) 3] (31) 

where Pc is the density at pressure Pc. LK showed that in this limit the size 
of  the critical nucleus is of  the order of  

A1/2 

(p, _ pc),/2 f,,,(oc)l/2 (32) 

i.e., the nucleus becomes very large as Pl ~ Pc. The change in density at the 
center of  the nucleus (relative to bulk liquid) is of  order of  p~ -Pc ,  i.e., a 
small fraction of the mean density. This nucleus is favored because the 
large size and small density variation give a very low value for the part  of  
the energy involving the gradient term h. The result of  LK can be expressed 
in the form 

Jo.9 .  21/2 A 3/2(p I - pc)  3/2 
A F  - f,,,(pc)i/2 (33) 

Jo.9.25/gA 3/2( p _ pc)3/4 
- f,,,(pc)5/4p3/4 (34) 

Jo is a numerical constant which LK estimate to be =40. The quantity f '"(pc) 
can be determined from the dependence of c on P near to Pc, since it is 
straightforward to show that in this regime 

C 4 ~ 2 p J " ( p c ) ( P  - Pc) (35) 

4.2. Estimation of the Parameter A 

To evaluate the barrier height and the nucleation rate just calculated, 
we need to make an estimate of A. We want to do this in such a way that 
the theory of  Lifshitz and Kagan goes over into the standard theory of 
nucleation in the case that the negative pressure is small and the bubble 
radius is large compared to the wall thickness. To achieve this it is sufficient 
to make sure that the value of A is consistent with the surface tension of 
liquid in the following sense. Consider a free plane surface of liquid helium 
normal to the z axis. From Eq. (28) we have that in equilibrium 

d2p od~ 
A-d72 = 2 - -  (36) Op 
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For z ~ - ~ ,  p ~ 0, and for z ~ co, p ~ Pl with Pl here the density of bulk 
liquid helium at P = 0. The density profile of the interface is given by ~ 

S ° g(p)  = (A/q~) 1/2 d o (37)  

and the surface tension o~ is 

S; a = 2 (h4~) '/2 dp (38) 

Thus, if we know ~b we can fix a definite value for h by the requirement 
that Eq. (38) gives the correct value for a, which at T = 0 is 0.378 erg • cm -2. 
In this way we obtain 

h =9 .13×10  -7 (cgs) (39) 

As a test of  the calculation we show in Fig. 5 the density profile for the 
planar interface, plotted as density divided by bulk density versus position. 
The shape and width of  the interface are in close agreement with the 
calculations of  Ebner and Saam."'* For example, the width (distance 
between points of reduced density 0.1 and 0.9) is 7.7/k whereas their result 
is 7.8 A. A distinction between the results occurs on the low density side 
of  the interface. In the Ebner and Saam calculation, the density decreases 
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Fig. 5. Reduced density (density divided by the density in bulk 
liquid) as a function of distance perpendicular to a planar interface. 

*We compare to their results for the "renormalized surface density" including the effect of  
zero-point surface modes. 
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exponentially in this regime. In our model the density instead goes to zero 
according to 

p( z )  oc ( z -  Zo) 2 

as z ~ Zo for z > Zo. This unphysicai result is a consequence of the simple 
form we have taken for the density functional (Eq. (27)). As far as we can 
see, it should not affect the main conclusions of  this paper. 

