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Abstract. The general problems of Fourier and spectral analysis are discussed. A discrete Fourier 
transform FN(v) of a function f(t) is presented which (i) is defined for arbitrary data spacing; (ii) is 
equal to the convolution of the true Fourier transform off(t) with a spectral window. It is shown that 
the' pathology' of the data spacing, including aliasing and related effects, is all contained in the spectral 
window, and the properties of the spectral windows are examined for various kinds of data spacing. 
The results are applicable to power spectrum analysis of stochastic functions as well as to ordinary 
Fourier analysis of periodic or quasiperiodic functions. 

1. Introduction 

This section serves as a general, non-technical, introduction to the technical part  of  

the paper which follows, and may be omitted by readers familiar with Fourier  analysis 

techniques. It  contains an account  o f  why we are interested in Fourier  analysis and 

what the problems are, and it summarizes the results of  the following sections. 

The kind of  data which we consider analysing by Fourier  techniques nearly always 

consists o f  the observed variation of  something with time - perhaps the light variations 

of  a variable star or  quasi-stellar object, or  the output  of  a microphotometer  tracing 

across a spectral line, or across a pho tograph  of  solar granulation. We shall therefore 

speak in terms of  time as our independent variable, al though our considerations apply 

equally well to  situations with spatial or other independent variables. 

Practical sets o f  data are necessarily limited in length, since we cannot  observe for  

an infinite time, and are also usually obtained only at a set of  N discrete times tk within 

a total data length T. Both  the data length and the data spacing have impor tant  limiting 

effects on the accuracy with which we can perform Fourier  analysis. We are especially 

concerned in this paper with formulat ing the analysis o f  these effects in a way which 

does no t  depend upon  the specific data  spacing, so that  it is as valid for unequally as for  

equally spaced data. 

There are at least two distinct philosophies regarding the application o f  Fourier  

analysis techniques to real data. On the one hand, one may  adopt  a totally pheno-  

menological point  of  view in which one simply defines the complex Fourier  t ransform 

F(v) of  a f unc t i on f ( t )  as 
+ o o  

F(v) = t f(t)e~2~t dt, (1) 
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without necessarily saying why one might want to do so. The question is then how to 

estimate F(v), which depends on an integral o f f ( t )  over ( - ~ ,  + ~ )  from observations 

in a limited section ( -  2"/2, + 2"/2) at discrete times tk. One thus thinks of  the Fourier 
analysis process as simply a transformation of the data to a new representation - in 
frequency instead of  time. Such an approach is perfectly legitimate and equivalent 

things are done frequently in other areas of  data analysis. Furthermore, it can be a 
very powerful investigative tool, particularly if the Fourier transform turns out to be 

concentrated in certain regions of frequency, suggesting certain characteristic time 

scales present in the data. As a practical detail, since F(v) is complex, it is usual to 
examine its amplitude IF(v)[, or more commonly ]F(v)l 2, in such an investigative 

program. 

A second philosophy is an almost inevitable outcome of the first, although it may 
have an independent origin, the approach of interpreting the data in terms of a model. 
Here we mean a mathematical model for the variation which is a representation of the 
physical model we have in mind. One of the most important distinctions between 

mathematical model types is that between deterministic and non-deterministic models. 
In a deterministic model we assume a basic predictability which is connected with the 

deterministic character of  classical, non-quantum physical processes. Some of the 
possibilities for deterministic models are: (i) a non-periodic deterministic variation, 
such as a nova or supernova light curve, or a line profile in a spectral scan, (ii) a 

periodic variation, such as a simple eclipsing or spectroscopic binary, or an RR Lyrae 
light curve, (iii) a multiply periodic variation, such as a star pulsating in an overtone 

mode as well as a fundamental, or a spectroscopic triple system, (iv) a modulated 
periodic variation where either the amplitude, frequency, or phase may vary with time - 

for example a pulsating system in a binary orbit. 

