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The theory of superconducting tunneling without the tunneling Hamiltonian is 
extended to treat superconductor/insulator/superconductor junctions in which 
the transmission coefficient of the insulating barrier approaches unity. The 
solution for the current in such junctions is obtained by solving the problem of 
a particle hopping in a one-dimensional lattice of sites, with forward and reverse 
transfer integrals that depend on the site. The results are applied to the problem 
of subgap harmonic structure in superconducting tunneling. The time-dependent 
current at finite voltage through a junction exhibiting subgap structure is found 
to have terms that oscillate at all integer multiples of the Josephson frequency, 
n(2eV/h).  The amplitudes of these new, and as yet unmeasured, ac current 
contributions as a function of voltage are predicted. 

1. INTRODUCTION 

The behavior of superconducting tunneling junctions that have nearly 
transparent barriers has been of  continuing interest to experimentalists. 
Such junctions exhibit nonideal current versus voltage curves (e.g., leakage 
current), which are not explained by the standard transfer (or tunneling) 
Hamiltonian model. Indeed, to some extent, "good"  junctions are experi- 
mentally defined to be those that exhibit I -  V characteristics consistent with 
the predictions of the transfer Hamiltonian theory. Such junctions typically 
are a small fraction of the junctions actualiy made. 

In order to understand the behavior of this larger class of nonideal 
junctions, one requires a theory that goes beyond the lowest order in the 
transmission probability T 2. The transfer Hamiltonian approach is designed 
to treat only the lowest order in T 2. In refs. 1 and 2, I presented a theory 
that solves the problem of the tunneling current in superconducting junctions 
exactly, i.e., to all orders in T 2. It is based on the approach developed by 
Feuchtwang. 3 The method is actually a realization of Bardeen's original 
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idea 4 for calculating the tunneling current, by using nonequilibrium Green's 
functions and the equations of motion. Because the results are expressed 
in terms of Green's functions, they are convenient for calculating the 
influence of many-body self-energy effects on the tunneling current, 
especially in situations where the tunnel barrier is nearly transparent. 

In ref. 2, I presented results for the Josephson zero-bias current; and 
for the I - V  characteristics of junctions with one electrode in the normal 
state. The appearance of leakage current and behavior of the Josephson 
critical current as a function of barrier transmission probability were 
explored in detail. 

In this work, I will present theoretical results for the tunneling I - V  
characteristics of superconductor/ insulator/superconductor (S IS) junctions 
with ultrathin barriers. These characteristics display structure below the 
voltage that corresponds to the sum of energy gaps, in contrast to the 
prediction of the transfer Hamiltonian theory. 5 The structure in the dynami- 
cal resistance dV/dl has been called "subgap harmonic structure" because 
there are peaks at voltages that (roughly) correlate with gap energies divided 
by integers. This structure was first observed by Taylor and Burstein 6 and 
independently by Adkins. 7 Despite the fact that it has been observed and 
studied for more than 20 years, this structure has not been quantitatively 
described by any theory. The calculations of dV/dI presented in this work 
reproduce the experimental results for this structure with an accuracy not 
attained by any previous theories. The accuracy of this calculation may 
enable one to separate contributions to dV/dI arising from low barrier 
effects and those arising from Josephson self-coupling, 8 a competing expla- 
nation for subgap harmonic structure, which relies on the nonlinear coupling 
of Josephson radiation with the oscillating Josephson current that produces 
this radiation to produce a dc component of current below the sum of gaps. 

For several years, one popular explanation of subgap structure was 
that of multiparticle tunneling (MPT), first presented by Schrieffer and 
Wilkins. 9 Recently, an alternative explanation was proposed by Klapwijk, 
Blonder, and Tinkham (KBT). 1° This alternative explanation involves a 
mechanism called Andreev reflection. H I will argue in this work that the 
KBT picture of subgap structure is essentially equivalent to the MPT picture. 
However, I believe that the KBT picture is preferable because it is capable 
of describing not only the appearance of threshold voltages for peaks in 
dV/dI, but also the background leakage current of the junction, in more 
detail than the MPT picture. Further reasons for preferring tile KBT descrip- 
tion are: 

1. The KBT mechanism applies to excess currents in junctions in which 
one electrode is normal, but MPT does not. In other words, the 
KBT mechanism is more generally applicable. 
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2. The precise nature of the mechanism by which Cooper pairs are 
broken up in MPT is not directly dealt with. For the KBT explana- 
tion, this mechanism (Andreev reflection) is the Joundation of the 
whole explanation. 

The equivalence of the two pictures lies in the observation that Andreev 
reflection involves pair generation and pair breaking in the two electrodes 
(in fact, it explains it), and this pair generation and breaking is the basis 
for the MPT picture. 

