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Second Sound Very Near Tz 
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The results of an experimental investigation of the evolution of planar, non- 
linear, second-sound pulses in superfluid 4He, to within 650 nK of the 
2-transition, are presented. A new method for extracting the second-sound 
velocity and damping is demonstrated. As predicted from two-fluid 
hydrodynamics, the pulses are well modeled by the solutions of Burgers' 
equation. The second-sound velocity (U2o) and damping (D2) are extracted 
from fits of the model to the data. Damping data are obtained in this fashion 
to 3 x 10- 7 in reduced temperature at saturated vapor pressure; nearly two 
decades closer to T~ then any previous measurements. The superfluid density 
is extracted from the U2o measurements and the critical exponent, ~, is deter- 
mined. A study of very large amplitude pulses near T)~ is also presented. 
These pulses extend well beyond the range of validity of Burgers' equation. 
The amplitude of the shock that forms at the tr.ailing edge of the pulse 
is observed to saturate as a function of heater power and then decrease 
suddenly, as has been previously observed away from Tz. However, the pulse 
shapes are quite different from any previously observed. 

1. INTRODUCTION 

The behavior of 4He very near the 2-transition has long been of 
interest in the study of critical phenomena. A combination of properties 
renders it an ideal choice for this purpose; the superfluid transition occurs 
along a critical line, so that a simple change of pressure provides a test of 
universality; as a liquid, helium is strain-free, and as a cryogenic liquid, it 
is also easily purified. Furthermore, the effects of gravity, problematic in 
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the study of liquid-gas and binary-mixture critical points, are qu!te small in 
helium. 

The unique hydrodynamics of the superfluid state provides several 
interesting probes of the critical region. The phenomenon of second sound 
(entropy waves) has proven particularly useful. The superfluid fraction, 
Ps/P, can be extracted from the velocity of second sound. Since second 
sound can be detected extremely close to T~, second-sound velocity 
measurements have provided the most accurate and complete data on Ps/P 
to date. j'2 From p,/p the exponent ( can be determined and the predictions 
of static renormalization group (RG) theory tested. From measurements of 
second-sound damping, the predictions of the dynamic RG theory-can be 
tested. 

Sufficiently near the 2-transition, nonlinear effects dominate the 
behavior of second sound. This complicates considerably the measurement 
of the second-sound velocity and damping, and requires that we consider 
at least the lowest order nonlinear terms in the analysis of the 
hydrodynamic equations. In a previous paper, 3 we showed that such a 
treatment describes well the evolution of nonlinear second-sound pulses for 
reduced temperatures t - 1 - T / T ~  as small as 10 -3. Here we show that, 
in fact, this analysis works well even for t near 3 x 10 -7, and that our 
understanding of weakly nonlinear second sound is therefore sufficient to 
allow us to measure the superfluid fraction and second-sound damping 
very near T~. 

Second sound has also been used extensively as a probe of two-fluid 
hydrodynamics itself, and, more recently, of the apparent "breakdown" 
of two-fluid hydrodynamics (see for example Ref. 4 or 5) or of vortex 
dynamics.5 16 In the present work, very large amplitude second-sound 
pulses very near T~ were studied, and several new features are reported. 

In Sec. 2 of this paper, the experiment is described. Second-sound pulse 
evolution was probed for 3 x 10-7~< t~< 10 -2 for 4He at vapor pressure. 
The model is reviewed in Sec. 3, with an emphasis on possible pitfalls very 
near the transition. In Section 4 the data for small amplitude pulses are dis- 
cussed and the second-sound velocity and damping measurements are 
presented. Sections 5 and 6 contain discussions of the results for second- 
sound damping and superfluid fraction, respectively. Finally, in Sec. 7, the 
data involving large amplitude pulses are presented. 

Part of the work presented in this paper is based on the Ph.D. Thesis 
of one of us (LSG). Additional details not covered in this paper may be 
found in that thesis. 17 
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2. T H E  E X P E R I M E N T  

2.1. The Cryostat 

The cryostat  used in these studies, a modified version of  one described 
elsewhere, 18 is shown schematically in Fig. 1. The cryostat  had three 
separate stages or  platforms inside a vacuum can that  was submersed in 
liquid 4He; the refrigerator platform (a), the isothermal platform (b), and 
the cell platform (c). A cont inuously-operat ing pumped  4He refrigerator 19 
(not shown) was located on (a), which was typically regulated to milli- 

Fig. 1. The cryostat schematic. The refrigerator (a), 
isothermal stage (b), cell platform (c), cell (d), cold 
valve (e), T~-device (f), melting pressure thermometer 
(MPT) (g), pressure gauge (h), MPT reference 
capacitor (i), pressure gauge reference capacitor (j), and 
heatleak capillary (k) are shown. G3, G7 and G8 are 
germanium thermometers and reference resistors. Each 
stage also has a 5.1 kf~ heater. 



134 Lori S. Goldner, Nobert Mulders, and Guenter Ahlers 

Kelvin stability near 1.55 K. The isothermal platform was regulated 
to a stability of about 1 p K  near 1.82 K with germanium thermometry, 
described below. On this thermally stable environment were located the 
reference capacitors (i, j)  for a 4He melting pressure thermometer 2° (g) and 
the pressure gauge (h), respectively. The pressure gauge was not extensively 
used in the work at vapor-pressure described here, but could be used in 
conjunction with a hot volume (not shown) to regulate the cell pressure to 
0.1 #bar  at 29 bar. 18 The melting pressure thermometer (g) could be used 
to regulate the cell (d) and cell platform to a stability of about 1 nK, as 
described briefly below and in Ref. 20. The cell and the cell reservoir were 
connected by 10 cm of a heavy stainless steel capillary (0.051 cm o.d.). A 
superconducting magnet, custom designed by American Magnetics 21 for 
very uniform fields over large horizontal areas, was used to bias the super- 
conducting thin-film bolometers as described in Ref. 3. The magnet was 
located outside the can in the 4He bath space. 

Each platform had at least one previously calibrated germanium 
thermometer with a matching wire-wound reference resistor, and a 5.1 kf~ 
heater for use in temperature control and measurement. These thermo- 
meters were used in a five wire bridge-and-controller arrangement. 22 
Manganin wires were used for all resistive thermometry and temperature 
control. 

The cell is shown in Fig. 2. It was used and described previously, 3 and 
is shown here in somewhat more detail and drawn to scale. The working 
region of the cell (k) was defined on the top and bottom by two pyrex plates 
(bolometer and heater substrates), and on the sides by a copper spacer (j). 
The cavity (k) was square and quite short, 3.18 x 3.18 x0.1203 cm 3. The 
second-sound generator, a chromium heater that exactly spanned the lateral 
dimensions of the cell (3.18 x 3.18 cm2), was located on the inner surface of 
the bottom Pyrex plate. It faced the second-sound detector, a small super- 
conducting thin-film bolometer, centered on the inner surface of the top 
Pyrex plate. Inside the cell, two pairs of copper wires were attached to the 
heater, so that four-wire measurements of the heater voltage and resistance 
were possible. The wires were soldered to gold film electrodes on the 
heater, and were connected via two Microtech hermetically sealed feed- 
throughs (h) to cryogenic shielded twisted pairs. In a similar way, the 
bolometer was connected to a single shielded twisted pair. 

2.2. Thermometry 

The 4He melting pressure thermometer 2° (MPT) utilizes the tem- 
perature dependence of the melting pressure and is capable of resolving 
temperature changes near T~ of 1 nK. A Straty-Adams style strain gauge 23 
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was used to convert  changes in pressure to changes in capacitance. A three- 
wire coaxial bridge 2° was used to measure the capacitance of the gauge, 
and an LR-130 temperature controller regulated the temperature to an rms 
noise level near 1 nK. The M P T  and reference capacitor  used in the bridge 
are shown in Fig. 1. 

The accuracy of the temperature measurement  was determined by the 
accuracy with which a fixed point, in this case Ta at saturated vapor  
pressure, could be measured. A small thermal conductivi ty cell (called "the 
Ta-device") at tached to the bo t tom of the sample cell (Fig. 2) could be used 
to measure the onset of thermal resistance in the superfluid, thereby deter- 
mining T), to an accuracy of  about  5 nK. Since the 2-point is shifted under  
gravity by 1.273 + 0.013 p K  per cm of helium 24-26 (at vapor  pressure), T~ 
at the T~-device is shifted by about  5 # K  from Ta at the center of  the cell 
(the bo t tom of the T~-device is nearly 4 cm from the center of the cell). The 
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Fig. 2. The sample cell, drawn to scale. The Ta-device (a-d) consists of a 
stainless steel sidewall (a), two copper end pieces (b, c), a copper flange (d), a 
helium filled gap (e), a pair of carbon thermometers (T~ and Tb) and a metal 
film heater resistor (H), nominal value 5.3 kD at 300 K. Also shown are the cell 
fill capillary (f), the MPT fill capillary (g), the electrical feedthrough (h), the cell 
top cap (i), body or spacer (j) and bottom cap (1), and the second sound cell 
cavity (k). 



136 Lori S. Goldner, Nobert Mulders, and Guenter Ahlers 

bolometer could also be used to measure T~ to a precision of ! nK and an 
accuracy of 20 nK by observing the change in self-heating of the device at 
the transition. Thus the Ta-device could be "calibrated" against the 
bolometer to an accuracy of 20 nK, a somewhat better result than if we 
relied on the accuracy of the previously measured gravity shift and our 
knowledge of the cell length. Conversely, our measurement of Ta at the two 
points in the cell gave a value for the shift in T~, under gravity that agrees 
with previous measurements to within the combined errors. The precision 
of our final measurement of T~. was 5 nK and the accuracy about 20 nK. 

2.3. Electronics 

The heater current leads were driven by a Wavetek model 178 program- 
mable waveform synthesizer. The output of the synthesizer was run 
through a FET switch that was used for protection purposes. The opera- 
tion of the FET switch, and the triggering of pulses at the synthesizer, was 
controlled by the timer outputs of a Tecmar Labmaster board (model 
number 020009) in an IBM model XT computer. The timers were run 
through optical isolators to avoid ground problems. The heater voltage 
leads were connected directly to the input of a digitizer (a Nicolet model 
12/70 signal processor, eight bits, 20 MHz). The synchronous output of the 
synthesizer was used, through a pulse transformer, to trigger the digitizer. 
In this manner the voltage across the heater was recorded. The four leads 
also allowed for an accurate measurement of the heater resistance (typically 
116.7 f2) so that the power input at the heater was well known. 