Non-deterministic models are noise sources of  various kinds, and are usually called 
stochastic processes by statisticians. The classic example of  a non-deterministic process 
is that of  radioactive decay, where the lack of determinism is a product of the funda- 

mental indeterminism of the laws of quantum mechanics. Astrophysically, apparent 
non-determinism usually arises through complexity - for example in the brightness 

fluctuations of  solar granulation originating in the complex turbulence of the solar 
convection zone. In addition, we may have to deal with fluctuations due to photon 

statistics, variable sky transparency and, of course, simple observational error. The 
essence of a non-deterministic process is that it can only be handled statistically. 

Definite predictions cannot be made about a non-deterministic va r i a t i on f ( t ) a t  time t. 
Instead we can make probability statements about f ( t ) .  Thus we can perhaps give the 

probability distribution P(f(t)) of the possible values o f f ( t ) ,  or we may give the 
moments of  the distribution, such as the mean, variance, etc. In many practical cases, 
the probability distribution o f f ( t )  at time t will depend upon the value of f a t  an earlier 

time t - z ,  that is, there is a correlation between the value o f f ( t )  and f ( t - z ) .  Since 
definite predictions cannot be made about f ( t ) ,  it follows that definite predictions can- 
not be made about its Fourier transform F(v) either, we can only discuss its probability 
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distribution, or its mean, variance, etc. Actually, it turns out that it is rather difficult 

to define a full Fourier transform in the sense of Equation (1) for a non-deterministic 
process. Instead, one has to resort to a different approach which we shall discuss below. 

It is important to realise that even a pure noise model, i.e. a pure stochastic process, 
does not necessarily contain variation on all possible time scales. If  it did, and if there 
were, on average, the same amplitude of variation at all time scales, we would have 
white noise. However, white noise represents both a mathematical and a physical 
singularity since to produce truly white noise a system would have to be able to change 
infinitely fast in order to have power at the shortest possible time scales. Also, if it 
were to vary on extremely long time scales, it would have to have something like an 
infinite 'memory ' .  All practical noise sources are therefore limited in characteristic 
time scales or in characteristic frequencies. This kind of thing is called band limited 
noise by engineers. It is not generally realized by non-statistically oriented astronomers 
that almost all the standard treatments of spectral analysis such as, for example, the 
classic text of Blackman and Tukey (1958), deal exclusively with stochastic models and 
not with deterministic models. The more recently developed methods of maximum 
entropy spectral analysis are also framed in terms of stochastic models. 

The important point is that deterministic and non-deterministic models behave 
differently under a Fourier analysis. In fact, even within deterministic models, it is 
necessary to distinguish between periodic (or multiply periodic) models and non- 
periodic models. This is because the defining integral of the Fourier transform 
Equation (1), exists only if the funct ionf( t )  is absolutely integrable, i.e. if f if(t)[ dt 
exists. Thus periodic functions are excluded from this definition because they are not 
absolutely integrable, and something special is needed to handle them. It is possible to 
extend the domain of Fourier transforms to include functions such as the Dirac delta 
function and its derivatives (see Lighthill, 1958), so that the Fourier transform of the 
complex periodic function e-12~Vo t is O(V-Vo). It is also possible to consider only 
finite or discrete versions of the Fourier transform where the integration (or summa- 
tion) limits are finite rather than infinite, 

In the following section of this paper, thefinite Fourier transform Fr(v) is defined as 

+ T/2  

FT(v) = I f(t)eiZ~vt dt. (2) 

--T[2 

In addition, a discrete Fourier transform FN(v) is defined as 

N 

F~,(v) = ~, f(tk)ei2~t~. (3) 
k = l  

The analogy of this expression with Fr(v) should be clear, although it must be realized 
that FN(v) is dimensionally different from Fr(v), because it does not contain a multi- 
plying factor At. This discrete transform is the one we are primarily interested in be- 
cause we want to handle discrete data. Note that there is no restriction on the data 
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spacing in this definition. We may now examine the result of applying these limited 
transforms to two of the various model types mentioned above - periodic and 
stochastic. 