4.3. Calculation of Barrier Height in the General Case 

Using the value of ~: just determined, we obtain from Eq. (34) the 
height of  the barrier for P close to Pc as 

AF = 13.2(P - p~)O.75 K (40) 

.where P is measured in bars. For P very small, we have argued that the 
"s tandard theory" for the barrier should be correct. From Eq. (3) we then 
obtain 

6550 
A F -  p2 K (41) 

In Fig. 6 we have plotted these two limiting expressions (dashed lines) as 
a function of  P. It is clear that there is no obvious way to interpolate between 
these two limits. Consequently, we have calculated numerically the barrier 
height as a function of/9. It is straightforward to show from Eq. (28) that 
in the critical nucleus the density must vary with radius r according to 

1 d [ 2 dp'~ 1 d& (42) 
r a d r ~  r - ~ r ) - 2 A  dp 

with the boundary  conditions 

dp 
~rr=O, r = O  

P -~ Pl , r-~ ~ (43) 

Numerical  solutions of  this equation for several pressures are shown in Fig. 
7. These results confirm the previous discussion. At low pressures the nucleus 
has a core of  low density (zero density in our simplified model) and a wall 
thickness small compared to the radius. When P is close to Pc, the nucleus 
consists of  a small decrease in density below pc. These solutions can then 
be used to calculate the energy barrier AF using Eq. (28), and this is shown 
as the solid line in Fig. 6. 

One can see from these results that except for very low pressures (where 
nucleation is very unlikely to occur) or very close to Pc, the exact value for 
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Fig. 6. Energy barrier AF as a function of pressure. The dashed 
lines show the results calculated using the analytical expressions 
(Eqs. (40) and (41)) for P close to 0 and Pc. The solid line is 
the exact solution. 

(Eqs. (40) and (41)). Thus,  a calculat ion o f  tensile strength or nucleat ion 
rates based  on these formulas  is very uncertain.  The point  is that  over  the 
range o f  exper imenta l  interest  where  the barr ier  height lies in the range 10 
to 100 K the radius of  the critical nucleus is only  a few times the thickness 
of  the p lana r  l iquid-solid interface.  

4.4. Calculation of  Classical  Nucleation Rates 

To calculate  the nucleat ion rate F r  as a funct ion o f  T and  P, we have 

£ r  = F ° e x p ( - A F / k T )  (44) 

The general  order  of  magni tude  of  F ° is given by 

F ° ~  P (45) 
VN 

where u is the a t tempt  f requency and VN is the vo lume of  the critical 
nucleus.  ~ For  simplicity,  we take u = k T / h ,  and use for  VN the vo lume  of  
a sphere  of  radius 10 ~ (the size range of  the critical nuclei as shown in 
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Fig. 7. Density as a function of radius for a series of critical nuclei. 
The curves are labelled by the pressures in bars. 

Fig. 7). As an addit ional  simplification we neglect the effect o f  t empera tu re  
on AF, i.e., we are assuming that the surface energy and the eq~aation o f  
state are temperature  independent .  

The results o f  this calculat ion are shown in Fig. 8 for  a set o f  tem- 
peratures between 0.2 and 2 K. From these results we can find the effective 
tensile strength as a funct ion o f  temperature,  i.e., the magn i tude  Pn of  the 
negative pressure required to p roduce  nucleat ion in a given vo lume and  
time. This is shown in Fig. 9. At high temperatures  (---1.5 K) the results are 
only slightly smaller* than the results o f  the previous theories (see Fig. 1). 
At lower temperature  Pn rises much  less rapidly and,  o f  course,  can never 
become larger than IPJ. Thus,  in this range P,  is much  smaller than  previous  
theories have predicted.  

4.5.  Effect  o f  Q u a n t u m  T u n n e l i n g  

The calculations described so far ignore the possibil i ty o f  quan tum 
tunnel ing th rough  the nucleat ion barrier. This tunnel ing must  provide a 

*Note that in Fig. 1 the calculations allow for the temperature dependence of the surface 
energy, whereas in Fig. 9 they do not. In addition, the prefactors are not the same. If it were 
not for these differences, the disagreement between the new calculation and former theories 
in the high temperature regime would be larger. 
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finite nucleation rate even at T = 0 K, and in previous theories led to the 
temperature-independent nucleation rate at low temperature (see Fig. 1). 
The form of  the nucleation rate is given by Eq. (10). For P small the value 
of the WKB' integral through the barrier is given by Eq. (9). For P close 
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Fig. 9. M a g n i t u d e  of  the pressure  requ i red  to 
cause  nuc lea t ion  as a func t ion  of  t empera tu re .  
The curves  A, B, and  C co r re spond  to prod-  
ucts o f  expe r imen ta l  vo lume  and  t ime  of  1, 
10 s, and  10 - t °  cm 3 sec, respect ively .  
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to Pc one can use results of  Lifshitz and Kagan to show that* 