The bolometer was biased at constant current with a simple current 
supply, consisting of one or more batteries, a good 10 V regulator, and 
metal-film resistor in series. The voltage across a reference resistor 
(Rref= 10 kf~) could be monitored so that the current through the device 
was accurately known. The ac voltage output was monitored with a 
Princeton Applied Research model 118 preamplifier, typically used in dif- 
ferential mode, plugged into a model 114 filtering box. The bias source and 
the preamplifier were located as close as possible to the top of the cryostat 
in order to reduce lead capacitance, and therefore increase the frequency 
response of the circuit. The bolometer was typically operated at a resistance 
of about 200 ~, set by the magnet bias, for the same reason (it was useable 
between 100 and about 4000 ~). Both the current through the device and 
the dc voltage across it (Vb) were recorded in between data taking, thereby 
providing a resistance measurement. The cryogenic cables to the bolometer 
were all either copper plated or superconducting, so that the voltage drop 
across the leads was negligible. Static calibrations of the bolometer 
(resistance vs. temperature) were performed every time the bias current or 
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field was changed. Dynamic calibrations, using the second-sound amplitude 
calculated from the power of a pulse launched at the heater, confirmed the 
static calibration to better than 3 %. 

The bolometer was operated near two different current biases, a factor 
of 12 apart in power dissipation. Typical dissipation for the higher current 
bias (47.6#A) was about 0.52#W. For the lower bias (9.94/~A), the 
dissipation was near 0.043#W. The sensitivity of the device was 
approximately 16kf~/K for the higher bias level and 45 kf~/K for the 
lower. 

2.4. Procedure 

The cell was filled with ultra pure 4He, containing less than 0.5 x 10 -9 
parts 3He by mass, 27 to a pressure of 600 tort at 3.2 K. Cooled to 2.172 K, 
the cell was at vapor pressure with the liquid level in the cell reservoir 
above the working region. 

The temperature at the cell platform was controlled differently depend- 
ing on the distance from T~. For t <  5.5 x 10 -4, the MPT was used to 
control temperature. For t >  5.5 x 10 -4, a germanium thermometer was 
used and the distance to T~ was known to about 1 ktK. Reduced tem- 
peratures were always measured with respect to T~ at the cen ter  of the cell. 

A voltage pulse, consisting of a single cycle of a haversine, was applied 
at the heater and launched a second-sound pulse into the helium. This 
pulse propagated across the cell and was detected each time it reflected off 
of the surface containing the bolometer. The geometry of the cell was such 
that, at the bolometer, the first six pulse echoes were free from effects from 
the edge of the heater or reflections of second sound off the wall; i.e., the 
pulse remained quite planar until after its sixth arrival at the bolometer. 
The recorded data always represent the bolometer temperature as a 
function of time, and generally consist of the first six arrivals of the pulse 
at the detector. Due to the reflection at the surface of the bolometer, the 
temperature amplitude recorded at the bolometer is roughly a factor of two 
larger than the amplitude of the second sound as it propagates across the 
cell. A detailed discussion of substrate modeling and boundary conditions 
is given in Ref. 3. 

Signal averaging of up to 20,000 pulse sequences was used to increase 
the signal-to-noise ratio. Heater pulses were launched every 1 to 4 seconds. 
The time interval was chosen to be long enough to allow the previous pulse 
to completely decay away. The bandwidth of the bolmometer circuitry was 
also carefully chosen to limit noise while not distorting the pulses, 3 and in 
this fashion rms noise levels as low as 2 or 3 nK could be achieved (see for 
example Fig. 8). 
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Fig. 3. A typical data set. Here t =  5.0141 x 10 - s  and the rms noise is 
about  30 nK. This is the first 6 arrivals of a second sound pulse at the 
bolometer. The left hand scale is the temperature change measured at the 
bolometer. 

A typical data set is shown in Fig. 3. Here 2000 pulse sequences, one 
every 1.7 s, have been averaged to achieved an rms noise level of about  
30 nK. The reduced temperature was 5.014 x 10-5. The temperature change 
at the bolometer as a funuction of time is shown. 

3. ANALYSIS 

3.1. Overview of the Model 

The model used to extract U2o and D 2 in these experiments is identical 
to that described in Ref. 3. Here we discuss the use of this model near T~. 

The method used to model the data uses Burgers' equation 

av,, D2 02v~ ~v~ ( l )  
dt 2 ~x 2 + (u20 + c~2vn) ~3----x- 

to describe the propagation of second sound. 28-3° Here Vn is the normal 
fluid velocity, D 2 is the second-sound damping, u20 is the velocity of linear 
second sound 

2 _ a 2  Ps T 
u2° - p~ Cp (2) 
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and ~2 is the Khalatnikov nonlinear coefficient 31 

a T  0 
~2 = ~p  ~-~ln ( ~ )  • (3) 

Here a and Cp are the entropy per unit mass and heat capacity per unit 
mass at constant pressure, respectively. Near Ta, ~2 ~ (Cpt) -1. To within 
3 %, Cpa2/aT= - 0 . 4 7 t -  1 K -  1 over the range 10 8 < t < 10 -2. The factor of 
aT/Cp varies from 0.14 to 0.37 K over the same range of t. The approximate 
proportionality of ~2 to t -1 indicates that the nonlinearities will be 
apparent even for the smallest amplitudes of v, if t is small enough. In our 
fits, ~2 was of course evaluated using the full expression Eq. 3. 

Burgers' equation can be shown to result from an expansion to lowest 
nonlinear order of the equations of Landau two-fluid hydrodynamics. 28-3° 
It describes only pulses traveling in one direction, and not a pulse that 
interacts with itself, for example, as it reflects off of a wall (for a further 
discussion, see Ref. 3). 

The data in this experiment is the temperature of the bolometer as a 
function of time, and the power input at the heater. A model of second 
sound propagation in bulk helium is therefore not quite sufficient for 
analyzing the measurements. Careful accounting of thermal effects in the 
heater and bolometer substrates are also required. 

In the analysis, either the pulse that is launched at the heater, or the 
first pulse detected at the bolometer, may be used as an initial condition 
for the solution of Burgers' equation. The solutions are fit to the pulse 
measured at a later time, that is, at a later arrival at the detector (a later 
echo). Fits done with the heater pulse as an initial condition were quite 
sensitive to small errors (<  1%) in the bolometer calibration, or to errors 
in the parameters chosen for the substrate model (i.e., the thermal conduc- 
tivity or Kapitza resistance of the boundary), and so they were only used 
to aid in choosing a Kapitza resistance and for doing the dynamic cali- 
bration of the bolometers. The fits involving only bolometer data were 
quite insensitive to the value of the Kapitza resistance chosen, and even to 
errors as big as 5 % in the bolometer calibration. The only two adjustable 
parameters in these fits were U2o and D2. Since these were the only 
parameters involved and since there was little correlation between them, 
they could be determined with considerable precision, and deviations from 
Burgers-like behavior was easily spotted. 

The best value for the Kapitza resistaflce of the bolometer and heater 
substrates was 0.5 cm2K/W. The parameters for the Pyrex substrates 32'33 
are those of Ref. 3; the heat capacity and thermal conductivity were 
0.03 J/kg K and 0.05 W/mK, and the density was 2230 kg/m 3. 
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Fits were performed using a wide variety of initial and final conditions; 
the same data set could of course be fit using any early pulse as an initial 
condition and any later pulse as a final condition. There were limits to this 
procedure for pulse sequences taken at very small t, where temperature 
fluctuations of a few nK lead to small but evident fluctuations in the arrival 
times of the later echoes. This leads to a "smearing" of these echoes in the 
averaged pulse sequence, which manifests itself as a slightly larger damping 
and velocity. However, outside of this small-t regime there were no 
noticeable effects due to choice of fitting pulse, and the choice is somewhat 
arbitrary. For  the data compiled in Appendix A and discussed throughout 
this section, the first arrival of the pulse at the bolometer was always used 
as an initial condition for the model. For  data at t < 9 x 10 -6, the second 
echo was used in the fit. For 9 x 10 .6 < t < 9 x 10-5, the third echo was 
used in the fit, and for all other data, fits were done to the fourth echo. 

Since later pulses have self-interacted (at reflection off the cell walls) 
more times than earlier ones, the absence of a trend of the fitting param- 
eters with echo number can be taken as evidence of the unimportance of 
interaction effects. A further discussion and search for interaction effects is 
discussed below. 

Throughout  this work, the validity of the model near Tx is 
investigated. In the next section we discuss some necessary conditions for 
the applicability of Burgers' equation as well as the effect of interactions. In 
Sec. IV, results are presented, and in Appendix A the values obtained for 
U2o and D2 are tabulated. These data were taken under a great variety of 
conditions, and except in the most extreme cases (very large or very long 
pulses, for example), the fitting parameters (u20 and D2) were independent 
of these conditions. This is a good indication, but of course not a proof, 
that the model used in the analysis is valid and that relevant nonlinear 
terms are properly taken into account. 

3.2. On the Use of Burgers' Equation Near T~ 

The truncation of the expansion which leads to Burgers' equation is 
expected to hold only if 6Ps/Ps ~ 1. Upon approaching the Z-point, we have 
Ps ~ tq Thus the condition for Burgers' equation to still be applicable to 
our second-sound pulses can be written ~6t/t~ 1 where 6t/t is the tem- 
perature amplitude of the pulse expressed as a fraction of t. While this is 
a necessary condition, it is not sufficient. A variety of other effects come 
into play, and some may be enhanced near the transition. 

A problem which potentially becomes more severe near T;~ is linear 
coupling to first sound. We have no method for detecting first sound in 
this experiment. However, there are two dimensionless parameters that 
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tC2/C 2~ where cl characterize this coupling, 34'35 ( 1 -  Cv/Cp) and the ratio ~ 2~ ~, 
and c2 are the perfectly decoupled ( 1 -  C~/Cp=O) values of the first and 
second-sound velocities 

c~= ~pp ~ (4) 

and 

c~= a 2 psT 
p.Cv (5) 

Here P is the pressure, p the density, C v the heat capacity at constant 
volume, and a the entropy per unit mass. The parameter 1 -  C.v/Cp is 
always quite small for 4He at vapor pressure, but its value increases 
near T~. An estimate 36 gives 1 -  Cv/Cp ~0.05 at t = 1 0  - 7  and SVP. The 
expression for the linear second-sound velocity that we use in Eq. (2) 
already contains the term linear in (1 - Cv/Cp). The next term is of order 
( 1 -  C~/Cp)(C2/C~). The ratio 2 2 =  c2/c I 1.3x10 -3 at t = 1 0  2, and it falls as 

2 goes to zero. The second term is therefore always we approach T)~ and c 2 
quite small and can be ignored, even very near T~. Higher order terms all 
contain powers of 2 2 c2/c 1, and are therefore smaller yet. 

In an effort to minimize some of the nonlinear effects, we will limit our 
use of the model to second-sound pulses whose temperature excursions are 
less than 10 % of the distance to T~; that is, the amplitude of the pulse used 
as an initial condition, 6t, is related to t by 

6t<O.lt. (6) 

Even with the limit imposed by Eq. (6), there are nonlinear effects not 
included in Burgers' equation. As discussed in Ref. 3, the nonlinear 
coupling to first sound 37 is ignored. This coupling appears to remain quite 
small near T;., but a further experimental or theoretical investigation is in 
order. 