1.1. PERIODIC FUNCTIONS 

The basic result of  Fourier analysis as historically developed and as presented in the 

later part of this paper is that, if f (t) is a pure cosine wave of frequency Vo, then the 
Fourier transforms F(v) and FT(V) have amplitudes that are significantly different from 
zero only in the immediate vicinity of v = Vo and v = -Vo. This is also true, with a 
qualification due to aliasing, which is discussed below, for the discrete transform 
F;v(v). Thus a Fourier analysis is able to detect the presence of a frequency in the data 
and, with some care in the normalization, to determine its amplitude. In the case of a 
multiply periodic function with frequencies v~, v2 . . . .  , etc., the transform will be large 
in the vicinity of v = + vl, _+ v2 . . . .  etc., and ideally the analysis can detect the presence 
of each of these frequencies independently, and determine their amplitudes. In prac- 

tice, this ideal cannot quite be realized because of the finite data length and the discrete 
data sampling. The full Fourier transform would consist of a series of delta functions 

at the frequencies + vl, _+ v2, ..., but the observed Fr(v) or FN(v) will differ from F(v). 
This difference can be described in the frequency domain as an interference between 
frequencies. It is normally possible to recognize two types of such interference; 
(i) interference from nearby frequencies, which is usually described by a spectral 
window (see below), and is primarily a product of the finite length of the data, and 
(ii) interference from distance frequencies, which is usually called aliasing, and is a 
product of the data spacing. For continuously recorded data, aliasing does not exist; 
while for equally spaced data, it exists in its most extreme form. A physical analogy of  
aliasing in this case is in the side-lobes of an interferometric array, or the various 
orders of a diffraction grating. For  general arbitrary data spacing, it is not possible to 
make such a clean separation of the two effects which, indeed, are really just different 
manifestations of the same effect, which we shall lump together in the term spectral 

window, now to be explained. 
A fundamental result of this paper is that this interference effect can be expressed by 

the statement that, for determinate processes (not necessarily periodic), the observed 
Fourier transform, FN(v), is the convolution of the true Fourier transform F(v) with a 

spectral window, 6u(v) - i.e., 
+ o o  

F(v)*O2v(V) =- t F(v - v')6N(v') dv', (4) FN(v) 
- -00  

where the spectral window ~N(v) is obtainable as a function only of v and the times of 

observation tk from 

N 

6~(v) = ~ e '2~tk. (5) 
k = l  
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The symbol 3N(v) is used for this quantity because in the limit of a completely filled 

time interval ( -T /2 ,  +T/2), i.e. a continuous record, the corresponding quantity 

gr(v) in fact tends to the Dirac delta-function as T--> ~ .  Thus gr(V) is, so to speak, a 
'finite' version of d(v). The limit of 0N(v) as N--> ~ is similar to the delta function in 
its locating property, but not in its normalization. In practical computations it is most 
convenient to work instead with the quantity N-IF~(v), and with a corresponding 
spectral window 7N(V)=N-13N(V) because this yields a spectral window normalized 
to 7N(0)= 1. Thus 

N-1Fu(v) = 7N(v)*F(v). (6) 