A single example will illustrate the above remarks. Consider an SIS 
junction at a voltage slightly below 2A/2, where 2A is the energy gap in 
each S electrode (cf. Fig. 1). Measure energy relative to the chemical 
potential in the right electrode. At the energy - 8  there exists a nonvanishing 
probability for finding a particle at the barrier/right electrode interface, 
because there is particle amplitude there. For brevity I will call this an 
"evanescent hole" at energy -6 ,  because this energy corresponds to a hole 
energy in the normal state of the right electrode. Of course, in the barrier, 
there is really no distinction between electrons and holes, because it is an 
insulator. Andreev reflection of the hole occurs at the interface (there can 
be no particle transmission into the superconducting right electrode at this 
energy), destroying a Cooper pair in the right electrode by filling the hole 
with one member of the pair, leaving the other electron of the pair at energy 
8, traveling to the left as an evanescent electron. In the view of the left 
electrode, however, this evanescent wave is a hole, because it is at an energy 
(a  - 28) below the left electrode chemical potential. Thus, a similar Andreev 
reflection of  this hole occurs at the left electrode/barrier interface, destroying 
a Cooper pair in the left electrode, leaving an evanescent electron of energy 
A - 2 8  above the chemical potential of the left electrode, i.e., at energy 
2 A -  36. The evanescent electron travels to the right, tunneling into allowed 
unoccupied states in the right electrode. Note that there are two extra 
traversals of the barrier region, making the amplitude for the occurrence 
of this process of order (T2) 2 in the single-particle tunneling probability 
T 2. Note that there can be no interference between reflected evanescent 
waves in the barrier, because, being evanescent, these waves are pure 
nonoscillating exponentials. Thus, even at a voltage A - 8 ,  there will be 
current through this SIS junction, of an amount governed by the magntidue 
of  (T2) 2. 

In the MPT picture, the factor (T2) 2 arises because two particles tunnel 
through the barrier. However, this process cannot occur until the voltage 
reaches A, because there are no allowed states for the two particles of  the 
Cooper pair in the left electrode at energy h - 8. Hence, MPT cannot explain 
the behavior of the leakage current below h. 
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Fig. 1. Top: The semiconductor  picture for SIS tunneling at a voltage A -  8 and 
zero temperature. The dashed lines indicate the path of  a particle that tunnels 
from the top of the occupied (shaded) states in the left electrode and Andreev- 
reflects twice, emerging into allowed unoccupied levels in the right electrode. 
Bottom: For a voltage A+  8, at which there is one complete Andreev reflection 
and a final, but partial, Andreev reflection. 

For a voltage slightly above A (at A+~)  MPT says that Cooper pairs 
can tunnel directly into the right electrode with probability (T2) 2, yielding 
supercurrent. In the KBT picture this supercurrent is produced by recogniz- 
ing that now the evanescent particle incident from the left is at an energy 
above the chemical potential of the right electrode, making it an evanescent 
electron. It can form a Cooper pair by taking an evanescent particle from 
the left electrode at energy -&  This yields a Cooper pair in the right 
electrode, propagating to the right as supercurrent, and an evanescent hole, 
tunneling to the left, finding allowed (for holes) states on the left, and also 
partially Andreev-reflecting symmetrically across the chemical potential of 
the left electrode, thereby partially destroying some Cooper pair amplitude 
in the left electrode. 
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Partial Andreev reflection for IEI> A can occur because the coefficient 
for Andreev reflection '° is 

I 1 2 
E/A+[(E/A)2_ 1],/2 (1) 

Thus, even for E/A= 1.3, approximately 50% of the incoming particle 
amplitude is still Andreev-reflected. ', 

If we summarize the result of the processes discussed aboVe, we note 
that at voltage A -  a, an electron incoming from the left tunnels, through 
the barrier via Andreev refection-assisted tunneling, and produces a net 
electronic current - e  traveling from left to right. At voltage A+~, the 
incoming electron now generates a pair (supercurrent) traveling from left 
to right, in addition to partial hole current from right to left, and partial 
electron current from left to right, yielding - e  + ( -2 e )  total charge current 
traveling from left to right. Thus, at the threshold voltage A, pair current 
appears, as in MPT. While the KBT explanation is more complex, it provides 
a more comprehensive description of the pair-breaking and generation 
processes involved in the tunneling. 

In Section 2, I present the model and its assumptions, and in Section 
3, I review results from refs. 1 and 2 and introduce the notation I will use. 
Section 4 presents the result for the current through an SIS' junction, and 
in Section 5, I outline the approach I have taken toward solving for the 
current numerically. In Sections 6 and 7, I discuss my results for the dc 
current versus voltage for symmetric and asymmetric junctions, and in 
Section 8, I present results for the ac current versus voltage contributions, 
and predict the appearance of these terms, which, to my knowledge, have 
never been measured by any experiment. Finally, in Section 9, I present 
some discussion and conclusions. 