Of greater concern is the influence of the nonlinear interaction of the 
pulse reflecting through itself. Burgers' equation does not account for 
these effects, but testing for their presence is straightforward. One method, 
used successfully farther from T~ in Ref. 3, is demonstrated in Fig. 4. In this 
technique, two pulses are launched in rapid succession from the heater. At 
the first arrival of the double pulse at the bolometer, the first pulse has 
interacted only with itself (as it reflects off the boundary) while the second 
pulse has interacted with the reflected first pulse as well as with itself. The 
two pulses many be directly compared, and any disparities in their shapes 
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Fig. 4. The absence of distortion due to pulse interactions is 
demonstrated. For these data, t = 4.9 × 10 -6 and the initial pulse 
length is 0.12ram. The first arrival of a double pulse at the 
bolometer is shown in (a). The open diamonds in (b) are the first 
pulse in (a) replotted, and the open circles are the second pulse, 
shifted in time to coincide with the first pulse. The difference 
between these two pulse shapes are shown in (c). 
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or arrival times is taken as evidence of an interaction effect. For the data 
in Fig. 4, the reduced temperature is 4.9 x 10 -6 and the initial pulse 
widths 38 are 0.12 mm although they have spread (and are closer to 0.2 mm) 
upon their first arrival at the detector. The amplitudes of the pulses are 
near 6tit = 0.03. Figure 4(a) shows the actual data for the first arrival of the 
pulse pair. For Fig. 4(b), the second pulse has been shifted along the time 
axis to coincide with the first using a least-squares algorithm. The resulting 
pulses and their differences [Fig. 4(c)] are plotted. 39 The agreement 
between the two pulses is excellent, and the arrival time of the second pulse 
at the bolometer is unaffected by the existence of the first pulse. We 
conclude that self-interaction does not play a significant role here. Larger 
amplitudes (6t/t ~ 0.06) were also used. Double pulse sequences were done 
for t as small as 3 x 10 -6, and there were never any significant differences 
between the first and second pulses for the small-amplitude pulses used to 
determine sound velocity and damping. 

In order to further check for interaction effects, data were generally 
taken at a variety of pulse widths, and systematic deviations of the 
measured velocity and damping were sought (examples are given in Figs. 
5 and 6). For an infinitesimally short pulse, interaction effects are expected 
to be minimal. As mentioned above, the absence of any noticeable effect of 
the fitting parameters on the echo number used in a fit is also evidence 
against significant interaction effects. 

Higher order nonlinear effects should not be important as long as 6tit 
remains small. As we approach T;., we will of necessity be working at 
successively larger values of 6tit. In order to check for any systematic 
dependence of second-sound velocity or damping on pulse amplitude, most 
of the data was taken at two or more amplitudes. Systematic deviations of 
D2 were in fact noticeable at sufficiently high amplitudes, but they always 
showed up first as a small but obvious deviation from a fit to the model. 
Similarly, a sufficiently long pulse, even at very low amplitude, inevitably 
seems to deviate slightly from Burgers-like behavior. The fact that this 
happens even at quite small amplitudes is perhaps evidence of yet another 
class of effects coming into play near Ta. The formation of vortices and the 
effects of superfluid turbulence have been the subject of much interest, 
but little work has been done in the region very near T). Such effects are 
ignored in the two-fluid hydrodynamics used to derive Burgers' equation. 
This topic will be discussed further in Sec. 7; for now it is sufficient to say 
that any amplitude or pulse-width dependence of the second-sound velocity 
or damping is easily detected in these experiments, and we find a large 
regime where such effects are unimportant. 
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4. RESULTS 

Data were taken at a great variety of (initial) pulse amplitudes and 
(heater) pulse lengths for reduced temperatures between 10 -2 and 10 -6 . 
Inside of 10 -6 , the small amplitude of the signals required that we signal 
averaged for as long as 16 hours. The 4He melting pressure thermometer 
was typically stable to a few nK over hours: 2° nonetheless, the difficulty of 
data taking increased near T~. and so for t < 10 .6 data was typically taken 
at only a single pulse-amplitude and length. The length and amplitude used 
were chosen to be consistent with pulses well described by the model for 
t >  10 -6, as will be discussed below. The results for u20 and D2 are 
compiled in Appendix A. 

4.1. Results at Different Pulse Lengths 

Although the damping of second sound is independent of k (the 
wavenumber of the sound), the attenuation is dependent on k 2 and so the 
shorter the pulse, the more sensitive it is to the effects of D2. This is 
particularly evident in the region t >  2 x 10 -5, where the damping is still 
quite small and the longer pulses are particularly insensitive to the effects 
of D 2. 

Several examples are shown in Fig. 5. In each case, the open circles are 
the temperature of the bolometer at the fourth arrival of the pulse 
(nominally a factor of two larger than the temperature change in the 
helium, see Section 3). The line is a best fit using the first pulse arrival as 
an initial condition. The only parameter varied at the heater is pulse 
length; the heater voltages are nominally the same. The solid circles below 
each fit are the residuals (the fit values subtracted from the data). The pulse 
lengths and fit parameters are given in Table 1. For the very longest pulse, 
(a), the fits are quite insensitive to the value of D2 and this fit is therefore 
not used in the compilation of D2. There are also small but systematic 
residuals present in this pulse; this "bowing" is typical of these longest 
pulses and becomes more pronounced closer to the 2-point and at higher 
amplitudes. The pulse shown in (b) is quite sharp, so much so that there 
are numerical difficulties involved in the calculation (which are responsible 
for the spike in the residuals), and the second-sound damping has been 
artificially raised by the fitting procedure in order that the numerics do not 
altogether blow up. Closer to T~., as the damping grows, this is no longer 
a problem. Pulse lengths greater than 0.20 mm were never used for 
t >  10 -5, but lengths as large as 0.34mm worked quite well for smaller 
reduced temperatures. The largest pulse lengths tested, near 0.60mm, 
nearly always showed the systematic residuals shown in (a), and were also 
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Fig. 5. Examples of second-sound data and fits at t = 2.54 x 10 -4. In each case, the open 
circles are the temperature recorded at the detector for the fourth pulse echo, the line is the 
best fit using the first arrival of the pulse at the bolometer as an initial condition, and the fit 
residuals are shown (solid circles) below. A variety of pulse lengths are shown; see the text 
(and table 1) for a description. Only (c)-(f) were used to find the second-sound velocity and 
damping. 
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TABLE I 

Fitting Parameters for Fig. 5a to f 

t = 2.541 × 10 -4 

Fig. 5 pulse length U2o (m/s) D 2 (10 4 cruZ/s) 602(104 cm2/s) 

a 0.60 mm 1.875 2.54 0.36 
b 0.30 mm 1.875 5.13 0.07 
c 0.121 mm 1.875 4.56 0.05 
d 0.080 mm 1.875 4.59 0.06 
e 0.050 mm 1.875 4.57 0.06 
f 0.030 mm 1.875 4.38 0.06 

plagued by numerical difficulties somewhat closer to T~, and so were never 
used in the determination of U2o and D2. As the pulse length decreases, the 
pulses form shock tails faster, but the increased attenuation also tends to 
round the shock. 

It is interesting to notice that the sensitivity of D2 of these fits in fact 
depends on the nonlinear terms; the loss in the integrated power carried by 
these pulses due to attenuation cannot be measured. For  example, for the 
fit shown in Fig. 5(f) (with the highest frequency components and therefore 
the greatest attenuation), an integration of the initial pulse (first echo) 
yields an energy content of 0.166 mJ; an integration of the fourth echo 
yields 0.168 mJ. The difference is within the error of about 2.5 %. Thus the 
energy carried by the pulse does not decay in a measurable fashion between 
the first and the fourth echo. Only the change in pulse shape as it evolves 
in a nonlinear fashion is affected by D 2. In the linear case there is no evolu- 
tion of the pulse shape for these short times and therefore no sensitivity to 

the damping. 
Finally, we mention that although u20 is unaffected by the difficulties 

described above, we nonetheless do not use the fits shown in (a) and (b) 
for a measurement of U2o, either. 

The fits shown in Fig. 5(c)-(f) are all quite good, with no systematic 
residuals. There is good agreement  among the resulting values of D2, and 
excellent agreement among the resulting U2o'S. 

The smallness of D2 prevents its measurement by this method for 
t > / 5  × 10 -4. For  small damping, the pulses are either completely insen- 
sitive to the value of D2 (for small amplitudes and the longest pulses), or 
numerical difficulties illustrated in Fig. 5(b) persist to the shortest available 
pulse lengths. While good values for U2o are attainable even in the linear 
regime by this method, values for D2 are not. We are limited in how short 
a pulse we can use by the bandwidth of the electronics; higher frequency 



I 
"~ 0 . 5 /  

0 

0.04 

0 

-0.04 

( a )  

• • • g i g  • • • -~. " • • ° o..• oe oq. • oe 
• • • c o  ,ub o • • ~  oep ,  am, O o 8 o o  • ° m  | 

• • • • ~P a b . o  • m Oqp" ~ g-_ 
. ' ; . . . . . . ' , , . . . . . ~  . • . ~ .  • ",. ~ 

. --  •'o " o ~  & •  - • o • ~ "  
-0 m'5~ 7 • • " 0-~ 

~ 0  I "  I I • I I I q--7 
5.9 6 6.1 6.2 

t i m e ( m s )  

[ I I , ~  I I I 

i i i i I i i -~ 
004  L- . .  . . .  

I- • • • • • e -I 

M ~ o  • ~ oOo~Ol -oo - - ° -  .'G~o" • • • 7 
~ 7  qu' ~ d .  e O 0  • ~ 9 ~,,,AD - m  - ~  

~.~ U L  ~ e e  j • o • • ~ e . . e o  • oo~..J 
~.~ ~eUP~ee ooeseo e e l •  • ~ • L • O 0 ~ O  d ~  

~ • ,~ a s  ~" . ~  . o  . . ~  
~ , . . .  ".  • ~ ' ~  

m 

5.92 6 6.08 

t i m e ( m s )  

Fig. 6. Typical fits, used to determine u2o and O 2 at 
t = 5 . 0 1 5 x 1 0  -5. The initial pulse length was 0.160ram 
(corresponding to a 6336 Hz haversine) for the pulse shown in 
(a) and 0.080ram (12672 Hz) for the pulse shown in (b). In 
bo th  cases, the open circles are the temperature  recorded at 
the detector for the third pulse echo~ the line is the fit using the 
first arrival of the pulse at the bolometer  as an initial condi- 
tion, and the fit residuals are shown (solid circles) below. Fo r  
bo th  fits, U2o = 1.015 m/s. 
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response would presumably allow us to measure D2 even in this regime. 
Here, the shortest useable pulse length, shown in Fig. 5(f), corresponds to 
a single cycle of a 62,210 Hz haversine. Note that the bandwidth must be 
such that quite high harmonics of this frequency remain unattenuated if 
electronic pulse distortion is to be avoided. 

Some typical data used to determine U2o and D 2 is shown in Fig. 6. 
Here t = 5,015 × 10 -5 and initial pulse lengths of 0.160mm (a) and 
0.080 mm (b) are shown. The initial pulse amplitudes are again nominally 
the same. 