This choice of normalization is largely a matter of taste and computational conveni- 
ence. Therefore, if F(v) is a delta function at frequency Vo, say, the quantity N-1FN(v) 
will reproduce the shape of the normalized spectral window, ~N(v), centered on Vo 
[i.e. 7N(v-%)]. If  F(v) is a series of delta functions, corresponding to a multiply 
periodic function, then N -  iFu(v) will consist of a series of 7s centered on the various 
frequencies present. Since 7N(V) may well be significantly different from zero at fre- 
quencies other than v=0,  there may well be interference between the different fre- 
quencies present in the data. The important point, however, is this: The pathology of 
the data distribution is all contained in the spectral window ?u(v), which can be calcu- 
lated from the data spacing alone, and does not depend directly on the data them- 
selves. The spectral window is therefore all-important. Typically, a plot of the ampli- 
tude of 7~,(v) vs frequency shows (i) a reasonably well defined central peak at v=0,  
with a width of the order of T -1 in frequency and (ii) some subsidiary peaks corre- 
sponding to peculiarities in the data spacing. For example, Figure 1 shows the spectral 
window corresponding to equal data spacing (top graph) illustrating the large subsidiary 
peaks found in this special case, and the lower graphs show the effect of changing the 
data spacing from equally spaced. As a practical example, Figure 2 shows the spectral 
window obtained for a long series of observations of the QSO 3C345. Any such set of 
observations necessarily has a one year periodicity in its data spacing because a given 
object can only be observed when the sun is not too close in the sky. Hence a moderate 
peak is present in the spectral window at an annual frequency, VA = 1 yr -1. This warns 

us that if a strong frequency were present in the data at Vo, say, we would see inter- 
ference between this frequency and the 1 y r -  1 frequency in the data spacing. 

Thus there should be subsidiary peaks (' aliases') in the transform at frequencies 
r = VA + VO and v = va - Vo. These are in fact observed. Furthermore, by comparing the 
shape of any peak in FN(v) with the shape of the spectral window 7N(v), it is possible 
to judge whether a peak corresponds to a well-defined delta function in F(v). 

1.2. STOCHASTIC FUNCTIONS 

A similar situation holds for stochastic functions, but with differences in detail. Here, 
since we have a non-deterministic function, the characteristic time scales of the physical 
system manifest themselves in the way in which the probability distribution o f f ( t )  at 
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Fig. 2. Power spectral window obtained for photometric observations of 3C345 by Kinman. Note 
the clean central peak, the appearance of three smaller peaks at periods of one year, one synodic 

month, and one calendar month, and the very low 'noise '  ievel at other frequencies. 

time t depends on the value of f a t  time t - r .  This dependence may often come about 

through the action of a filter or other form o f '  memory '  which causes the system to be 

influenced at time t by its state at time t - r .  In practice, one almost always restricts 

one's attention to situations in which this dependence is characterized by only one 

parameter, the correlation coefficient betweenf( t )  andf( t -~) .  Furthermore, since one 
can only make progress if the data sample can be taken to be a ' typical '  data sample, 
such as might have been obtained wherever the actual time interval ( - T / 2 ,  + T/2) is 
located in the interval ( -  0% + oe), one must assume that this correlation coefficient is 
a function only of z and not of  t. This property is called stationarity, and we have a 

stationary stochastic process. The correlation coefficient expressed as a function of z is 

called the autocorrelation function, r(T). This, then, is the important quantity which 
characterizes the time-dependence properties of the noise source. A Fourier transform 
of r(~) will then reveal characteristic time scales in much the same way as it did for a 
deterministic process, although the interpretation of these time scales in terms of a 

physical model will, of course, be different. In a stochastic model, we will probably look 
for filters or other forms of memory having the characteristic time scales found. The 
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Fourier transform of the autocorrelation function is known as the power spectrum 
P(v). Since r(z) must necessarily be symmetric - i.e. r ( - z ) =  r (z) - t h e  power spectrum 
is purely real: namely, 

~oo oo 

= t- r('c)e~2~vt dt -- 2 I r ( z ) c o s  2zcvt dt. P(v) (7) 
t /  i t /  

--o0 0 

The power spectrum so defined is normalized so that its integral is unity. Power spectra 
generally show broad features, rather than the sharply defined peaks in the transforms 
of  periodic functions. 

