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The topologically stable zeros in the energy spectrum of Fermi excitations in 
superfluid 3He both in uniform phases and in textures are classified. This 
generalizes the classification of  the defects of  the order parameter in real 
coordinate space to the classification of  zeros in the gap, which are the more 
general defects in coherent superfluid or superconducting states both in real 
space and momentum k space. The zeros are described by classes of  mappings 
of  the spherical surfaces S n, embracing the ( 6 -  n -  1)-dimensional manifold 
of  zeros in six-dimensional (k, r) space, into the space of  the Bogolyubov- 
Nambu matrices, which describe the Fermi excitations. The examples of  
topologically nontrivial manifolds of  zeros are discussed, including the closed 
line of  zeros in five-dimensional space, which is described by the 7r4 homotopy 
groups and exists in the core of  the 3He-B disclination. This object demonstrates 
the coupling between the real space topology of  disclination and the extended 
space topology of  zeros in the disclination core. 

1. I N T R O D U C T I O N  

The nodes in the gap of the fermionic quasiparticle spectrum in super- 
fluids and superconductors play an important  part  in the low-temperature 
physics of  these coherent systems, since in the nodes the coherence is broken 
and normal excitation dynamics is essential even at T = 0. The nodes can 
exist in real r space (an order parameter  may become zero, e.g., on the axes 
of  quantized vortices or in the middle of  domain walls separating differently 
oriented vacuums of superfluid or superconducting states) as well as in 
momentum k space (the order parameter  becomes zero at two points of  the 
Fermi surface in superfluid 3He-A; points and lines of  zeros on the Fermi 
surface are possible in heavy-fermion superconductors (see, e.g., ref. 1) or 
in high- Tc superconductivity2; some symmetry classes of  superfluidity and 
superconductivity necessarily have zeros in the momentum space)  
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The real space and momentum space zeros in the gap have many 
common consequences for low-temperature properties of superfluids and 
superconductors. This is not surprising, since these zeros are just different 
projections of the more general manifold of zeros in extended six- 
dimensional (k, r) space. This gives the possibility of deforming the real 
space zeros into the momentum space zeros simply by rotating the manifold 
of zeros in (k, r) space. This results in the existence of the coreless vortices 
in 3He-A (for review of vortices see ref. 4); in the 3He-B quantized vortices 
due to such transformations, the singularity in real space flows out into 
extra dimensions and the vortex core becomes superfluid (refs. 4 and 5). 

The properties of coherent systems essentially depend on the type of 
manifold of zeros. The most important manifolds are those that are charac- 
terized by nontrivial topology, such as quantized vortices in real space of 
3He-B and point zeros in the k space of the 3He-A. Due to their topology, 
they are extremely stable toward external perturbations, including 
impurities. The impurities make the superconducting gap more isotropic; 
as a result, the topologically trivial zeros may disappear. On the other hand, 
the topologically nontrivial zero manifold not only survives in the presence 
of impurities due to topological stability, but its projection onto k space 
• increases and this may produce a nonzero density of states. (In ref. 6 a 
nonzero density of states due to impurities was obtained for the supercon- 
ducting system with lines of zeros; this is, however, in some contradiction 
with the result of the present paper, where we in particular show that such 
lines of zeros are topologically unstable.) 

One may state that systems with the same topological class of zero 
manifold have similar properties. For example, 3He-A and quantum elec- 
trodynamics (QED) with massless chiral fermions have the same topology 
of zero manifold in extended space, which results in the same chiral anomaly 
and vacuum polarization effects. 7 Different topology results in different 
low-temperature anomalies and in different types of the Wess-Zumino 
terms in action (see, e.g., ref. 8, where the anomalous behavior is considered 
for Cooper pairing with orbital momentum l > 1 and with the topological 
invariant for the manifold of zeros being different from that in 3He-A). 
Therefore the classification of possible zero manifolds is of importance. 

The zeros in superfluids and superconductors correspond to the so-called 
diabolical points in the Hamiltonian eigenvalue problem, 9't° where the 
contact of different branches of  the energy spectrum occurs: in our case in 
the zero manifold the contact of quasiparticle and quasihole spectra takes 
place, since the gap becomes zero on the manifold. 1~ The topological 
classification of diabolical points that corresponds to the classification of 
nondegenerate unitary or orthogonal matrices of  infinite dimension was 
given in refs. 12 and 13. However, this cannot be directly applied for 
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superfluids and superconductors, where the Bogolyubov-Nambu 4 x 4  
matrices have specific structure, resulting in additional topologically non- 
trivial manifolds of  zeros. 