4.2. Results at Different Pulse Amplitudes 

Data were also taken at a variety of initial pulse amplitudes. An 
example is shown in Fig. 7 for t = 6.34 x 10 -6. Here the widths of the pulses 
launched at the heater are the same for each different amplitude shown, 
and only the amplitudes have been varied. In all the data, the larger- 
amplitude pulses develop sharper trailing edges and spread more. This is as 
expected, since the larger the sound amplitude, the smaller the local sound 
velocity. 

The pulses shown in Fig. 7 were typical of those used in the fits for U2o 
and D 2. Pulses with relative amplitudes 6t/t that were near (but still less 
than) 0.1 began to display the same apparent "bowing" evident for the 
longest pulses in Fig. 5. More severe examples, at even larger amplitudes, 
are discussed in Sec. 7. The pulses used in the study of u20 and D 2 ranged 
in amplitude from 6t/t = 8.1 x 10 q to &It = 0.066. As we moved away from 
T~, it was necessary to use smaller and smaller relative amplitudes; the 
small damping at large t meant that large pulses got very sharp very fast 
and were numerically difficult to model. 

We are ultimately limited in how close to T~. we can work by the 
sensitivity of our detector. Near t = 3 x 10 -7, we can still measure weakly 
nonlinear pulses with 12 hours or more of signal averaging. The data point 
at smallest t is shown in Fig. 8. Here 6t / t= 0.057. The noise is relatively 
large, but the pulse shape is quite sensitive to the large damping and for the 
velocity measurement the noise is immaterial. Larger pulses might have a 
better signal-to-noise ratio, but would fall outside the validity of our model. 

Since only single data sets were taken at each reduced temperature less 
than 10 6, some effort went into choosing reasonable pulse widths and 
amplitudes. Values of ~t/t were generally no bigger than those which had 
already worked well in the 10 6 decade. Pulse widths could not be too 
short; the damping here is quite large and shorter pulses (with their higher 
frequency components and therefore larger attenuation) get quite small 
very fast. In order to be able to see a signal at all, we found that initial 
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Fig. 7. Examples of second sound fits near t = 6.34 x 10-6. The 
max imum amplitude of the initial condition was 6t/t = 0.012 
for the fit shown in (a), and 0.031 for (b). The initial pulse 
lengths were 0.12ram. The fits resulted in U2o=0.4721 m/s, 
D2=(14.3+0.2)x10-4cm2/s at t = 6 . 3 4 8 x 1 0  -6 for (a), 
U2o = 0.4719 m/s, D 2 = (12.8 __+ 0.2) x 10 4 cmZ/s at t = 6.335 x 
10 -6 for (b). 
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Fig. 8. Second arrival of the pulse at the bolometer and fit for 
t = 3.07 x 10 7. Here the pulse width at the heater was 0.32 mm and the 
amplitude of the first echo, used as an initial condition, was 6t/t = 0.057. 
This fit gave u20 = 0.1553 m/s. A pulse was launched at the heater every 1.3 s 
and pulse sequences at the bolometer were averaged for about 10 hours in 
order to achieve the 3 nK resolution shown. 

pulse lengths had to be kept  near  the m a x i m u m  value shown to work for 
t > 10 6, that  is, near  0.30 mm. 

A complete compila t ion of the data  satisfying all the requirements  dis- 
cussed above is found in Appendix A. The values for u20 were "normalized" 
to the data  of Greywall  and Ahlers ~ at t = 10-2;  i.e., the cell length was 
determined,  using the previously measured value of u2o at a reduced 
temperature  of 10 -2, to be 0.1203 ___ 0.0001 cm. 

4.3. The  Effect  o f  the D C  H e a t  F l u x  at  the B o l o m e t e r  

The detector used in this experiment  is a dissipative device, its sen- 
sitivity increasing with increased power dissipation. 3 The velocity of second 
sound is predicted to decrease in the presence of a counterflow, 4°'41 unti l  it 
reaches zero at a "critical" heat flux, Qc- In  order to directly check for any 
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effect of the heat flux at the detector on the second sound, data were taken 
at 0.52 and 0.043 #W (8.0 and 0.67 #W/cm 2, see Ref. 42), a factor of 12 
apart, in the region 1 x 1 0 - 6 <  t < 5  × 10 -5 .  No significant differences in 
pulse shape, velocity, or damping were found in the region 3 x 1 0 - 6 <  

t < 5 × 10 -2. It was not necessary to check for systematic deviations farther 
from the 2-point, since Qc is known to increase with increasing t. Nonethe- 
less, occasional runs were done at various bolometer powers and no 
systematic effects were noted for t > 5 x 10-% either. 

For  t ~< 3 x 10 6, and for the larger bolometer power, the pulses began 
to develop large tails. An example of a pulse sequences near t = 1.6 x 10 - 6 ,  

at two different bolometer powers, is shown in Fig. 9. Figure 9(a) is taken 
at a power of 0.52/tW, while 9(b) shows a pulse sequence taken with a 
bolometer power of 0.043 #W. For t > 3 x 10 - 6 ,  the tail disappears and the 
two dissipations give identical signals. For  t ~< 3 x 10 - 6 ,  only the smallest 
bolometer power, 0.043 #W, was used, and no tails were ever observed on 
the pulses used to measure u20 and D 2 (See, however, Sec. 7 for a 
discussion of larger:amplitude pulses). 
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Fig. 9. The effect of increasing the DC heat flux at the bolometer is 
shown. Here t = 1.6 x 10-6 and the voltage pulse across the heater is 
nominally the same in (a) and (b). For (a), the bolometer power was 
0.52 #W, for (b), 0.043/~W. 
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4.4. The Effect of  a DC Heat  Flux at the Heater 

For all pulses used in the analysis of second-sound velocity and 
damping, the dc heat flux Q at the heater was zero. A short study was also 
done varying Q. With increasing Q, u20 is expected to decrease and go to 
zero for Q = Qc .40,41 

There was no evidence of a systematic shift of u20 with bolometer 
power, although there was a significant effect when a similar dc heat flux 
was applied at the heater. This can be attributed to the geometry of the 
cell. The bolometer is quite a small device (see Sec. 2), about  0.25 cm on a 
side. The cell is quite broad and fiat, and the bolometer looks out onto an 
area of 10 cm 2. Any heat flux from the bolometer is quickly dispersed in the 
cell volume. In contrast, the heater covers the same area as an end of the 
cell (10 cm 2) and a heat flux emanating from the heater cannot disperse. 
On the other hand, a dc heat flux at the heater can hardly be expected to 
create a uniform dc flow in the cell, since it must leave the cell around the 
mylar spacers at the edge of the bolometer and heater substrates (Fig. 2). 
Nonetheless we do measure an effect that is of the expected form, if not of 
the expected size. 

The results of this study are shown in Fig. 10 as solid cricles. For  
t = 6.31 x 10-6, a series of pulse sequences was taken at various dc heater 
powers. All other variables, such as pulse amplitude (6 t / t~O.03)  and the 
frequency of the haversine used to generate the pulse, were held constant. 
As expected, the second-sound velocity drops with increasing heat flux. For 
Q = 3.06 #W/cm 2, no second sound was detectable. 

Near  T~ the velocity of second sound in a counterflow can be 
written 4°,4a 

/" w 2 (aw)2~ l/2 
u2 = - a w  + l I - -52 +--'2-y--/ U2o. (7) 

\ wc U2o / 

Here the counterflow velocity w in the direction of second-sound propaga-  
tion and the heat flux Q are related by the usual expression (for zero mass 
current) 

Q = paw)  STw (8) 

except that the superfluid density, ps(w), is also a function of the counter- 
flow velocity w. In order to complete the relationship between counterflow 
and heat flux, we need an expression for ps(w). For  temperatures close to 
Y~., we c a n  USe 43~6 
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Fig. 10. The effect of a DC heat flux at the heater on the velocity of second 
sound. The solid circles are the data. The solid line is the result from Eq. 7 with 
a critical heat flux, Qc = 2.65 # W / c m  2. 

where p,(t) is just the usual superfluid density (in zero counterflow) 
discussed in Sec. 6. Finally, our value for a is determined from thermo- 
dynamic parameters as discussed in Ref. 40. 

The line in Fig. 10 is the velocity of second sound predicted 47 by 
Eq. (7) with a critical heat current Qc = 2.65 ~W/cm 2. This value of Qc is 
about two orders of magnitude smaller than expected from the predictions 
of Refs. 40 and 41, although the qualitative behavior of U~o agrees with the 
theory. 

While the geometry of the cell prevents us from drawing any quan- 
titative conclusions about Qc from this study, it is perhaps surprising 
that the discrepancy between theory and experiment is so large. Further 
experimental studies are in order. It is apparent that a study of Qc in this 
range of t might be carried out with little difficulty in a modified geometry, 
i.e., one that allows through flow of the dc heat flux. With such data, an 
analysis that exploits the renormalization group analysis of Ref. 41 is 
clearly in order. 
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4.5. The Effect of  Gravity 

In the presence of gravity, the hydrostatic pressure of a column of 
helium causes a shift in T~, of about 1.273 #K/cm. 25 This means that the 
reduced temperature in a sample cell is a function of the vertical position, 
and therefore the second-sound velocity and damping Will also vary across 
the cell. In order to minimize any corrections that need be made due to 
gravity, and for consistency in defining a reduced temperature both above 
and below the 2-point, the reduced temperature is always defined relative 
to T~ at the cell middle. Furthermore, the sample cell has been mounted in 
such a way that the planar pulses travel vertically through the cell (see 
Fig. 2); this is necessary to ensure that the pulses remain planar very near 
T~, i.e., that all points on the wavefront always move at the same local 
velocity. In addition, the cell used in this experiment was only 1.2 mm tall 
in order to minimize the effects of gravity. The gravity corrections for this 
cell are in fact minimal. At t = 3 x 10-7, the smallest reduced temperature 
for which data is available, the effect on U2o was only 0.2 %. This is within 
the error bars of the measurement, so that the effect of gravity can be 
altogether ignored in this experiment. The calculation of this gravity 
correction is discussed extensively in Ref. 48. 

5. SECOND SOUND D A M P I N G  

5.1. Discussion of Second-Sound Damping Results 

The values for D2 resulting from the fits discussed in Sec. 4 are plotted 
in Fig. 11, and are tabulated in Appendix A. The errors are the 67% 
confidence limits. Values were obtained for 3 x 1 0 - 7 <  t<5.1 x 10 -4. As 
discussed earlier, data were taken at a variety of second-sound pulse 
amplitudes and widths, and two different bolometer power levels (0.043 # W  
and 0.52 #W). It is immediately clear from Fig. 11 that, over the range 
where both levels were used (3 × 10 6 < t < 5 x 10-5), there is no systematic 
dependence of D2 on the bolometer power. 