Suppose we calculate the transforms FT(V) or FN(v) for a stochastic function. Since 

f ( t)  is not predictable, neither are FT(V) or F~(v). We can only make probability 
statements about them, which usually take the form of the parameters of their proba- 
bility distributions. In the following section of this paper, we show that there is a 
convolution relationship between the expectation (statistical mean value) of the power 
[FN(v)] 2, and the power spectrum P(v) which is essentially the same as that for periodic 
functions: namely, 

(IF,,(v)lZ> = var (f)N2P(v)*[~(v)l 2, (8) 

where var(f)  is just the variance (mean squared value) o f f ( t )  and t?u(v)I 2 is the power 
spectral window. This is just the square of  the same spectral window as previously, so 

the same remarks about interference, aliasing, and the fact that the pathology of the data 
spacing is all contained in the spectral window, apply here also. Again, it is most con- 
venient computationally to work with N-~FN(v), so we have 

( I N -  1FN(v)]2) = var(f)P(v)*[~N(v)[ 2 . (9) 

The power spectral window is thereby normalized to unity at zero frequency. 

1 .3 .  COMBINED FUNCTIONS 

It is shown in the next part of  this paper that the dependence of  the amplitude of a 
finite transform on the data length, T, is different for periodic, non-periodic, and sto- 
chastic functions. In fact, 

[FT(v)] ~ T O non-periodic 
T 1 periodic (10) 
T 1/2 (rms) stochastic. 

If  we have a n f ( t )  consisting of a combination of these processes, the contribution of 
each to the transform will be a function of the data length. In other words, since the 
variation is T for periodic functions and Tl/Z(rms) for noise functions, it is possible to 
detect a periodic signal in the presence of noise by observing for a long enough time. 
It may, therefore, be possible in principle to distinguish between different model types 



FOURIER ANALYSIS WITH UNEQUALLY-SPACED DATA 145 

if  several series of observations of different lengths are available, on the basis of the 

way in which the amplitudes of the transform change as a function of data length. 

It is this different variation with Tfor  non-periodic, periodic and stochastic functions 
that makes difficult the definition of the ordinary Fourier transform for stochastic 
functions mentioned earlier. This is why we normally use r(z), which has a well-defined 
Fourier transform, to define the power spectrum. Nevertheless, provided we allow our- 
selves to renormalize by dividing by the appropriate power of T, it is sometimes useful 
to think of a stochastic function as the limit of a multiply periodic function when 
variations of all possible frequencies are present with different amplitudes A(v), and 
phases distributed at random. The distribution of these amplitudes with frequency, or 
rather IA(v)[ z, is then proportional to the power spectrum P(v). However, because of 
the mathematical difficulties, it is preferable to define P (v) in a purely statistical context 
as the Fourier transform of the autocorrelation function. 

The following Sections 2 through 5 give the details leading to Equations (6) and (9) 
and discuss the properties and normalizations of the spectral windows. The Appendix 
contains explicit instructions for calculating the transform FN(v) and the spectral 

windows 7s(v) and 17N(]~)[ 2. 

2. Fourier Transforms, Full, Finite and Discrete 

We want to determine the Fourier transform of a function f ( t )  whose values are 
observed only at certain discrete times tk. (We shall refer to t as a ' t ime' ,  although in 
many cases it may be a space or other variable.) The literature in this field deals 
almost exclusively with the case where the data points are equally spaced- i.e. if 

tk = to + kAt, (11) 

where k is an integer, and At is the data spacing. We present here a version of the 
theory which is valid for arbitrary data spacing, including equal spacing as a special 
case. We include a parallel discussion of the theory for continuously observed functions, 
f ( t) ,  for comparison purposes. 

We define the full Fourier transform of a funct ionf( t )  as the complex expression 

+cJO 

F(v) = f f ( t )e  ~2~vt dt. (12) 

- - 0 3  

Minor variations in the definition exist - usually in the location of various factors of 
2g, and in the sign of the exponent in (12). With this definition, the inverse transform is 

-[-oo 

f ( t )  = f F(v)e -iz~r dv. (13) 

- o o  
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In proving the Fourier inversion theorem, it is necessary to evaluate an expression 

+ o 9  

6@) = f e i2~vt dt. (14) 

Its value may be taken as the limit of the corresponding finite integral 

+ T ] 2  

f (Sill gvT~ 
~ T ( I J )  = e 12nvt dt = T \ rcvT ] (15) 