36.23/4SoA2(p - P c )  1/4 

21 ~ hf,,,(pc)7/4p~/4 (46) 

where the constant So is estimated to be -100 .  Thus 

21 ~ 1.50 x 106[p1-7/2, P ~ 0 (47) 

~ 3 4 . 1 ( P - P c )  1/4,  P~-Pc (48) 

For the prefactors we take the same approach as in the previous section, 
but use a temperature- independent  at tempt frequency of 10" sec -1. This 
gives F~ = 2.4 x 1031 sec -1. 

Evaluation of  the nucleation rates using the formulas (47) and (48) 
reveals the same sort of  difficulty as was found in the thermal nucleation 
problem. The two limiting formulas give results which differ by a very large 
amount  at intermediate pressures. For example,  at 5 bar the small P result 
gives a quantum nucleation rate of  10 -2300 c m  -3  s e c  -1 ,  whereas the P ~  Pc 
result is 4 x 41° cm -3 sec -1. In the case of  thermal nucleation, we were able 
to find an exact numerical solution for the barrier height as a function of 
pressure. This height was found to lie in between the two limiting formulas, 
and to be well-approximated by neither of  these formulas over essentially 
the entire range of  pressures of  experimental interest. In the quantum case, 
it is a very hard problem to find an exact numerical solution for the WKB 
integral /, and we have not at tempted to do this. In addition, there is no 
obvious way to guess a formula that interpolates between Eqs. (47) and 
(48) because of the very different dependences on P in the two expressions. 

To get around this difficulty to some extent, we have used the following 
method. We try to estimate the temperature T* at which quantum and 
thermal nucleation rates are equal. Thus T* is given by t  

kT* = A F / 2 I  (49) 

We now calculate T* using the limiting forms for AF and L The result is 

k T * -  256hlpI3/2 P ~ O  (50) 
405 • 61/2~apl/2' 

Jo (P-P~) ' /2hf ' " (P)I /2  
P~-Pc (51) 

-- 23/2So A 1/2 , 

These are plotted as the solid curves A and B in Fig. 10. Although it 
is still not certain how to interpolate between these two limiting forms, 
these results do suggest that T* is always small. For example,  if we write 

kT* = alpl3/2( n - Pc)1/2(1 + bP) (52) 

• Note that there is a mistake in Eq. (4.4) of  Lifshitz and Kagan 's  pape r  which relates, their 
parameter  ~:o to P - P,. 

t W e  ignore the difference in the prefactors.  
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Fig. 10. Temperature T* at which nucleation 
rates due to thermal fluctuations and quantum 
tunneling are equal. Curve A is for P close to 
zero (Eq. (50)), and B is for P ~ Pc (Eq. (51)). 

and choose a and b so that this reduces to (50) or (51) in the limiting cases, 
we find that the maximum value of T* is 0.3 K at a pressure of -7.3 bar. 

If  this rough estimate of  T* is correct, it means that very careful 
experiments will be required to study quantum tunneling. Suppose, for 
example that T* is, in fact, 0.3 K (for all pressures). Then, quantum 
nucleation (QN) is unimportant above this temperature. Hence, we see from 
Fig. 9 that QN can be neglected until the applied negative pressure exceeds 
8 bar. Thus, QN is important only in a very small region of the P - T  plane, 
i.e., between P = - 8  and -8.87 bar and for T < 0.3 K. Production of control- 
led and known pressures in this range close to Pc is a difficult experimental 
problem. 