2. THE MODEL 

The model junction consists of two semi-infinite superconducting elec- 
trodes with a planar, structureless barrier sandwiched between. By "struc- 
tureless' I mean that the density of states in the barrier vanishes throughout 
the range of energies IEI<< UB, where UB is the equilibrium value of the 
barrier height above the chemical potential in the junction, and E is energy 
as measured relative to the equilibrium chemical potential. In this work, 
only energies of the order of a milli-electron volt are of interest, so UB need 
only be greater than about 50 meV. In such a case, the trapezoidal shape 
of  the barrier under an applied voltage is negligible, so the barrier shape 
may be taken to be rectangular, to a good approximation, at all voltages 
of interest. Effects arising from the capacitance of the junction are neglected. 
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When a voltage V is applied, the entire voltage drop is assumed to 
occur across the barrier. It is also assumed that the quasiparticles in each 
electrode are distributed according to the Fermi distribution, with chemical 
potentials that differ by Ve (e is the electron charge). It is not necessary to 
assume that the electrodes are described by equilibrium Fermi distributions, 
but it does simplify the treatment, and avoids the introduction of extraneous 
features into the description of the physics I will study. I will restrict my 
calculations to zero temperature,  although this restriction can be relaxed 
quite easily. 

3. N OTATION AND GREEN'S  FUNCTIONS 

I will not repeat derivations already presented in ref. 2, but, in order 
to write in compact  form the equations to be studied and solved, I will 
summarize some results of  that work and introduce some notation in this 
section. 

The Pauli matrices are denoted by ~'1, ~'2, and ~'3. Often-used combina- 
tions of  these are 

P± - ½(1 :t: %), % = 1('/" 1 "4- i"1"2) (2) 

I will set h = 1, 2m = 1, and measure wavevectors in terms of 

krx = (k~ - k~) 1/2 (3) 

where ktl is the magnitude of quasiparticle wavevector component  parallel 
to the interfaces and kF is the magnitude of the Fermi wavevector, assumed 
to be the same for both electrodes. 

To a function F(t, t') I will associate an operator F such that 

(t[Fit')=F(t , t') where ( t l t ' )=6( t - t ' )  (4) 

The Fourier coefficients corresponding to this function in energy space are 
F(E, E ' )  and may be symbolically represented as a matrix element 

= E ' )  where ( E I E ' > = 6 ( E - E ' )  (5) 

and 

(tiE) = e'e ' /(2~-) u2 (6) 

Thus, for example, 

(EIFGIE'> = f dE"F(E, E")G(E", E') (7) 

In the rest of  this section, I will list those results from ref. 2 that are 
necessary for this work. 
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and 

For the left (L) and right (R) electrode Green's functions, one has 

(EIgLRIE') = ~( E - g')grt.,e( E ) (8) 

g~L,R( E ) : i[ e ~,R( E ) + ~,R(E)r , ]  (9) 

SrL, R ( E )  = { [E2 - AL; (E)2]'/:, (10) 

t ~ _  E211/~ AL,.(E)> IEI 

3~,R(E)  = [AL, R ( E ) /  E ] e ~ , R ( E )  (11) 

where AL, R ( E )  is the superconducting pair potential in the left or right 
electrode. The superscript "r" refers to retarded functions. Advanced func- 
tions are indicated by the superscript "a," and are equal to the adjoints of 
the above expressions. By convention, functions without a superscript are 
to be interpreted as either advanced or retarded. 

From Eq. (81) of ref. 2 

gn = e i( @ f2)% gRe-i(  @12)T3 (12) 

where the exponentials are "phase difference operators" introduced above 
Eq. (45) of ref. 2, and 

(EI~RIE') = a( E - E ' ) [gR(  E - eV ) l ,P+  + gR( E + eV)22P-]  

+ ~ ( E  - E ' -  tOo)ei@OgR(E -- eV) 12"r+ 

+ ~(E - E '+  Wo)e-i¢ogR(E + eV)21T_ 

= E ~ ( E  - E ' + s t o o ) ~ , u ( E ,  E+s too)  (13) 
s=--1,0,1 

Here w0 = 2 e V  is the J'osephson frequency, and &o is the equilibrium value 
of the Josephson phase difference between left and right electrodes. 

Because the quasiparticles in each electrode are assumed to be dis- 
tributed according to the Fermi function f (E) ,  

(EIgL<RI E') = ~( E - E ' )g~,R(  E ) (14) 

gL<R(E) = [g~,R(E)  -- g~L,R(E)] f (E)  (15) 

and 

The matrix element 

~ = ei(~/2)'r3gR e-i(¢/2)~-~ 

(Eiff~IE') 
is obtained from Eq. (13) by replacing gu by g~. 