Here we consider the topological classification of the zero manifolds 
in superfluid aHe (Section 2) and give (in Section 3) an example of a new 
type of  topologically nontrivial zero manifold, which is described by both 
7r3 and ,'Tr 4 homotopy groups and appears to be due to the specific form of 
the Bogolyubov-Nambu matrix in superfluid 3He. The manifold has a form 
of closed loop in five-dimensional space and appears in the core of  topologi- 
cally stable disclination in 3He-B, corresponding to the nontrivial element 
of  the B-phase homotopy group ~r1(SO3)=Z2. This construction reflects 
the correspondence between ~4 and 7rl groups 14 and thus between the real 
space topology of  disclination and extended space topology of  zeros in the 
core of  disclination. 

2. H O M O T O P Y  GROUPS OF MANIFOLD OF ZEROS 

The Hamiltonian that describes the fermionic quasiparticles in super- 
fu id  3He is the 4 x 4 Bogolyubov-Nambu matrix in spin and particle-hole 
spaces: 

. = , . ( 1 )  
\ Aab, --E~ab~] 

where e (k , r )  is the normal-state quasiparticle energy counted from the 
Fermi surface, e.g., vF(k- kF); Aab(k, r) is the spinor gap function, which 
depends both on the momentum k of particles forming the Cooper pair 
and on the coordinate r of  the center of  mass of  the Cooper pair. Such a 
semiclassical approach is valid if the r dependence of A is slow on the 
inverse Fermi momentum (k~= 1) scale. Since the Cooper pairing in superfluid 
3He occurs in a state with the spin S = 1, the gap function is symmetric 
over the spin indices and may be expressed in terms of  complex vector 
d(k, r): 

Aab(k, r) = i~r2o'~d, (k , r) (2) 

where o'~ are the Pauli 2 × 2 matrices and d is an odd function of  k due to 
Fermi statistics. 

We define the manifold of  zeros as a set of points in six-dimensional 
(k, r) space in which at least one branch of the quasiparticle energy spectrum 
becomes zero, i.e., at least one eigenvalue of  Eq. (1) is zero; the latter takes 
place when det H = 0 .  Since for this determinant one has det H= 
e4+ e 2 Tr(AAt)+ Idet AI 2, the manifold of zeros is a set of points at which 
simultaneously 

e = 0 (3a) 
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and 

det A = d 2 - -  0 (3b) 

The topological classification of the manifold of zeros in six- 
dimensional space is just the generalization of  the topological classification 
of real space defects in the order parameter field (on the topology of defects 
see reviews in refs. 15). In the latter ease we consider the slower dependence 
of  d on the real space coordinate r: it is slow on the scale of the coherence 
length ~: >> kF 1 . At the distance r >> ~: from the real space defect one has 
locally the vacuum state corresponding to the given superfluid phase (3He- 
A, 3He-A1,3He-B, polar phase, planar phase, etc.) with its own manifold 
R of vacuum states. The form of the vector d for enlisted phases is 

d~(k, r) = A~,(r)ki (4) 

with the order parameter A~i proportional to the following Ansatz for each 
of five phases: 

2~(~,+i33,); (~+i)3,~)(~,+i)3,); as,; 2,~£,; ( a ~ , - ~ ' , )  (5) 

where x, y, z are unit vectors. The vacuum manifold R for each phase is 
obtained by spin, orbital, and phase rotations 

.._) S L As, R ~ ( r ) R o ( r )  {exp[iqS(r)]}A~j (6) 

To find the classes of defects in a given superfluid phase one has to 
enclose the defect, which corresponds to a real space set of zeros in the 
order parameter field, by an n-dimensional spherical surface S" and map 
S" into the space R. The nonequivalent classes of mapping form the 
homotopy groups ~ , (R) ,  which describe classes of  ( 3 - n -  1)-dimensional 
defects in three-dimensional real space, i.e., the point defects for n = 2, 
linear defects (vortices, dislocations, disclinations, etc.) for n = 1, and 
domain walls for n = 0. 