The dependence on pulse width is investigated in Fig. 12. Here the 
second-sound damping is plotted on the ordinate and the abscissa shows 
the length of the pulse as it leaves the heater (given by U2o/V). The voltage 
applied at the heater is the same for each pulse at a given temperature; only 
the frequency (v) of the haversine is changed. The data and fits correspond- 
ing to the points at t - -  5.01 x 10 -5 can be found in Fig. 6. For  the data at 
t = 2.54 × 10 -4, the corresponding second-sound fits and data are shown in 
Fig. 5, and the results are given in Table 1. There are clear discrepancies 
visible for pulse widths near 0.30 mm and 0.60 mm at t =  2.54 × 10 4. As 
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noted above, pulses with lengths greater than 0.20 mm were never used at 
reduced temperatures greater than 10 5, and pulse lengths greater than 
0.34 mm were never used at all in the compilation of the data shown in 
Fig. 11 and Appendix A. No systematic trends with pulse width were found 
over the range of data used in the measurement of D 2. 

The dependence of D 2 on pulse amplitude is investigated in Fig. 13. 
D2 is again plotted on the ordinate while 6tit, the amplitude (expressed as 
a fraction of the distance to T~) of the pulse used as an initial condition in 
the model, is plotted along the abscissa. Here the pulse lengths at the 
heater are the same for the points shown at each temperature, except for 
the data at t = 3.98 x 10 4, for which two pulse lengths (different by less 
than 20 %) were used. A corresponding fit and parameters for the data at 
t = 6.35 x 10 - 6  shown in this figure are given in Fig. 7. 

For  most of the data shown in Fig. 13, the fits at various amplitudes 
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Fig. 11. The second-sound damping, D 2. The solid circles are data extracted 
from second-sound data taken with a power at the bolometer of 0.52 pW. 
The sofid triangles are from data taken with the bo|ometer dissipating 
0.043 ,uW. 
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give values for D 2 that  are self-consistent; that  is, the values do not  vary 
by more  than about  twice the error  bars. There are three exceptions. The 
first, at t = 3.98 x 10-4, probably  has to do with the relative insensitivity of 
the fits to D2 in the region where D2 is small, and the error bars given by 
the fit may  well be underestimated. The slight inconsistency between the 
points measured at t =  3.19 x 10 -4 m a y  also have to do with the small 
value of D 2 in this region. As discussed earlier, just slightly farther from T~, 
above t = 5.1 x 10 -4, this methods becomes quite useless for measuring D 2. 
Certainly there is no overall trend with increasing amplitude; the scatter at 
these temperatures in Fig. 13 appears random. Another  discrepancy exists 
at t = 10 -5. Here the amplitude of  the pulse, 5t/t is very nearly 0.1 and the 
data  showed significant deviation from Burgers-like behavior. Points  at 
such large amplitudes were not  used in the compilat ion of  the D 2 data. 
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Fig. 12. Demonstration of the dependence (or lack thereof) of D2 on pulse 
width. Data taken at a variety of temperatures are shown. For each 
temperature, the heater voltage is held constant. Only the pulse widths are 
changed, 
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Fig. 13. Demonstration of the dependence (or lack thereof) of D 2 on pulse 
amplitude. Here 5tit is the amplitude of the first pulse echo expressed as a 
fraction of the distance to T~. 

5.2. Comparison with Previous Data 

The data set shown in Fig. 11 extends, by nearly two decades in t, 
previous measurements of D 2 at saturated vapor pressure. 49 51 A com- 
parison of these earlier results with each other can be found in Ref. 51. For 
t < 10 2, the agreement among them is quite good, and for t < 10 - 3 ,  the 
agreement is "much better than could have been expected on the grounds 
of the error estimates. ''5~ A comparison is shown in Fig. 14 with one of 
these data sets? 1 The points taken at 0.3 bar are expected to be systemati- 
cally lower than the result at SVP by about 1%. Within the larger error 
bars of previous measurements, 49'5° this suppression was not noticeable. 
Here a suppression is clearly visible, and is somewhat larger than 1% for 
at least three data points. The reason for this small discrepancy is not 
known at this time. 

It is interesting to note that the data in each case was taken by a 
different technique, requiring different methods of analysis. In Ref. 49, a 
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resonance technique was used and line widths were measured. The analysis 
included corrections for thermal losses at the sidewalls and losses at the 
porous detector. Crooks and Robinson 5° also used a resonance technique, 
but measured the decay time of their cavity instead of line widths. Their 
corrections included thermal losses at both cell sidewalls and ends. In 
Ref. 51 the amplitude decay of a "tone burst" of second sound was 
employed to determine the damping. That technique was not unlike the 
one used in this experiment, except that the "pulses" consisted of many 
cycles of a sine wave, and the analysis was done in the linear regime and 
involved only a measurement of the echo amplitudes. It required the same 
corrections used by Crooks and Robinson, as well as a correction for 
diffraction losses. For the current data, the geometry of our experiment is 
such that the sidewalls do not ever play a role and any losses at the 
endwalls are implicit in the model. Diffraction losses are negligible in this 
experiment. 3 In view of these diverse experimental methods, the good 
agreement in the temperature range of overlap between the different 
experiments is gratifying. 
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Fig. 14. A comparison of the data set presented here with the work of Mehrotra 
and Ahlers. 51 The solid triangles are taken at 0.3 bar and D 2 is expected to be 
slightly lower than at SVP. 
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5.3. Comparison with Theory 

In principle, values for D 2 c a n  be calculated with no adjustable 
parameters from the results of renormalization group (RG) theory and 
measurements of the thermal conductivity made only for T > Tx. In reality, 
the full calculation proves quite difficult. 

The dynamics of 4He near T~o are described by Model F of Halperin, 
Hohenberg, and Siggia. 52 This model contains the four coupling 
parameters f,  w, 7, and u (w is complex, and not to be confused with the 
counterflow velocity w of Sect. 4.4), two static (7 and u) and two dynamic 
( f  and w), in terms of which the thermo/hydrodynamic properties can 
be expressed. 53'54 The temperature dependence of the "renormalized" 
couplings can be calculated from this model given some initial or "back- 
ground" values away from Ta. In practice, the background values are 
evaluated from thermal conductivity data ~8 above Tx. 

Recently, the RG recursion relations for the dynamic parameters f 
and w have been derived by Dohm to two-loop order for model F. 55'56 The 
recursion relations for the static parameters 7 and u were previously 
derived by Schloms and Dohm. 57 The static relations have been used, 
along with measured values of Cp for reduced temperatures above T~ and 
in the limited region 10 - 4  < t < 10 -3'5, to determine the background values 
of u and 7. 55 These background values, determined at t - -10  -3, are then 
used to evaluate u(t) and 7(0 for 1 0 - 9 <  t <  10 -3 .  Likewise, the back- 
ground values of f and w are evaluate by Dohm 55 using the thermal 
conductivity data (T > Tx) of Tam and Ahlers 58 (cell F). He then uses these 
background values and the appropriate recursion relations to determine 
f(t) and w(t) (w=w'+iw") over the same range. All parameters are 
tabulated as a supplement to the recent work of Dohm. 55 The recursion 
relations for w and f involve the parameters u and 7, and so these calcula- 
tions represent an improvement over previous calculations 58'59 due to the 
more accurate values for the static parameters. 

Once the flow parameters have been evaluated, it still remains to find 
an expression for D 2. Previous comparisons s~'58 of experimental and 
theoretical values for D2 used an expression 6°'6t that was calculated within 
the framework of model E; the symmetric planar spin model. In this model, 
7 = 0 and the coupling of the order parameter and the entropy in 4He is 
improperly treated. A recent analysis by Dohm and Schloms 62 and also by 
Dohm 63 has resulted in an improved form for D2 that is calculated within 
the framework of model F. The calculation is a one-loop perturbation 
expansion, with the leading order terms calculated in model F and the first 
order perturbation term (one-loop term) calculated within model E. The 
calculations are performed three different ways, with no way of knowing, 
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a priori, which is best. Two of the calculations are done in d =  3 and the 
last is an expansion in 8 = 4 - d .  Dohm and Schloms' formulas 62,63 are 
summarized below in Eqs. (10)-(16). 

The form of D2 is 

D2 = Dz + D ~ 

where 

and 

(lO) 

(kn~ ~l/2Rz[w(l_),F(l ),7(/ ) ,u(/  )] (11) D~ = go \ Cp / 

(kn~ x]1/2 
D ~ = g o \ - - - ~ /  R¢[w(t ),F(I ),7(I_),u(l_)]. (12) 

Here the parameters u, 7, w, and F =  x / ~  are calculated above Tx, but 
evaluated at l = 2t where t is the reduced temperature (positive) below Tx, 
~_, the correlation length 64 above T~, is also evaluated at 2t. Cp is the 
heat capacity per unit volume measured below T~ and evaluated at t. kn is 
Boltzman's constant and go is the bare dynamic coupling (given in Ref. 18 
to be 2.164 x 1011 s -1 at SVP). The dimensionless R x and R~ have the form 

and 

R z = R°(w, F, 7, u)[t~(w ', f, u)] (13) 

R~ = R?(w, F, 7, u)[~(w', f, u)] 

where the leading amplitudes 

(14) 

and 

R?(w, F, 7, u ) =  w'(4rc)-mF-l{1 + y z [ ( 2 u ) - I - 4 ] }  1/2 (16) 

are calculated using model F. 
The perturbation terms represented by the functions W~(w', f,  u) and 

W;(w',f,  u) have been calculated to one loop order using two different 
model E formalisms. 62 One is performed in d = 3  dimensions, and the 
second is an expansion in ~ = 4 - d .  Again, there is no way of knowing, a 
priori, which calculations will work the best. The various forms of the 
perturbation terms will be given in Ref. 62 and can also be found in 
Ref. 17. 

R°(w,F,?,u)=(4~) 1/2F 1{1+~2[(2u)1-43}-1/2 (15) 
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The two perturbation expansion results and the zeroth-order term by 
itself are plotted in Fig. 15 along with our data and that of Ref. 51. The 
dotted line shows the zeroth-order calculation, where the functions 
q~x(w', f,  u) and qJ¢(w', f,  u) have been set equal to one. The "d = Y' and 
e-expansion versions of the theory are also shown. There are no adjustable 
parameter s . 

Figure 16 shows the same data with the theory calculated using 
slightly different values for the flow parameters. Here, the ~ used is ~xpt, 
which is calculated directly from the values of u and the experimental Cp 
below Tz (see Ref. 65 for the form of ~)expt). The slightly different values for 
7 give slightly different values for the dynamical parameters f and w. More 
importantly, the use of y~pt allows the calculation of the flow parameters, 
and therefore D2, another decade farther from T~. 

Figures 15 and 16 show that the best agreement between data and 
theory is actually for the zeroth order calculation. However, the calculated 
values of D2 are not as important as their dependence on t, and for this the 
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Fig. 15. Results of recent RG calculations for D 2. Three cases are shown 
(described in text) along with the same data as shown in Figs. 11 and 14. 
There are no adjustable parameters. 