5. P H O N O N  D I S P E R S I O N  

In this paper we have assumed that at the pressure Pc liquid helium 
becomes macroscopically unstable, i.e., unstable at long wavelengths. This 
seems to be a reasonable assumption based on what is known about the 
pressure dependence of the dispersion curve for elementary excitations. 
Short-wavelength excitations (in the roton region) have energies which 
increase as the pressure is lowered, ~2 and thus it is unlikely that an instability 
occurs in this region. 

Given this picture, the dispersion curve in the phonon region should 
look as shown in Fig. 11. For small momentum we can write 

Wk = ok(1 q- a 2 k Z q  - "  • ") (53) 
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Fig. 11. Qualitative form of the phonon dis- 
persion curve for various pressures. Pc is 
the pressure at which the liquid becomes 
unstable. Po is the pressure at which a 2 
vanishes. 
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For P in the range 0 to 10 bar, very accurate measurements of  a2 have been 
made by Rugar and Foster. 13 (We have used these data even though they 
cover a limited pressure range because of their accuracy.) In this range a2 
is positive. At a pressure Po of  around 20 bar, 14 ce2 changes sign, and above 
this pressure the dispersion curve changes to concave upwards (see Fig. 
11). For negative pressure the sound velocity decreases, and finally becomes 
zero at Pc. 

Lifshitz and Kagan s remark that the parameter  A determines the spatial 
dispersion of  sound. I f  one takes the usual equations of  continuum elasticity 
and adds the term A[Vp] 2 into the energy density one obtains the result* 

o.)2 = k2(c2 + 2pAk2  + ' '  ") (54) 

Thus, 

a 2  = , ~ p / c  2 (55) 

To have a2 change sign at Po, one would then need that A also change sign. 
This seems unlikely but is not impossible. One can have A negative provided 
that the uniform liquid is kept stable due to the presence of positive terms 
in the energy proportional  to squares of  higher derivatives of  p. However,  
we consider that a much more likely explanation of the sign change of ce2 
is as follows. The dispersion included in Eq. (54) is just the spatial dispersion, 
i.e., the dispersion due to the finite k. There is also the possibility of  
dispersion due to the time-response of the liquid. For low frequencies we 
may consider this to arise from the presence of a term in the energy per 
unit volume of  the form 

E, = 2 (56) 

*There is a mistake of a factor of 2 in the paper by Lifshitz and Kagan. 
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We discuss below the microscopic origin of such a term. One then obtains 
the result 

Our idea is that, whereas c 
varying functions of P. (We 
A is independent of P in the 
we plot a2/p as a function 
predicted by Eq. (57), and a 
values 

Ap /3p (57) 
a2 = c2 2 

goes to zero at Pc, A and/3  are fairly slowly 
have, in fact, already implicitly assumed that 
calculation of nucleation barriers). To test this 
of 1/c 2 in Fig. 12. This gives a linear plot as 
least-squares fit to the data points leads to the 

A = 10.5 x 10 -7 (cgs) (58) 

/3 = 1.55 x 10 -'5 (cgs) (59) 

The value for A is only 15% larger than the value (9.13 x 10 -7)  determined 
in Sec. 4.2 by the fit to the experimental value of the surface tension, and 
this agreement gives strong support to the model of phonon dispersion we 
have presented. Of course, the determination of both A and /3 from the 
single function a2(p) depends entirely on the assumption that A and/3 vary 
with p much more slowly than does the sound velocity. 