In our case we consider more rapid variation of the vector d and 
approach the scales deep inside the core of defects and with the order 
parameter far from the vacuum manifold of the given phase. Instead of the 
vacuum manifold R we must consider the whole space of vectors d or the 
whole space of matrices H in Eq. (1) except for matrices with zero eigen- 
value. To find the classes of manifolds of zeros, which are the six- 
dimensional analogues of  real space defects in the coherent state, one must 
embrace the manifold of  zeros by S" in six-dimensional space and map 
these spherical surfaces into the space R* of all regular matrices H in Eq. 
(1), i.e., excluding those that have at least one zero eigenvalue. The corre- 
sponding homotopy groups ~-,(R*) will give information on the classes of 
topologically stable zero manifolds of dimension ( 6 - n - l )  in six- 
dimensional space. 
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It can be shown that the space R* is the so-called suspension £ over 
the space (S 1 x $2)/Z2: 

R *  = • [ ( s l  x S2)/Z2] (7) 

where the suspension £ ( M )  over the space M means a product  of  M and 
the segment x ~ [0, 1] such that the space M is contracted into a point at 
x = 0  and at x =  1. 

The homotopy  groups 7r. of  this space R* are as follows: 

"2"1"1 = 0; 7 T 2 = Z ;  7J'3 = Z X Z2 ; ,TT4=Z2xZ2xZ 2 (8) 

The fundamental  group 7rl(R*) is trivial, which means that there are 
no topologically stable lines of  zeros on the Fermi surface of superfluid 
3He lone-dimensional  line of  zeros in momentum k space corresponds to 
the four-dimensional manifold of  zeros in extended (k, r) space, which is 
described by the zrl group]. Therefore, if  the line of  zeros exists due to 
some symmetry, as in a polar  phase of  superfluid 3He, this line would 
disappear  under  external perturbations, violating the symmetry. 

The second homotopy  group 7r2 describes both the linear defects 
(quantized vortices) in real space and pointlike zeros (boojums) in momen-  
tum space (both have a three-dimensional manifold of  zeros in extended 
space). Therefore the continuous transformation is possible between these 
two extreme cases of  orientation of three-dimensional manifolds of  zeros 
if they have the same topological invariant. This explains the 
transformation 4'5 of  the singular vortex in 3He-B into the vortex with the 
superfluid core consisting of 3He-A. In first case the zero manifold is 
concentrated on the vortex axis in real space and on the whole two- 
dimensional Fermi sphere in momentum space; together these form the 
three-dimensional manifold. In the second case of  3He-A in the core of  the 
vortex there are pointlike zeros in momentum space for all three-dimensional 
real space of  the vortex core, and this also comprises a three-dimensional 
manifold of  zeros. 

The topological invariant, integer N, for these three-dimensional mani- 
folds of  zeros can be written in terms of the Green 's  function G = (ito - H)-~:  

N = 2-~2  1 Tr (G aG-1A G aG-1A G tgG -1) (9) 

where the integral is over the three-dimensional surface enclosing the 
three-dimensional manifold of  zeros of  G -1 in seven-dimensional (k, r, to) 
space [zero in G -t  occurs when simultaneously to = 0  and H has zero 
eigenvalue; therefore the group 7r2 for a zero manifold of  matrices H 
corresponds to the group ~3 for matrices G -t  producing the zr3-invariant 
N in Eq. (9)]. 
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The manifolds of  zeros with nonzero N are topologically stable and 
survive at any external perturbations. Nonzero N occurs also for quantum 
electrodynamics with massless chiral electrons, where the fermionic spec- 
trum is described by the Weyl matrix: 

H(k ,  r) = [k - e  A(r)] • or (10) 
c 

Therefore 3He-A and QED share many common properties, including 
the chiral anomaly, which is just the consequence of nonzero N. 7'H 

The third homotopy group "IT 3 describes the two-dimensional manifold 
of  zeros in extended space. The example of a topologically nontrivial 
manifold of this type was found inside the domain wall separating two 
differently oriented vacuum states in 3He-B.16 This manifold was investigated 
in ref. 16 assuming the realizations with real vector d everywhere. For the 
real vectors d the space of  regular matrices H is topologically equivalent 
to the three-dimensional sphere S 3, since this space is a set of values of  e 
and d that satisfy the condition e2+d2>0 .  The third homotopy for this 
space is zr3(R*(d - r ea l ) )  = " f f 3 ( S  3 )  = Z and the topological invariant is given 
in terms of  the unit 4-vector no, with a =0,  1, 2, 3, n o  = E/(E2-bd2) I/2, and 
ni = di /  ( e 2 + d2) l/2: 

= ~ 2  dx l  dx2 dx  3 eabcdna o31nb 02nc t93n d (11) 

where the integral is over a closed three-dimensional surface enclosing the 
two-dimensional zero manifold in six-dimensional space. It can be shown 
that the zeros with even ]~r disappear if d becomes complex, while zeros 
with odd ]Q are stable toward the complex perturbations of vector d and 
belong to the nontrivial element of the subgroup Z2 of zr3(R*). The zeros 
found in ref. 16 have ]V = 1. 