(16) 

(17) 
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For the structureless barrier 

gSL = g~R = --( l /K) coth(Kda)~% (18) 

T 2 = [K 2 sinh2(Kd~) + cosh2(KdB)] -] (19) 

where dB is the barrier thickness and (in ordinary units) 

K = ( 2 m U , / h  2 -  k~)'/2/kFx (20) 

My calculations indicate that the dependence of K on krl does not lead to 
significant effects upon the tunneling current. This means that the tunneling 
current can be calculated at the most important value of krl, kit = 0, because 
the integration over all klp values leads to no significantly different results. 

Some useful adjoint relations are 

--gR, [g~]t _- _g~ (21) 

[ ~ ] t  = ~ ,  [g~.]* = g~ (22) 

4. THE CURRENT 

The derivation in ref. 2 supplies the following expression for the current 
at t ime t [Eq. (83)]: 

= T (tlTr{P[gRFL--FLgR+gRFL--FLgR]}[t) (23) I ( L , t )  2eY, 2 - r ' <  ~ <  . . . .  ~ a  ~ r  - <  

kl] 

The trace "Tr"  is a trace in the two-dimensional space of the Pauli matrices 
and 

" <  ~ r  < 2 ~ <  " a  = T gR]F L (24) FL --FL[gL + 

where 

M(E)FL(E ,  E ' )+  J - (  E)FL(E -tOo, E')  

+ J+( E)FL( E +tOo, E')  = 6( E - E') (25) 

with 

M ( E ) = g L ( E ) + g B L - -  T2gBR + T 2 g R ( E - e V ) , I P + +  T2gR(E+eV)P~ (26) 

J - ( E )  = T 2 ei~'°gR(E -- eV)127+ (27) 

J+(E)  = T 2 e-i~°gR(E + eV)Elr_ (28) 

Using 
~ a  
r =(PLy, "< = --FL (29) 
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and the adjoint relations at the end of the previous section, we can express 
the current more compactly as 

I 2 ~r ~< ~<:~a } I(L, t)=Re[J(T)]=Re 4e• T (tITr[P+(gRFL +gRFL)]It } (30) 
L kll 

where I introduce the complex time-dependent current J(t). 
The energy representation is most useful for the calculations to be 

performed, so I will calculate 

- -  +gRFL)]IE) (31) 
kll 2"J)" 

Use of Eq. (13) of the previous section yields 

j(t)=4eY~T2f dEIdE'ei(E'-~)' 

x Y~ Tr{P+[~(E ,  E + StOo)I'~(E + StOo, E') 
s=--l,O,1 

+ gR(E, E + S~oo)FL(E + StOo, E')]} (32) 

The evaluation of this expression requires the solution of Eq. (25) for I'L. 
It is evident from the equation for FL(E, E')  that the energy difference 

E -  E '  in the solution will be an integer multiple of OJo, i.e., the solution 
for FL(E, E')  will be a sum of terms, each proportional to a delta function: 

]~L(E, E')  = E  a (E  - E'+ nto0)FL(E , E + moo) (33) 
n 

where n is any positive or negative integer, or zero. It is useful at this point 
to introduce a matrix notation: 

FL(E, E + nwo) = FL(E)o,, FL(E + mtoo, E + moo) = FL(E)m, (34) 

~ ( E ,  E + StOo) = g~(E)o ,  &..g~(E+mo~o)=g~(E)~. (35) 

In this notation, Eq. (32) becomes 

J ( t )=-4e~T2 fdE~ .  [ I ~r ~ r  < 
kll ~ , Tr L P+.m,'E gR(E)o~FL(E)*m[gL(E)m,.+~' 

2 < ~ a  ~ <  ~ a  ~1 eim%t + T gR(E)m.,+~,]FL(E),,,+~,,,--gR(E)o~FL(E)~,, J.l (36) 
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(The sums over s and s '  include only -1 ,  0, and 1, while the sums over n 
and m include all integers.) 

Thus, the exact solution for J(t) is in the form of a Fourier series: 

J(t) =~. e in~°' -/,(tOo) (37) 
n 

At zero bias (tOo = 0) 

J(t) =~ Jn(O) (38) 
n 

yields the Josephson current discussed at length in ref. 2. This can be 
obtained exactly because tOo = 0 in Eq. (25), so 

['L(E, E ' )  = [M(E)+J-(E)+J÷(E)] -~8(E - E ' )  (39) 

At finite bias, there is evidently no exact solution for FL. In the next section, 
I will outline a method for obtaining an approximate solution. 