-- T / 2  

as T--> ~ ;  and is of course the Dirac delta function, with properties 

-t-oo -I-co 

f ~(v) dv = 1; f f ( x ) 6 ( x - ~ ) d x = f ( ~ ) .  (16) 
- o o  - o o  

We shall assume in this note that the scope of Fourier theory includes generalized 
functions such as the delta-function (Lighthill, 1958). The convolution theorem from 
standard Fourier theory will be referred to without proof. This states that if 

then 

z(t) = x(t)y(t), (17) 

+o o  

Z(v) = X(v)*Y(v) = t- X ( v -  v') Y(v') dv', (18) 
- - o o  

where Z(v) is the Fourier transform ofz(t) ,  etc. The inverse of this theorem is also true. 
The quantity F(v)F*(v), where the asterisk denotes the complex conjugate, is 

sometimes referred to as the power. It must be carefully distinguished from the power 
spectrum of a stochastic process which we shall always denote as P(v). 

Most procedures for estimating F(v) from finite amounts of data give rise to a result 
which is expressible as the convolution of the true F(v) with a speetral window, W(v), 
which is determined by the particular procedure used. That is, the quantity obtained is 

f ( v ) *  W ( v )  = f f(v')W(v - v') d v ' .  (19) 

Some rather awkward problems arise with the normalization of spectral windows. In 
practice, the choice of normalization will depend on the type of function, f(t),  being 
analysed. Ideally, one would like to have 

f W(v) dv = 1; (20) 

but this is not always possible and in practice the choice W(0)= 1 is more useful. This 
is discussed further in Section 4. 
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We now introduce two new expressions: the finite Fourier transform over a data 
length T 

+ T / 2  

FT(V) -- [ f ( t )e  ~2~t dt, (21) 
I /  

-- T / 2  

and the discrete Fourier transform over a set of  N data points 

N 

F2v(v) = ~ f(tk)e iz~tk. (22) 
k = l  

These expressions are defined by analogy with F(v), and are not to be regarded as 
attempts to evaluate F(v) by some method of numerical integration. In particular, note 
that even for equal data spacing, F~v(v) differs from a trapezium rule integration formula 
by (i) not having the factor 1 at the end ordinates and (ii) omitting the multiplying 
factor At. Thus FN(v) is dimensionally different from F(v) and FT(V). FN(V) is similar to 
functions frequently used in periodogram analysis. 

Notice that we may write 

+ c o  

Fr, ~(v) = t wr, N(t)f(t)e iz~t dt, (23) 
--CO 

where 

1; ( - T / 2  <~ t < T/2) 
WT(t) = O; otherwise 

(24) 
N 

~,.~,(t) = ~ 6 ( t -  tk). 
k = l  

The functions WT, N(t) are usually known as data windows. Additional data windows, 
which are sometimes introduced in practice to smooth the resulting transforms, are 
not discussed here. 

It follows from Equation (23) and the convolution theorem, that 

FT. N(V) = F(V)* WT, ~(V), (25) 

where 

+ T / 2  

f (sin ~vT~ WT(Y ) : e i2nvt dt = 6r(v) = T \  ~zvT ] '  (26) 

- -  T / 2  

N 

VIZN(v) : ~'~ e i 2 n v t k  : ~ N ( V ) .  ( 2 7 )  
k = l  

Thus both Fr(v) and FN(V) are the convolutions of  the true Fourier transform with a 
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spectral window. This result is valid, regardless of the data spacing in the discrete 
transform. 

In Equation (27) we have defined a new function 

N 

6~,(v) = E e'Z="tk (28) 
k = l  

by analogy with fir(v). Note, however, that while Or(v) becomes an ordinary delta 
function as T - +  ~ ,  so that Fr(v) becomes identical with F(v), this is not true of 0N(v), 
which generally does not tend to a simple limit as N - +  ~ .  The form of 0N(v) is specific 
to a given set of times tk, and generally cannot be analytically simplified further, except 
in special cases, such as that of equal data spacing. 