Now we discuss a physical example of the fourth homotopy group in 
superfluid 3He. 

3 .  7"/" 4 H O M O T O P Y  IN THE CORE OF 3He-B DISCLINATION 

The example of the zero manifold described by the nontrivial element 
of the homotopy group ~'4(R*) was found in the core of disclination in 
superfluid 3He-B. This disclination belongs to the nontrivial element of  the 
first homotopy group of the 3He-B vacuum manifold. According to Eqs. 
(5) and (6), the vacuum manifold of 3He-B is a set of the order parameters 
of the form 

Ao~i = R,~i e i'~ (12) 
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where R~;, the real orthogonal matrices, form the space S03, while the 
phase factors qb form the space U(1); together this gives the 3He-B vacuum 
manifold R8 (see, e.g., ref. 15): 

RB = S03 x U(1) (13) 

with the first homotopy group 

~rl(RB ) = Z2 x Z (14) 

The disclination is described by the nontrivial element of its subgroup 
Z2 corresponding to rotations R~i. 

The simplest realization of  this disclination for the asymptotic region 
far from the core is the 2~r rotation about the disclination axis z: 

g/~(~b) = z*/~ + (~ij - z~  ) cos ~b + eijkZk sin 4~ (15) 

where ~b is an azimuthal angle of  the cylindrical coordinate frame (z, r, 4~). 
Let us continue this structure into the core region r < ~:. The naive continu- 
ation of the form A,~(r, ¢b)=f(r)R~(gb) with f ( ~ ) = l , f ( 0 ) = 0  gives a 
three-dimensional manifold of zeros on the disclination axis, i.e., at r - 0 .  
This manifold belongs to the trivial element of the ¢r2(R*) group, since for 
real realization the second homotopy group is trivial: 7r2(R*(d real ) )= 
• r2(S 3) = 0. Therefore it is unstable toward contraction into the manifold 
with lower dimension. 

This contraction occurs if we choose the continuation in such a manner 
that the order parameter does not become zero on the disclination axis and 
corresponds to the polar phase [see Eq. (5)] on the axis 

Ao(r, ~b) = [1 - f ( r ) ] 2 ~  +f(r)R•(ck) (16) 

The d(k, r) field for this Ansatz is 

d(k, r) = ~kz +f ( r )k±  cos ~b + f ( r ) k  x ~ sin ~b (17) 

According to Eq. (3), the zeros of the matrix H are in the points 

k~ = 0, ]kl] = kr,  r = 0 (18) 

This is the two-dimensional manifold in six-dimensional (k, r) space, 
or, if we discard the z coordinate along the disclination axis, since there is 
no z dependence of the matrix H, the zeros form the one-dimensional 
manifold (closed loop on the equator of the Fermi sphere) in reduced 
five-dimensional (k, x ,y )  space. Each point of  this line belongs to the 
nontrivial element of the Z2 subgroup of the "a'3(R* ) homotopy group; this 
can be verified by calculating the topological invariant N" over the three- 
dimensional spherical surface S 3, e.g., k2z + (kx-  kF)2+ x 2 + y 2 =  R 2, which 
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embraces the point (kz = 0,ky =0,  kx = kv, x =0,  y =0)  of this zero mani- 
fold; the calculations give N = 1. 

It is important that the dimension of the manifold of zeros cannot be 
reduced further in spite of the first impression that the closed line on the 
Fermi sphere can be contracted into a point. The latter is forbidden by the 
special form of the vector d: the vector d is the odd function of k and, if 
the zero appears at some k on the Fermi surface, another zero should 
simultaneously appear with the opposite momentum - k  on the Fermi sphere. 
Therefore, this topologically stable line of zeros couples the diametrically 
opposite points on the Fermi sphere and as a result cannot be contracted 
into a point. 