5. SOLVING THE EQUATION FOR FL 

Using the notation introduced at the end of the last section, I find that 
Eq. (25) becomes 

M(E)ooFL(E)o,, +J-(E)o-II'L(E)-I,, +J+(E)olFL(E)ln = ~On (40) 

I f  I replace E by E + moo in Eq. (25), then the corresponding equation in 
the new notation is 

M(E),,,,j'L(E)m,, +J-(E)m,,, 1FL(E)m-ln 

+J+(E)m,,~+,FL(E)m+,n = ~mn (41) 

where 

M ( E  ),,,m = g L ( E  + mtoo) + gBL- TZ gBR + T2gR(E + mwo + e V)lt 1°+ 

+ T2gR(E + mwo+ eV)22P- (42) 

J+(E)mm+l = T 2 e-iV'°gR(E + mtoo+ eV)217"- (43)  

J (E)mm-~ = T 2 ei6°gR(E + rntoo-- eV)12r+ (44) 

Upon inspection, one notes t h a t  I'L(E)mn is analogous to a 2 × 2 matrix 
propagator  for a particle hopping from the ruth site in a one-dimensional 
lattice to the n th site in the lattice, with a matrix transfer integral of  J÷(E) 
in the forward direction and J-(E)  in the backward direction. 

I have solved this problem numerically by truncating the one- 
dimensional lattice to 2 N + l  sites, where N is adjusted until the results 
are insensitive to any further increase in N. The smaller KdB is, the larger 
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is T 2 (but T 2 is always less than unity), so N must be larger for smaller 
KdB values. Thus, FL becomes a (2N + 1) x (2N + 1) matrix of 2 x 2 matrices, 
or a ( 4 N + 2 ) x  ( 4 N + 2 )  matrix. The truncated equation (41) may now be 
solved exactly by finding the inverse of the (tridiagonal) matrix that acts 
upon FL- 

The subscripts on FL, gR, etc., do not indicate the actual matrix 
elements, because, for example, FL(E), . .  is a 2 × 2 matrix itself. I will use 
superscripts to designate the actual matrix elements, so that, for example, 

I'L(E)/) 

is the element in the ith row, j th  column of the matrix FL(E). 
To summarize, for each energy E, I will truncate all matrices so that 

each has dimension 4 N + 2 ,  and numerically solve for I'L(E) jk in 

where 

4 N + 2  

E L(E)iJ['L(E)Jk = 6'k (45) 

L(E) = M(E)+ J-(E)+ J+(E) (46) 

The results will be used in the expression for the nth Fourier coefficient of 
the complex current: 

where 

f dE 2N+2 [g~R(E)2N+'3['~(EY "zN+2"+I J"(w°)=4e~ T2 2-~ jY-~2N 
kll 

+ ~,R(E)2N+IOI'[(E) j'2N+zn+l] 

4 N + 2  m + l  

f'~(E) j k = -  E 2 
m = l  p=m--1 

(47) 

I'~L(E)Jm[gL(E) ''p + T2~,R(E)mp]F~(E) pk (48) 

In these expressions, I have used the fact that g~, gR, and g~ are tridiagonal 
matrices, and have chosen the central site [n = 0 in Eq. (41)] to correspond 
to the new matrix indices 2 N +  1 and 2 N + 2 .  

6. N U M E R I C A L  R E S U L T S  FOR S Y M M E T R I C  J U N C T I O N S  

For a symmetric junction, all energies may be scaled to the energy gap, 
so that the only variable parameter is T 2, the transmission probability, a 
dimensionless quantity that characterizes the transparency of the barrier. 
The value of  N chosen for these calculations was N -- 4. The range of the 
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E integral in Eq. (47) was chosen to be -4-< E-< 4, where E is measured 
in units of  the energy gap, and the gaps were given an imaginary part  equal 
to 2% of the gap. Values chosen for T 2 ranged from 0.13 to 0.95. The value 
of the phase difference at zero voltage ~bo was chosen to be that which 
maximized the zero-bias Josephson current, although the finite-voltage 
current appeared to have very weak dependence on ~bo, so that ~bo = ~-/2 
would have given essentially the same results for Re[Jo(tOo)]. 

Figure 2 shows the Re[Jo(tOo)] versus voltage curves for various values 
of  T 2. Steplike structures in these curves become more pronounced as T 2 
decreases (i.e., as barrier transparency decreases), although the subgap 
current, naturally, decreases in magnitude as T 2 decreases. 

Figure 3 gives the corresponding dV/dI  curves. The subgap peaks in 
dV/d l  sharpen and increase in magnitude as T 2 decreases, while, at the 
same time, the number  of  subgap peaks decreases. It is interesting to note 
that the positions of  these peaks do not correlate precisely with values of  
2A/n (n = integer). 

In Fig. 4, values of  2A/n up to n = 9 are indicated by vertical lines in 
the dV/dI  versus V curves for T 2= 0.42. The peaks are seen to shift their 
positions relative to the 2A/n lines. Their occurrence is related to phenomena 
that depend upon 2A/n, but these phenomena combine to produce structures 
shifted relative to 2A/n because the current depends in a nonlinear way 

:3.5 I I I T2=l °95 
/ ~ / . 8 3  

0.7- ~ i J 6  
0.0 I , 

0.0 0.3 0.6 0.9 1.2 1.5 

eV/Z~ 
Fig. 2. The tunneling current versus voltage for an SIS 
junction with an insulating barrier characterized by a 
transmission parameter, T 2 between 0.16 and 0.95. 