162 Lori S. Goldner, Nobert  Mulders ,  and Guenter Ahlers 

" ' " . . . ? \  

\ 
\ 

CQ 
O 

lO-V lO-e 

? 

u~ 

o 

\ 
\ 

\ & 
~", \ 

T h i s  w o r k  
o h i g h  b o l o m e t e r  p o w e r  
A l o w  b o l o m e t e r  p o w e r  
M e h r o t r a  a n d  A h l e r s  
• SVP 
• 0 . 3  b a r  

- -  d = 3  
- -  - -  - -  e - e x p a n s i o n  
. . . . . . . . . . .  z e r o t h - o r d e r  

\ 
\ 

\ 

\ 
\ 

\ ~ ......- 

%0 

" '" I • ",.. 

0 

10-s 10-4 10-3 10-2 10-I 
t 

Fig. 16. Results  of recent  R G  ca lcula t ions  for D 2. Here  the dynamic  flow 
pa ramete r s  are ca lcu la ted  using 7 ~xp~ out  to t = 10 -2. Fo r  t < 5 x 10 -4, the 
results  are v i r tua l ly  ident ical  to those shown in Fig. 15. 

zeroth order and expanded versions are quite similar. Still, there is obvious 
disagreement between theory and data. Possible candidates for error 
include the use of model E in the calculation of the perturbation terms; the 
cutoff of the expression for D2 beyond one-loop order; the cutoff of the 
calculation of f and w at two-loop order; or the lack of coupling to first 
sound in the framework of model F. 

6. THE SUPERFLUID FRACTION 

6.1. Results 

The results for the superfluid fraction are described in detail elsewhere 2 
and only a summary will be given here. The second-sound velocities u20 
compiled in Appendix A were converted to superfluid fraction (ps/p)by the 
use of Eq. 2. The entropy was taken from Refs. 22 and 66. The heat 
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capacity was taken from Ref. 34. A comparison was also done using the 
heat capacity measurements of Refs. 67 and 68 (see Ref. 2). The resulting 
values of (Ps/P) are listed in Appendix B. 

The errors in the measurement of Ps/P result from a combination of 
effects. The fit used to find U2o results in errors that are generally quite 
small. These errors in U2o can be converted into errors in Ps/P by the use 
of Eq. (2). Furthermore, there is an error in p,/p that is associated with an 
error in the measurement of temperature (Sec. II). These two sources are 
combined in the usual fashion to give the errors listed in Appendix B. Note 
that the accuracy with which we know ps/p is limited by the accuracy to 
which we know the cell length (0.1%), and therefore U2o, to about 0.2%. 

6.2. Comparison with Theory 

The expression for the superfluid fraction can be written in the form 69 

Ps= ko(1 +k~t) to(1 +Dot"). (17) 
P 

Here the leading singularity has the exponent (, which is predicted to be 
the same as the exponent v of the order-parameter correlation length. 7° The 
best theoretical values for this exponent are from RG calculations done in 
d = 3. They predict v = 0.669 ___ 0.002 (Ref. 71 ) and v = 0.672 + 0.002 (Ref. 72). 
A more recent prediction from an expansion in e = 4 - d  gave v =  
0.671 + 0.005 (Ref. 73). The singular correction term is predicted to have an 
exponent A very near to 0.5. 71'72'74 Previous experimental data 1 are consis- 
tent with this prediction. Especially near vapor pressure, where Dp is quite 
small (g0.3) ,  Eq. (17) is quite insensitive to the small differences in the 
theoretical predictions of A, and the value A = 0.5 is always used. The 
amplitude kl accounts for any regular dependence of the superfluid fraction 
on temperature as well as for correction terms of order t 2A, and should 
therefore be of order 1. At vapor pressure the effect of this higher order 
correction can be shown to be negligible 69 for t <  10 -3, however, neither 
the regular dependence on T, nor the first confluent singular term can be 
ignored for t >  10 -3. 

The deviations from a best fit to the current data set are shown in 
Fig. 17. O n  the ordinate is plotted 



164 Lori S. Goldner, Nobert Mulders, and Guenter Ahlers 

where (ps/p)(t) is the best fit function Eq. (17) and (pJp) are the measured 
values. In order to obtain the best fit function, a fit is first performed to the 
data at t > 10 -5. This fit is used to determine the parameters k~ and Dp. 
This is allowed since the corresponding terms are known to be inconse- 
quential for t < 10 -5, and it is desirable because a fit over the entire range 
is affected by the small but systematic deviations of the data from the best 
fit function. The remaining parameters, ~ and ko, are then determined by 
a fit over the entire data set, with Dp and kl held constant. The values 
obtained for the parameters in Eq. (17) were 

= 0.6705 + 0.0006, (19) 

k o = 2.380 + 0.015, (20) 

k I = - 1.74 + 0.20, (21) 

Dp = 0.396 _ 0.035. (22) 
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Fig. 17. The percent deviation of the superfluid fraction data from a best fit 
to Eq. 17. The fitting procedure is described in the text. 
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This is in excellent agreement with the most recent analysis 75 of the data 
of Greywall and Ahlers, 1 and also of the most recent analysis 76 of the 
data of Marek, Lipa, and Phillips. 77 The value for ( is also in excellent 
agreement with the theory, which gives values between 0.669 and 0.672 (see 
above). 

Clearly, there is a region inside of t = 10 -5 where the theoretical form 
of p~/p does not fit the data well. The reasons for this discrepancy are not 
clear. As discussed extensively above, a thorough search for amplitude and 
pulse width dependency of the data was carried out. In addition to this, the 
fit shown in Fig. 17 was repeated for only the smallest amplitude pulses and 
again for only the shortest length pulses. In either case, the results were 
unchanged. 

A n y  effect due to a heat flux in the helium (Sec. 3) would tend to 
decrease U2o and therefore Ps/P; although the data do seem to fall very near 
Tz, the rise just inside of t = 10 -5 appears to be the dominant effect. The 
effect of gravity, were it sufficiently large, would also cause an apparent 
decrease in the data for small t; however the expected effect of gravity in 
the experiment is negligible (Sec. 3). 

Although the data closest in have a reduced temperature determined 
to a precision of +5  nK, the accuracy was +__20nK, and the effect of 
shifting T~ by this amount is shown in Ref. 2. Although neither the fitting 
parameters nor the goodness of the fit are significantly changed by this 
procedure, it is clear that the apparent decrease in the fit residuals at 
t < 10 6 may well be an artifact of a small error in T~. Deviations in the 
residuals persist if T~ is shifted, however the sign of the residuals closest to 
T~ may change. Attempts to fit the data with a variable T;~ resulted in a 
shift in T~ that was well outside the possible error in our measurement, 
without a substantial improvement of the fit. 

6.3. Comparison with Previous Data 

Considerable effort has gone into measuring pJp by a variety of 
means. Most of the previous measurements were reviewed in Refs. 1 and 
78. For  work close to T~, the measurement of u2 (or, more directly, of the 
resonant frequency of second sound in a cavity) 1,77 has provided the most 
accurate and complete data. 75'77 The results of Greywall and Ahlers are in 
good agreement with Eqs. 19-22 above. The most recent analysis 76 of the 
work of Marek, Lipa and Philips 77 also gives a leading exponent ( that is 
in good agreement with the results presented here. 
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7. LARGE A M P L I T U D E  SECOND SOUND 

So far in this study, care has been taken to work in a regime where a 
lowest-order nonlinear description of the hydrodynamics is sufficient. The 
situation is quite different if one works outside of this weakly nonlinear 
regime. In the course of this study, large shocks were observed for 
2 x 10 -7 < t < 5 x 10 -5. To our knowledge, these are the first observations 
of large amplitude second-sound shock waves so near to T;.. 

Some examples of increasingly large amplitude pulses are shown in 
Figs. 18 to 24. Figure 18 shows the first arrival of five different second- 
sound pulses at the bolometer at t =4.9 x 10 -6 .  As usual, this plot shows 
the bolometer temperature as a function of time, and the temperature 
amplitudes are therefore twice as large as the amplitude of the disturbance 
that propagates away into the helium. The input waveform at the heater 
was a single cycle of a 3600 Hz voltage haversine; only the amplitude 
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Fig. 18. Example of a series of increasingly larger amplitude pulses at 
t = 4.9 × 10 6. The first arrivals of the pulses at the bolometer are shown. 
A single cycle of voltage haversine, v = 3600 Hz, was applied at the 
heater. The peak heat flux was: solid line, 0.0582 mW/cm2; dotted line, 
0.633mW/cm2; short-dashed line, 1.57mW/crn2; long-dashed line, 
3.45 mW/cm2; dot-dashed line, 5,38 mW/cm2; long-short dashed line, 
7.77 mW/cm 2. 
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Fig. 19. The effect of different bolometer power levels is demonstrated. 
Here t = 3.1 x 10 -6,  and the maximum heat flux of the heater pulse was 
1 .95mW/cm 2 ( v = 2 4 3 2 H z ) .  Solid line, bolometer power 0 .043#W; 
dashed line, bolometer power 0.51 #W. 
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Fig. 20. Large amplitude pulses at t = 2.0 × 10 -5. A single cycle of 
voltage haversine, v = 2 3 8 7  Hz, was applied at the heater. The 
peak heat flux applied was: solid line, 0.810 mW/cm2; dotted line, 
4.01 mW/cm2; short-dashed line, 8.12 mW/cm2; long-dashed line, 
15.6 mW/cm 2. 
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Fig. 21. Large amplitude data for t=2 .1  x 10 -6. The heater pulse 
(v = 2387 Hz) had a peak heat flux of: solid line, 0.205 mW/em2; 
dotted line, 0.406 mW/cm 2. 
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Fig. 22. Large amplitude data for t = 1.1 x 10 -6. The heater pulse 
(v = 800 Hz) had a peak heat flux of: solid line, 0.0833 mW/cm2; 
dotted line, 0.164 mW/cm2; short-dashed line 0,328 mW/em 2. 
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Fig. 23. Large amplitude data for t = 5.6 × 10 7. The heater pulse 
(v=623  Hz) had a peak heat flux of: solid line, 0.0333 mW/cm2; 
dotted line, 0.0667 mW/cm2; short-dashed line 0.133 mW/cm 2. 
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Fig. 24. Large amplitude data for t = 2 . 7 x  10 -7. The heater pulse 
(v = 447 Hz) had a peak heat flux of: solid line, 0.0196 mW/cm2; dotted 
line, 0.0400 mW/cm 2. 
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of the haversine has been changed. The peak heat flux at the heater, 
Q = V2/(RhA) ranges from 0.0582 mW/cm 2 to 7.77 mW/cm 2. Here A is the 
area of the heater (10.08 cm2), R h the heater resistance (116.7 f~) and V is 
the peak voltage measured across the heater. The smallest amplitude pulse 
shown was typical of the pulses used in the study of critical second sound 
presented earlier, where the maximum power input was generally an order 
or magnitude or more smaller than the powers used here. 

Several features of the larger pulses are immediately obvious. There is 
a clear saturation effect, so that there is a maximum temperature amplitude 
to the second-sound pulses that is well below T~ x t (T~ = 2.172 K). As the 
amplitude of the input pulses grows, this maximum is reached, and beyond 
that a sudden "step" and "shelf" appear in the waveform (alternately, an 
early "overshoot" develops). A shock still exists, but can no-longer be 
described by Burgers' equation. Beyond the shock, an increasingly large 
"tail" develops as we increase the amplitude of the haversine. 