Finally, consider the physical origin and magnitude of the term involv- 
ing /3. To do this we take a "single-particle" view of liquid helium. We 

E 
c; 

i0 -15 

5x10 -16 

0 
0 10 -9 2×10 -9 

1/C 2 (cm-2sec 2} 

Fig. 12. Plot of  0:2//9 ve r sus  inverse square of sound velocity to 
determine the parameters )t and ft. 
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imagine that each helium atom sits in a potential well V determined by the 
average position of its neighbors. When the density changes, the depth and 
shape of  this potential will vary, and the wave function of the helium atom 
will be deformed. If the density (and hence the potential) are slowly varying 
in time, it is clear that to a good approximation the wave function will 
always be the ground state for the instantaneous value of the potential 
energy function. It is straightforward to show that the first correction to the 
wave function due to the time variation of  V is 

Voo 
6q~ = - i h  E "-OTTO. (60) 

n~O l~nO 

where l?no is the matrix element of "P between the ground state ~bo and qJ,, 
and E , o - - E n - E o .  Terms in &b proportional to second and higher time 
derivatives of  V have been neglected. Thus, the energy of the atom is equal 
to the ground state energy in the instantaneous potential, plus an excess 
energy 

~E = h = E 14°°12 
. E2o ( 6 1 )  

Note that this excess energy can be appreciable even though the rate of 
change in density is sufficiently slow that the wave function is deformed 
adiabatically. The probabil!ty of real transitions occurring is proportional 
to exp( -cons tan t /w)  where to is the frequency of the density oscillations, 
and hence is extremely small at low frequency. 

Since the number of  atoms per unit volume is p / M  (M = atomic mass), 
we find from (56) that 

2 h 2 0 ~  1 dV.ol 2 
f l=--M-- E 3 dp (62) 

To make a very rough estimate of fl, we take each atom to be a 
three-dimensional Einstein oscillator of frequency tOo, i.e. we take V propor- 
tional to r 2. For each oscillator the only possible transitions are to the n = 2 
excited state. If the variation of the oscillation frequency is 

dtOo 7tOo 
- -  - - -  ( 6 3 )  
dp p 

where y is the Gruneisen constant, then 

dV_  MtO2o yr z (64) 
dp p 

Hence, evaluating the matrix element and setting E.o =/52o = 2htOo, we have 

3by 2 
/3 = (65) 

8 MtOop 
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If  we arbitrarily choose the phonon frequency too to correspond to a phonon 
energy of  10 K, we obtain 

fl =0 .32x  10-1sy 2 (cgs) (66) 

Thus, the value of /3 from experimental data (1,55x 10 -15 cgs) requires 
]Y[ = 2.2 which is very reasonable. 

The existence of  the term 1/3tj2 is the energy density has no effect on 
the calculation of the energy barrier for classical nucleation since this is a 
calculation in statics. However, it must decrease the rate of  quantum 
tunneling. For [PI small it is straightforward to show that this decrease is 
small, but this may not be true for P approaching Pc- We have not attempted 
this calculation. 

6. SUMMARY 

Previous theories 1'2 have predicted that the pressure Pn to produce 
bubbles in liquid helium-4 should rise to very large values ( 2 - 1 5  bar) at 
low temperatures. We have shown that this is not true, and that helium 
becomes macroscopically unstable at a pressure Pc which is approximately 
- 9  bar. We have made an estimate of the equation of  state of  helium in the 
range 0 > P > Pc. We then calculated the energy barrier and nucleation rate 
for the creation of bubbles by thermal fluctuations. The results demonstrate 
that the form and energy of the critical nucleus are, at all pressures of 
experimental interest, poorly approximated by previous analytical results. 
We then show that the nucleation of bubbles by quantum tunneling is 
important only at very low temperatures and for pressures close to Pc. 
Finally, we demonstrate that one can understand the pressure-dependence 
of  the phonon dispersion relation by a simple model in which the energy 
density contains extra terms involving time and space derivatives of  the 
density. 

A specific prediction of the theory is that at temperatures below 2 K 
the tensile strength of  helium should rise only slowly as the temperature is 
decreased (see Fig. 9), and should reach a maximum value at low tem- 
peratures of less than 9 bar. We are presently constructing an experiment 
to test this prediction. 
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