2.1 

I 
1 .4 -  
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8.0 1.6 

d V z.o 1.4 .54 

dl 6.0 ~ 1.2 ~J 

~.o ~~._~,.o j , ~ ~  
4.0 ~ 0.8 

~.oi~~_~ ~ o.o 

0.0 I I I I I 
0.0 0.3 0.6 0.9 1.2 0.5 0.6 0.9 1.2 

eV 
A 

Fig. 3. Dynamical resistance dV/dI versus voltage for the I versus V curves 
of  Fig. 2. Units along the vertical are arbitrary. 

upon the solutions for FL- This shifting of subgap peaks in dV/dI relative 
to 2A/n has been observed experimentally by Bermon 12 and by Gaffney 
and Tomasch. 13 

As noted in the introduction, in the KBT description the peaks arise 
from multiple Andreev reflections of evanescent particles in the thin barrier. 
A particle incident upon a region where the superconducting pair potential 
increases will have part of its amplitude (or all of its amplitude, if it is 
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dV 
d'I 

2.7~ 
2,2t~ 
1.7 

1"21 
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J# 
5 1 

I I 0.4 0.6 0.8 1.0 1.2 
eV 
A 

Fig. 4. Dynamical resistance versus voltage for an SIS junction with T 2 = 0.42. The values of 
eV/A corresponding to eV = 2A/n, n = integer, are indicated by vertical lines. Units along the 
vertical are arbitrary. 

incident at an energy lying between the pair potential and the Fermi level) 
reflected as hole amplitude at an energy that is symmetrically located beneath 
the Fermi level. An incoming hole amplitude can also be reflected as particle 
amplitude, in a mirror image of this process. This Andreev reflection of 
particle amplitude into hole amplitude (or vice versa) arises due to pairing 
(or depairing) at the interface, where the gap has a steplike increase: incident 
particle amplitude above the chemical potential pairs with particle amplitude 
at an energy symmetrically beneath the chemical potential, producing 
Cooper pair amplitude, which then propagates at the chemical potential as 
supercurrent. A hole is thereby left behind, so that the result of Andreev 
reflection is the conversion of  incident particle amplitude to supercurrent 
and reflected hole amplitude. Similarly, incident hole amplitude destroys 
some Cooper pair amplitude, and reflects as particle amplitude. 

The symmetrical SIS junction provides two identical gaps on either 
side of the barrier, hence two pair potential increases that can Andreev- 
reflect the evanescent incoming amplitudes of particles or holes within the 
barrier. Figure 5 indicates the situation when the bias voltage is 
infinitesimally greater than 24/2,  at zero temperature. A particle may tunnel 
through the barrier from the left, Andreev-reflect across the Fermi level on 
the right as a hole, and return again to Andreev-reflect on the left, across 
the left electrode Fermi level, then tunneling through to be detected as 
particle current. In the process, some Cooper pair amplitude is generated 
in the right superconductor, yielding a supercurrent from left to right, and 
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some (less) supercurrent is destroyed in the left electrode. Three traversals 
of  the barrier region are required for this process; hence, this process is of 
order (T2) 2, where T 2 is the single-particle tunneling probability. Obviously, 
such a process will occur for all voltages between 2A/2 and 2A. However, 
note that at 2A/2 the tunneling particle enters the high density of states at 
- n  in the left electrode as an "intermediate state," whereas at higher 
voltages, the tunneling particle enters a lower density of states at an energy 
less than -A for the intermediate state. 

Now lower the voltage to 2A/3. In Fig. 5 the resulting path on the 
energy diagram is indicated. The particle finally emerges, after three 
traversals of  the barrier via Andreev reflections, into the high density of 
states at A in the right electrode. This is also a (T2) 2 process. It also occurs 
at all voltages between 2A/3 and 2///2, but, for these higher voltages, the 
particle emerges into an energy E > A on the right, hence into a lower 
density of states. As in the 2A/2 process, pair currents are generated by the 
Andreev reflections. 

In this way, one concludes that the tunneling conductance should 
display peaks at 2/1/2 and 2A/3. The relevant energy diagrams for 2///5, 
2/1/6, and 2A/7 are given in Fig. 6. Note that in this 2/1/n series, when n 
is even, the peaks are due to entering a high-density-of-states region in the 
left electrode, while for n odd, the peaks arise from tunneling into the high 
density of states of the right electrode. 

As noted above, the peaks do not appear precisely at these positions, 
but are shifted relative to the expected positions, the amount of the shift 
depending upon the value of n. 