The tail and quantitative behavior of these pulses depends quite 
strongly on the power dissipated at the detector. An example of this 
dependence is shown in Fig. 19. Here t = 3.1 x 10 -6, and the heater pulse 
applied was identical in the two cases. Again the first arrival of the pulses 
at the bolometer is shown. The only difference between these two pulses 
was the bolometer power. The pulse with the smaller tail, and also smaller 
amplitude, was taken with a bolometer power of 0.043 ~W, more than ten 
times smaller than the pulse with the larger tail. Figure 18 was taken at the 
higher bolometer power (0.51 gW); Figs. 20-24 are all taken at the lower. 

Further examples are shown in Figs. 20--24, for 2 x 10 -v < t <  2 x 10 -5. 
Large pulses were studied as far out as 5 x 10 -5, and were qualitatively 
similar to those shown in Fig. 20. As the temperature is increased towards 
Ta, the overshoot seems to disappear, but the shelf remains. The tail also 
seems to decrease in size as the 2-point is approached, and in fact a rare- 
faction becomes evident very near T;~ (Fig. 24). This rarefaction grows 
beyond the first pulse, and is larger for the successive echoes. Finally, note 
that, within limits, increasing the pulse length (at sufficiently large 
amplitude) can have a similar effect as increasing the amplitude. 

Effects that are most likely related to those described here have been 
reported elsewhere in studies done away from T~. The amplitude saturation 
of second-sound shocks has been noted by a number of authors. 4-7" 10,13-15,79 
Turner 4 discussed in detail the amplitude saturation of second-sound pulses, 
and interprets them in terms of a "fundamental critical velocity" inherent to 
the superfluid. Torczynski 5 also discusses this notion in some detail. 

For  the shock fronts discussed in the studies mentioned 
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above,4 7,1o.13-15,79 the amplitude-saturation is generally followed by a 
decrease in the shock-amplitude with increasing heater power. Here, we see 
no decrease in the maximum amplitude of the pulses; however, the shock 
itself does in fact reach a maximum at a value just before the formation 
of the "step." Such a "step" in large amplitude pulses has not, to our 
knowledge, been previously observed; however, Iznankin and Mezhov- 
Deglin 7 have reported that the decrease in the shock-amplitude with heater 
power is in fact "jump-like." It is important to note that the previous 
studies deal primarily with pulses below 1.9 K (where ~2, given by Eq. 3, 
is positive), and therefore with shock fronts instead of shock tails. 

The onset of the warm "tail" noted by Turner has been reported or 
discussed by a number of other authors. 4'1°'11'15'16 More dramatically, at 
even larger pulse amplitudes, this "tail" develops into a huge, late, diffusive- 
looking temperature overshoot. 4"a°'11'13 16 Similar features were observed in 
the present data, for the larger bolometer power and inside of 3 x 10 - 6  in 
reduced temperature. Many of these effects have recently been described 
in detail in terms of the dynamics of vortex formation in the super- 
fluid 8-11'15'16 and detailed, quantitative studies of the vortex dynamics have 
been performed. 5-8'1°-16'8° In particular, the work of Fiszdon, Schwertner, 
Stamm and Poppe, 16 based on earlier work of Vinen 81 and of Schwarz, 82 
has been used in the quantitative analysis of vortex line densities and their 
effect on large second-sound pulses .  13'14 Other studies 5-7'12 have involved 
the use of successive pulses, where the evaluation of the later pulse depends 
on the size and length of the first. It has been shown that an initial shock 
can leave a turbulent trail in its wake that affects the dynamics of a later 
pulse. In these studies, the vortex tangle left by the initial pulse decays only 
very slowly compared to the time it takes for the second-sound pulse itself 
to decay. With this in mind, it is important to note that all of the pulses 
used in this study were the result of several hundred to several thousand 
averaged pulses, and that the heater was fired roughly once every other 
second. Well below T~, vortex tangles have been known to persist and 
affect the dynamics of second-sound pulses for as least 20 seconds after 
the initial pulse was launched. Recent s t ud i e s  11'13'14'16 have successfully 
dealt with just such a problem at temperatures well below the transition. 
A similar analysis is in order near T;. 

A variety of boundary-related dissipative effects are also known to 
exist for very large amplitude pulses. Wtiile it seems that most of the noted 
pulse distortion can be explained in terms of the dynamics of vortex 
tangles, the mechanism for generating such tangles might, for example, 
depend on the dynamics of the boundary. Furthermore, effects such as the 
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temperature rarefaction that develops behind pulses very near T~ are not 
obviously attributable to superfluid turbulence. The behavior of the 
boundary layer at the heater in the presence of large second sound pulses 
has been discussed by several authors. 4'1°'~s'79'83-86 A discussion of the 
nonlinear and critical behavior of the Kaptiza resistance can be found in 
Refs. 87 and 88. 

Finally, while most of the works referenced in this section discuss, in 
some sense, the breakdown of two fluid hydrodynamics, a series of papers 
by Atkins and F o x  89 92 explore the nonlinearities inherent in two fluid 
hydrodynamics that might cause at least some of the effects mentioned 
above. In particular they explore the nonlinear relationship between heat 
flux and second-sound amplitude (or shock speed). Although the formation 
and dynamics of turbulent vQrtex tangles in the fluid seems the likely cause 
of many of the observed effects, it is nonetheless necessary to know just 
how far two fluid hydrodynamics can go in determining the nonlinear 
behavior of second-sound pulses in order that the onset of superfluid 
turbulence can be better understood. 

In summary, it seems likely that the study of large shocks in the region 
very near T~ can provide a detailed probe of the dynamics of the break- 
down of superfluidity. The usefulness of second sound as a probe of vortex 
dynamics has already been demonstrated for the region away from 
T3.5-8,1o 16 Near T~., we find qualitatively new phenomena. A more 
thorough study might also yield information regarding an "intrinsic" 
critical velocity for He II, or perhaps provide a probe of the ill-understood 
boundary layer. 

8. S U M M A R Y  

We have presented the results of a thorough study of the propagation 
of nonlinear second sound in the region 2 × 10 -7 < t < 10 -2. For second 
sound with amplitude 6t/t<0.1, the lowest order terms in the two fluid 
hydrodynamics are found to be sufficient to describe the propagation of 
second sound. Coupling to first sound and interaction effects can also be 
ignored in this regime, and the solutions of Burgers' equation describe well 
the evolution of weakly nonlinear pulses. Using Burgers' equation in a 
model of second sound propagation, we obtain values for second-sound 
damping to 3 x 1 0  - 7  in reduced temperature, nearly two decades smaller in 
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reduced temperature than previous measurements. Values for the velocity 
of second sound are also obtained and from them the superfluid fraction is 
extracted. 

A comparison of theoretical predictions and previous experimental 
results shows good agrrement of the superfluid fraction data with both. 
Small but significant deviations from the expected functional form are 
found very near T~., and their origin is not understood. The measured 
second-sound damping is found to agree well with previous measurements 
that were performed farther from T). A comparison of D2 with some 
current theoretical predictions is also discussed. 

Finally, examples of very large amplitude second-sound pulses are 
shown in the first observation of such pulses near T; .  A number of new 
features are observed and suggestions for future work are discussed. 

This work was supported by the National Science Foundation 
through Grants DMR 89-18393 and DMR92-17577. 

APPENDIX A. RESULTS FOR D2 AND U2o 

Included in this Appendix is the full data set as discussed in Sections 
4 and 5. The reduced temperatures are given in the first column. The 
frequency listed in the second column is the frequency of the haversine used 
to generate the second-sound pulse in that data set. The initial pulse length 
is therefore given by Uao/V. The errors listed for 17.2 are the errors from the 
fit. For  U2o the fitting errors underestimate the actual error and so the 
fitting errors are not listed. The actual error bars correspond to the error 
in the temperature measurement, which is discussed in detail in the text. 
&/t is the amplitude of the first pulse echo (used as an initial condition for 
the fits) expressed as a fraction of the distance to Tx. 

No second-sound damping data was recorded for t>5 .1  x 10 4. In 
addition, five other damping values are omitted from this set. While 
second-sound velocities were immune to systematic errors from numerical 
difficulties in the model, the same was not true of damping. An example is 
given in Fig. 5, and explained in the accompanying text. Fits exhibiting 
small but obvious numerical difficulties were omitted from the D2 data set. 
Furthermore, occasional drifts in the baseline of the pulse sequence, which 
were easily spotted by inspection, caused erroneous results for D2. Such 
points were also omitted. 
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v U2o D 2 
106 t (Hz)  1036t/t (m/s )  (10 - 4  cm2/s)  

10051 65475 0.81 7.8710 - -  
7947.0 59805 1.1 7.1772 - -  
6310.0 54630 1.5 6.5535 - -  
5013.0 49853 2.0 5.9833 - -  

3981.0 45558 2.7 5.4637 - -  
3161.0 62389 0.89 4 .9887 - -  
3161.0 62389 3.5 4 .9890 - -  
3161.0 41593 0.92 4.9887 - -  

3161.0 41593 3.6 4.9889 - -  
2511.0  56989 4.7 4.5567 - -  
2511.0  26321 5.0 4.5566 - -  
2511.0  26321 2.5 4.5565 - -  

1995.0 52048 3.2 4.1625 - -  
1995.0 34698 3.3 4.1625 - -  
1584.0 47569 4.4 3.8036 - -  
1584.0 31713 4.6 3.8035 - -  

1258.0 43484  5.8 3.4761 - -  
1258.0 28989 6.0 3.4761 - -  
1000.2 63570 7.4 3.1781 - -  
1000.2 39731 8.0 3.1783 - -  

1000.2 26488 8.3 3.1785 - -  
794.70 58140 9.8 2.9065 - -  
794.70 36338 ! 0 2..9057 - -  
794.70 36338 11 2.9065 - -  

794.70 24225 11 2.9067 
631.20 53146 6.7 2 .6590 - -  
631.20 53146 13 2.6586 - -  
631.20 33216 7.4 2.6589 - -  

631.20 33216 14 2.6587 - -  
631.20 22144 7.5 2.6590 - -  
631.20 22144 15 2.6589 - -  
500.86 48676  4.5 2.4319 3.66 + 0.03 

500.86 30423 4.9 2.4319 3.87 + 0.03 
500.86 15212 5.2 2.4319 3.75 + 0.03 
397.93 34836 2.9 2.2265 3.82 + 0.05 
397.93 34836 1.5 2.2265 3.83 + 0.07 

397.93 27819 6.5 2.2266 3.93°+ 0.04 
397.93 27819 3.1 2.2266 4.18 + 0.06 
397.93 13909 7.0 2.2267 3.98 + 0.04 
397.93 13909 3.1 2.2266 4.14 + 0.08 

319,10 40748 7.8 2.0447 4.03 + 0.05 
319.10 25468 8.7 2.0447 4.08 + 0.05 
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v U2o D 2 
106 t (Hz) 1036t/t (m/s) (10 -4 cm2/s) 