Now we show that besides the homotopy group ~'3 that describes the 
elements of this line of  zeros, the closed line as a whole has a nontrivial 
topology related to the ¢r4(R*) homotopy group. Let us consider the four- 
dimensional spherical surface $4: 

(x/~)2+(y/~)2+(k~/kF)2+(ky/kF)2+(kz/kF)2=R 2 (19) 

with R > 1. 
This surface embraces the line of zeros in five-dimensional (k, x, y) 

space and therefore the function d(k, r) in Eq. (17) produces the continuous 
mapping of this S 4 into the space R*(d real), which is topologically 
equivalent to S 3. The classes of the mapping $4-~ S 3 form the homotopy 
group ~r4(S 3) = Z2 and we can easily find to which element of the ~'4 group 
our mapping belongs. The case is that this mapping has an important 
property: in the asymptotic region r >  ~ it corresponds to the nontrivial 
element of  the group Ir1(S03 ) =  Z2, which describes the disclination in the 
R~ field [see Eqs. (13)-(15)]. But this is just the criterion of nontrivial 
¢r4-homotopy: according to a well known theorem, 14 there is one-to-one 
correspondence between the elements of ~r4(S 3) and the elements of 
¢r1(S03 ). Thus the closed line of zeros has as a whole a nontrivial topological 
charge related to the fourth homotopy group. It can be shown that this 
charge is stable toward the complex deformation of the vector d and 
corresponds to the nontrivial element of one of three Z2 groups comprising 
the group ~r4(R*) in Eq. (8). 

Of course the Ansatz (16) for disclination does not necessarily corre- 
spond to the minimum energy among the linear defects of  the given topologi- 
cal class (according to ref. 17, the real disclination calculated in the 
Ginzburg-Landau region has quite a different structure). However, all the 
disclinations of this class necessarily have the same topology of zeros: the 
manifold of zeros is a closed loop in five-dimensional (k, x, y) space, which 
may be oriented in this space in a manner different from that for Ansatz 
(16), but nevertheless has the same properties: it is described by nontrivial 
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elements of  both ~'3 and .77" 4 homotopy groups. This is reminiscent of  such 
a disclination loop in nematic liquid crystals, 15 which is described both by 
7r~ and ~ra groups. 

4. CONCLUSION 

We have found four homotopy groups describing the manifolds of 
zeros in the energy spectrum of fermions in superfluid 3He. All the lines of  
zeros in three-dimensional momentum k space are topologically unstable 
and can be destroyed by external perturbations; this is important for 
heavy-fermion superconductors: if, due to some crystal symmetry they have 
a lines of zeros and therefore the T 2 law for the low-temperature specific 
heat, then after some special deformation of the crystal that violates the 
symmetry, the zeros would disappear, producing an exponential law for 
the specific heat. On the other hand, among the manifolds of zeros with 
lower dimension there exist topologically stable manifolds: the points in 
the three-dimensional k space, such as zeros on the Fermi surface of the 
3He-A; the points in four-dimensional (k, r) space, such as the instantons 
in the 3He-B domain wall16; and a pointlike object in five-dimensional 
(k, x, y) space, such as the closed loop inside the 3He-B disclination. 

There are several remaining problems related to the manifold of  zeros. 
1. Objects with even lower dimension, described by higher homotopy 

groups, are under investigation. 
2. The method of relative homotopy groups should be applied to obtain 

the general relations between the real space topology of defects outside the 
core of defects and extended (k, r) space topology in the core. Such relations 
have been found in particular cases of the 3He-B disclination and of  the 
3He-B vortices. 5,4 

3. The calculation of  the Wess-Zumino terms in the action for different 
cases of the topology of the spectrum is necessary: three different types of  
Wess-Zumino terms have already been introduced for superfluid 3He, 18.19,7 
corresponding to different homology groups. These Wess-Zumino terms 
are important not only for the dynamics of the superfluids and their defects; 
they also define the quantum statistics of defects. 

4. The quantum mechanical calculation of the fermionic spectrum in 
the vicinity of the zero manifold should be performed. In this paper we 
used a semiclassical approach, considering the k and r variables as commut- 
ing. It is known, however, that for calculating some physical quantities, 
such as density of states, the semiclassical approximation is too crude. 2° 
Therefore, a generalization of  the index theorem, applied for the 7r2 manifold 
in ref. 21, to the manifold of zeros of higher homotopy group should also 
be done. 
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