7. NUMERICAL RESULTS: ASYMMETRIC JUNCTIONS 

For an asymmetric junction there are two variables of interest: T 2 and 
the ratio of gaps. I have scaled all energies relative to the larger of the two 
gaps, and obtained numerical results in the same approximations as were 
employed for the symmetric junctions. 

Figure 7 shows the dc current versus voltage curves for a junction with 
T 2= 0.42 and varying values of gap ratio (0.1-0.9). The steplike structures 
appear to be most pronounced for gap ratios near 0.5. Figure 8 shows the 
corresponding dV/dI curves. The peaked structures are much more irregular 
in amplitude and position than are those for a symmetrical junction. 

In Fig. 9 the dc current versus voltage curves for a fixed gap ratio of 
0.43 (approximately corresponding to the ratio of the energy gap of bulk 
Sn to that of bulk Pb) are plotted for various values of T 2 (from 0.16 to 
0.95). Again, as in the symmetric (SIS) case, the sharpness of the step 
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Fig. 7. The dc current versus voltage for gap ratios ranging from 0.1 to 
0.9, with T 2= 0.42. Curves are shifted down by 0.2 unit as gap ratio 
increases. 

structure grows as T 2 decreases. This can be seen more dramatically in the 
d V / d I  plots, where peaks grow and sharpen as  T 2 decreases (cf. Fig. 10). 
The figure for T 2-- 0.61 has a striking resemblance to the data of Rowell 
and Feldman, 14 agreeing in many details with their results. 

The KBT analysis can be applied as in the previous section to discover 
the processes responsible for the structures. However, the asymmetry 
between the gaps makes the analysis much more tedious. I shall confine 
my remarks to justifying one prominent qualitative feature. 

Consider the behavior of  the structure in d V / d I  as a function of gap 
ratio. As can be seen in Fig. 8, there is a qualitative difference between the 
appearance of the structure for gap ratios greater than 0.5 and ratios less 
than 0.5. For exampl~  note the great qualitative difference between the 
structure at a ratio of  0.6 and that at a ratio of  0.4. 

To understand this qualitative difference, consider the structure near 
AR--AL (indicated by arrows in Fig. 8), which disappears for gap ratio 
above 0.5 (in Fig. 8, the arrow in the curve for the gap ratio equal to 0.6 
indicates where this structre would be, if it were present). At AR--A L one 
observes that the initial Andreev reflection yields a hole traveling to the left 
(cf. Fig. 11), which finds accessible states in the left electrode if AL< 0.SAR. 
However, if the reverse of  this inequality is true, then the initial Andreev 
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reflection yields a particle traveling to the left, and there are no accessible 
states in the left electrode for this particle, so another Andreev reflection 
(at least) must occur. More Andreev reflections require more factors of 
T 2 < 1, SO the effect of such processes at A R -  A L is rapidly diminished as 
A L increases from 0.5A R. Similar arguments apply to the case where A R is 
the smaller of the two pair potentials. 

The structures appearing in dV/dI and dc current versus voltage curves 
are all independent of which gap is chosen to be the smaller gap, i.e., the 
I - V  characteristics are symmetrical. 

8. AC CURRENT 

According to Eq. (37), the ac current is given by 

Re [,~0 J, (tOo) e'"'%t ] (49) 

The coefficients J, contain the time-independent portion of the phase ~bo. 
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Fig. 10. Dynamical resistance versus voltage for gap 
ratio of 0.43, T 2 from 0.26 to 0.68. Units along the 
vertical are arbitrary. 

Conventionally, for the Josephson effect in ideal junctions, one writes ~4 

I = Iqp(V) + IJl(V) s in[0( t ) ]  + Ij2(V) cos [0( t ) ]  (50) 

where 

0( t )  = 00+,Oot (51) 
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Fig. 11. Semiconductor pictures for (left) A L < 0.5A R and (right) A L > 0.5A R at eV = ~R- AL, 
illustrating the qualitative difference between these two cases. 

Thus, in order  to comply  with this convention,  I will write Eq. (49) as 

{ - I m ( J .  '-*o - = e - J _ .  e i"*o) sin[n~b(t)] 
n>O 

+ Re(./~ e-'"*°+J_, e ̀ "e%) cos[rob(t)])  

= E {Ij ,(V)~ sin[nd~(t)]+Ij2(V)n cos[n~b(t)]} (52) 
n>0 

In  Figs. 12-15 the ampli tudes o f  the first three o f  these ac current 
contributions are plot ted versus voltage for T z =  0.13 (dotted curves), and 
0.42 (solid curves), for an SIS junction.  For  comparison,  I have also plot ted 
the results for these quantities in a junct ion where only the lowest order  in 
T 2 need be kept (dashed curves), so that the current takes the form o f  Eq. 
(50). It is evident that  these ac current versus voltage curves possess structure 
that is as rich as that o f  the dc current versus voltage curve. It is remarkable  
that a one-parameter theory  ( T  2) can p roduce  such a variety o f  structure 
in the current versus voltage characteristics. The origin o f  the rich structure 
in the ac current ampli tudes lies in the hopping  problem ment ioned in 
Section 5. All o f  my results flow from the solution to this problem o f  a 
particle hopp ing  in a one-dimensional  lattice with a s i te-dependent  forward 
and reverse transfer integral. 