319.10 25468 17 2.0447 - -  
319.10 16978 9.0 2.0447 4.32 + 0.05 
319.10 16978 18 2.0447 - -  
254,07 62210 8.0 1.8746 4.38 + 0.06 

254.07 37326 10 1.8745 4.57 __ 0.06 
254.07 23329 12 1.8746 4.59 + 0.06 
254.07 15553 12 1.8746 4.56 ___+ 0.05 
200.03 21368 6.0 1.7109 4.59 +___ 0.05 

200.03 12368 3.1 1.7109 4.58 + 0.08 
200.03 10684 7.8 1.7109 4.63 +___ 0.04 
200.03 10684 3.9 1.7110 4.57 + 0.03 
161,42 52193 13 1,5772 4.88 + 0.07 

161,42 19573 20 1.5772 5.02 ___+ 0.07 
161,42 13048 22 1.5773 - -  
125,97 34836 4.9 1.4353 5.13 + 0.06 
125.97 17971 6.5 1.4355 5.12 + 0.08 

125,97 8971 7.1 1.4355 4.96 ___+ 0.05 
100.04 16443 8.5 1.3155 5.47 __ 0.06 
100.04 8222 9.6 1.3156 5.56 + 0.04 
100.02 32886 6.3 1.3154 5.61 + 0.08 

79,322 7235 6.4 1.2052 5.90 + 0.07 
79.305 15070 5.7 1.2056 5,81 ___+ 0.11 
79.305 15070 22 1.2056 6.00 + 0.09 
64.917 13820 7.2 1.1179 6.19 + 0.09 

64.917 6336 8.3 1.1174 5.94 ___+ 0.08 
64.842 13820 27 1.1173 6.25 __ 0.10 
50,150 6336 12 1.0154 6.75 + 0.06 
50.141 12672 9.8 1.0154 6.66 + 0.06 

50.141 12672 35 1.0152 7.05 ___+ 0.07 
50.027 12672 7.9 1.0131 6.74 __ 0.72 
39.859 11620 10 0.93049 7.05 +___ 0.92 
39.848 11620 42 0.93168 7.37 + 0.09 

39.830 5809 13 0.93066 7.35 __ 0.09 
39.804 11620 11 0.93054 7.02 ___+ 0.13 
31.608 10644 15 0.85366 7,88 ___+ 0.11 
31.602 7096 17 0.85428 7.69 __ 0.08 

31,535 10644 14 0.85278 7.94 + 0.10 
25.517 6500 22 0.78818 8.17 + 0.11 
25.508 9750 18 0.78763 8.34 + 0.09 
25.040 9750 17 0.78209 8.46 __ 0.11 

20.011 8975 19 0.72075 8.42 + 0.12 
19.987 5983 29 0.71911 8.87 _____ 0.13 
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v U20 D2 
106 t (Hz) 103•t/t (m/s) (10 -4 cm2/s) 

19,945 8975 24 0.71898 8.95 _+ 0,09 
l 5.880 8275 11 0.66061 9.88 + 0,19 
15.835 5490 36 0.66038 9.73 + 0,13 
15.827 13180 22 0.66048 9.33 ___ OAO 

12.640 7575 27 0.60718 10.28 + 0.12 
12.614 7575 12 0,60767 10.19 + 0.30 
12.579 12120 19 0.60691 10.22 _+ 0.17 
9.965 10000 18 0.55816 11.01 _+0.14 

9.965 4633 32 0.55830 11.02 _ 0,11 
9.958 1853 46 0.55759 11.88 + 0,20 
9.946 10000 18 0.55750 10.94 _ 0,14 
7.918 1703 46 0.51249 11.96 _+ 0.17 

7.898 3917 35 0.51243 11.98 + 0.09 
6.348 3917 12 0.47211 14.31 + 0.36 
6.335 3917 31 0.47192 12.76 _ 0.16 
6,334 1567 44 0.47148 12.75 _+ O. 18 

5.970 3600 24 0.46057 12.41 _+ 0,32 
4.967 3600 29 0.43188 14.22 + 0,19 
4.963 1440 42 0.43120 13.54 + 021 
4.037 3030 23 0.39993 15.13 + 0,38 

4.034 1323 33 0.40006 14.13 _ 0.61 
3.950 1323 45 0.39736 15.61 _ 0.19 
3.216 2432 29 0.36802 18.11 _ 0.77 
3.209 1216 36 0.36753 14.74 _ 0.63 

3.125 1216 50 0.36453 15.70 _ 0.24 
2.566 1118 36 0.33871 17.42 + 0.71 
2.565 2236 29 0.33830 16.95 __+ 0.65 
2.048 1028 38 0.31161 20.47 - 0.61 

2.046 2048 47 0.31138 18.79 + 0.69 
2.011 1028 63 0.30884 - -  
1.640 3780 33 0.28786 21.50 ___ 1.2 
1.633 945 64 0.28607 18.22 _ 0.76 

1.633 945 34 0.28710 21.65 _ 0.95 
1.624 1890 52 0.28604 22.40 + 0.67 
1.307 869 36 0.26397 29.57 + 0.79 
1.084 800 61 0.24590 22.82 _ 0.94 

1.070 800 17 0.24596 - -  
0.8640 736 66 0.22647 23.94 + 0.82 
0.7130 677 58 0.21105 28.19 __+ 1.0 
0.5560 623 64 0.19291 36.17 + 1.0 

0.4510 573 57 0.17758 27.55 _ 0.97 
0.3620 527 58 0.16308 41.11 + 1.4 
0.3070 485 57 0.15533 31.03 __+ 1.0 
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A P P E N D I X  B. S U P E R F L U I D  F R A C T I O N  R E S U L T S  

T h e  s u p e r f l u i d  f r a c t i o n  r e su l t s  a n d  t he  e s t i m a t e d  e r r o r  for  t he se  r e su l t s  
a re  p r e s e n t e d  be low.  Al l  p a r a m e t e r s  a re  d i m e n s i o n l e s s .  T h e  e r r o r s  l i s t ed  a re  

a c o m b i n a t i o n  of  t e m p e r a t u r e  a n d  f i t t i ng  e r r o r s  as  d i s c u s s e d  in  Sec. 6. T h e  

a c c u r a c y  of  tf iese m e a s u r e m e n t s  is l i m i t e d  b y  t he  a c c u r a c y  to  w h i c h  we 

k n o w  the  cell  l e n g t h  to  0.2 % ,  h o w e v e r  th i s  d o e s  n o t  t a k e  i n t o  a c c o u n t  t he  

a c c u r a c y  to  w h i c h  t he  h e a t  c a p a c i t y ,  Cp,  a n d  e n t r o p y ,  a,  a r e  k n o w n .  

106 t 103ps/p 1066(ps/p) 
0.307 0.10226 0.52 
0.362 0.11168 0.50 
0.451 0.13080 0.46 
0.556 0,15253 0.43 
0.713 0.17996 0.41 
0.864 0.20489 0.38 
1.07 0.23862 0.50 
1.084 0.23833 0,37 
1.307 0.27159 0.23 
1.624 0.31470 0.25 
1.633 0.31692 0.28 
1.633 0.31466 0.25 
1.640 0.31851 0.21 
2,011 0.36206 0.27 
2.046 0.36766 0,30 
2.048 0.36816 0.28 
2.565 0.42785 0.35 
2.566 0.42888 0.34- 
3.125 0,49058 0.33 
3.209 0.49785 0.38 
3.216 0.49911 0,42 
3.950 0.57420 0.39 
4,034 0.58125 0.44 
4,037 0.58086 0.42 
4.963 0.66618 0,45 
4.967 0.66824 0.45 
5.970 0.75077 0.53 
6.334 0.78364 0.53 
6.335 0.78510 0.53 
6.348 0.78563 0.56 
7.898 0.91199 0.61 
7.918 0.91203 0.61 
9.946 1.0625 0,71 
9.958 1.0628 0.71 
9.965 1.0649 0.71 
9.965 1.0654 0.71 

12.579 1.2375 0.92 
12.614 1.2416 0,93 
12.640 1.2395 0.91 
15.827 1,4434 0,85 
15,835 1.4429 0.85 
15.880 1.4436 0.86 
19.945 1.6820 0,78 
19.987 1.6824 0.79 
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106t 103p~/p 1066(ps/p) 

20.011 1.6899 0.79 
25.040 1.9573 0.73 
25.508 1.9824 0.73 
25.517 1.9851 0.73 

31.535 2.2873 0.68 
31.602 2.2950 0.68 
31.608 2.2916 0.68 
39.804 2.6756 0.64 

39.830 216761 0.63 
39.848 2.6818 0.63 
39.859 2.6750 0.63 
50.027 3.1157 0.59 

50.141 3.1282 0.58 
50.141 3.1290 0.59 
50.150 3.1291 0.58 
64.842 3.7121 0.54 

64.917 3.7156 0.55 
64.917 3.7126 0.54 
79.305 4.2525 0.51 
79.305 4.2527 0.55 

79.322 4.2494 0.5l 
100.02 4.9663 0.49 
100.04 4.9678 0.46 
100.04 4.9667 0.47 

125.97 5.8009 0.46 
125.97 5.8008 0.44 
125.97 5.7998 0.45 
161.42 6.8553 0.42 

161.42 6.8557 0.41 
161.42 6.8559 0.40 
200.03 7.9171 0.37 
200.03 7.9163 0.38 

200.03 7.9160 0.39 
200.03 7.9163 0.37 
254.07 9,3020 0.35 
254.07 9.3020 0.36 

254.07 9.3016 0.38 
254.07 9.3021 0.39 
319.10 10.838 0.33 
319.10 10.839 034 

319.10 10.839 0.36 
319.10 10.839 0.34 
319.10 10.839 0.33 
397.93 12.589 0.43 
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106 t 103 ps/p 106~(ps/p ) 

397.93 12.588 0.38 
397.93 12.590 0.36 
397.93 12.590 0.36 
397.93 12.590 0.33 

397.93 12.591 0.31 
500.86 14.693 0.30 
500.86 14.692 0.30 
500.86 14.693 0.29 

631.20 17.167 8.5 
631.20 17.169 8.5 
631.20 17.172 8.4 
631.20 17.172 8.5 

631.20 17.172 8.5 
6.31.20 17.173 8.5 
794.70 20.055 7.8 
794.70 20.052 7.8 

794.70 20.052 7.8 
794.70 20.041 7.8 

1000.2 23.420 7.3 
1000.2 23.423 7.3 

1000.2 23.425 7.3 
1258 27.357 6.8 
1258 27.358 6.8 
1584 31.965 6.3 

1584 31.963 6.3 
1995 37.339 5.8 
1995 37.340 5.8 
2511 43.630 5.4 

2511 43.629 5.4 
2511 43.627 5.4 
3161 50.971 5.1 
3161 50.970 5.1 

3161 50.975 5.0 
3161 50.977 5.0 
3981 59.570 4.7 
5013 69.593 4.4 

6310 81.320 4.1 
7947 95.005 3.8 

10051 111.273 3.9 
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