The persistence o f  the second harmonics  Ij1(V)2 and IJ2( V)2 is also 
remarkable.  To my knowledge,  these have never been measured by any 



22 Gerald B. Arnold 

> 

O .  
D" 

3 . 6 1  I I i I ............. 
. . . , , - ' "  

2 . 8 9  .. .... 
. , . , "  

2 . 1 7  ................... 
. . . . . " "  d l "  

. . . '  / 

1 . 4 4  ..'" / 
• '" i 

. , ' "  I 

0 . 7 2  ..." / 
, , . " "  at 

0.00 ........... I , . . . .  
0 . 0 2  0 . 5 0  0 . 9 7  1 . 4 5  1 . 9 2  2 . 4 0  

eV 
A 

Fig. 12. The dc current IQ,(V) versus voltage for a symmetric (SIS) junction 
w i t h  2 - -  2 2 • . (...) T =0.42, (--) T =0.13, and (--) T neghglbly small, so that the 
transfer Hamiltonian result is applicable. 

experiment. In junctions with strong subgap structure, these terms must 
definitely be present. Their observation could provide a useful further test 
of the present theory. 

9. DISCUSSION AND CONCLUSIONS 

The present theory has, in my opinion, nearly completed the solution 
to a problem of more than 20 years standing in superconducting tunneling. 
No previous theory of subgap harmonic structure has achieved the kind of 
detailed agreement with experiment manifested by this theory. The results 
of this paper, combined with the physical mechanism of KBT, provide the 
most complete description yet of superconducting tunnel junctions that 
exhibit subgap harmonic structure. 

In ref. 2 I found that in junctions having one electrode in the normal 
state the total current could be simply expressed for all voltages as the sum 
of current due solely to quasiparticles and current due solely to Cooper 
pairs (supercurrent). There is no such separation in the present case, 
however. The dc subgap current cannot be written as the sum of currents 
carried solely by quasiparticles and solely by Cooper pairs. The supercurrent 
cannot be disentangled from the quasiparticle current because the Andreev 
reflection processes that allow quasiparticles to carry subgap current through 
the junction necessarily generate or destroy Cooper pairs in the intermediate 
stages of their Andreev-reflection-assisted tunneling. For this reason, one 
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cannot  extract separate supercurrent  and  quasipart icle current  cont r ibut ions  
to the subgap structure. 

The parameter  KdB, the "barr ier  thickness parameter ,"  is always less than 
uni ty  for those junc t ions  that show the clearest subgap structure. Figure 16 
shows a graph of barr ier  height (in meV) versus barrier  thickness (in 
Angstroms)  for effective thickness parameters  ranging from 0.1 to l. For  
barr ier  heights of the order  of an electron volt or more, one can see that 
extremely small values of barr ier  thickness are i m p l i e d - - i n  many  cases, 
unphysically small values. One  can hardly have cont inuous  barr ier  layers 
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of thickness less than 3 A or so. It is therefore hard to argue that KdB be 
taken literally as determining the thickness and barrier height of  a thin 
insulating layer. 

On the other hand, one may regard the barrier transmission process 
as a generalized scattering process involving two types of  scattering: normal 
scattering, with probability 1 - T 2, and Andreev scattering. These two types 
of  scattering are accounted for to all orders by the present theory. It is 
therefore reasonable to suppose that the present results are not specific just 
to the ideal, continuous, ultrathin-barrier case, but may also apply to 
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" p a t c h y "  barriers, as are suspected to be present in many situations. Then 
1 - T 2 would  represent the average probabil i ty o f  a single normal  scattering 
in the region of  the barrier. Of  course, the present theory assumes that the 
quasiparticle distribution functions in the electrodes are equilibrium func- 
tions, but  for a patchy barrier, high current densities may be present in the 
more t ransparent  patches,  driving these functions away from their equili- 
br ium va lues .  

I have neglected the effects of  capaci tance o f  these junctions,  which 
can lead to voltage fluctuations. Naively, one might suppose that such effects 
would  take the current versus voltage curves presented here and average 
them over voltage with a Gaussian weighting factor, o f  width inversely 
propor t ional  to the capacitance.  I f  this is correct, one would not expect 
that  capaci tance plays an important  role, except for extremely low-capaci-  
tance junctions.  The correct  inclusion o f  junct ion capaci tance into the 
present theory is currently under  investigation. 
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