The spectral windows Wr(v) and Wu(v) suffice for the discussion of Fourier trans- 
forms of most functions, for continuous sampling over an interval ( -  T/2, + T/2) or 
discrete sampling at (arbitrary) times tk. However, an extension of the discussion is 
required for stochastic functions. If  f (t) is a realization of a stochastic process, then the 
expectation of F(v) is zero at all frequencies, assuming that the stochastic process has a 
zero mean. That is 

+ o o  

m o o  

+ m  

= f <f(t)>e ~2~vt dt = 0. (29) 

Similarly the expectation of Fr(v) and FN(v) is zero at all frequencies. Nevertheless, 
Fr(v)F*(v) and Fu(v)F*(v) have non-zero expectations which are related to the power 
spectrum of the stochastic process. We have 

+ o 0  +oO 

~ o 0  m o o  

+00 +00 

f f ( f ( t ) f ( t ' ) )e iEnv(t- t ' )  d t d t '  = 
--o0 ~ o0 

+oO +oO 

~ o o  - o o  

where rs(z) is the autocorrelation function of the stochastic process of which f( t)  is a 
realization and a~ is the variance of the stochastic process. 
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The power spectrum of a stochastic process is defined as the Fourier transform of its 
autocorrelation function: 

+ c o  co 

P y ( v )  =~ f r(Oei2~w dr = 2 f r(r) cos 2nvr; 
- -  o0 0 

and by the Fourier inversion theorem, r (0  is given by 

+ c o  

rs(-c ) = f Ps (v)e-z2~v~ dv" 
- c o  

Hence, 

(31) 

(32) 

VN(v) = Y. e'2~v%-t~)= 3N(v)6*(v)= lc~N(v)l 2. (36) 
d , k  

Thus the observed power, FF*,tr is proportional to the convolution of  the power 
spectrum of the stochastic process with a power spectral window. (For generality, the 
variance a} of the stochastic process is usually factored out of the power spectrum as 
we have done here. However, the reader should be aware that sometimes the power 
spectrum of a stochastic process is defined as the Fourier transform of the auto- 
covariance function rather than the autocorrelation function, in which case the factor 
o f  0- 3 is absorbed into Ps(v).) 

It should be carefully noted that this result for stochastic functions is not generally 
true for all functions; that is, generally FF*, N is not given by the convolution of the 
true power FF* with the spectral window tiN, r(v) z. This is because convolution and 
multiplication are not mutually associative, i.e. 

a*(bc) # (a*b)c. (37) 

where 

+ c o  + c o  + c o  

- - c o  - - c o  - c o  

= a~Pf(v)*Vr(v), (33) 

where the power spectral window Vr(v) is given by 

+ c o  + c o  

Vr(v)= f f ei2~(~-t ')dtdt '=~r(v)3*(v)= 
- c o  - c o  

= T2 sin 2 (nvT) 
(nvT)2 (34) 

In a similar way, one may show that 

( FN(v)F*(v) ) = traPs(v)* V~v(v), (35) 
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We clearly have 

rT. N(v),~* ~(v) = [F(v)*0T. N(v)IF*(v)*0*~.N(V) 
F(v)F*(v)* [O~, N(V)OT, N(V)] �9 (38) 

It should also be pointed out that neither the inversion theorem nor the convolution 
theorem is true for the finite or discrete transforms. 

Finally, it should be remarked that the definition of the power spectrum of a sto- 
chastic process as the Fourier transform of its autocorrelation function was for many 
years used as the basis for numerical computation of the power spectrum from a given 
data set, since fewer computations were required than to do a direct Fourier transform, 
with a resulting saving in computer time. However, such a method is necessarily 

restricted to equally spaced (or continuous) data, since there is no direct way of calcu- 
lating an autocorrelation function with unequally spaced data. Recently the Cooley- 
Tukey algorithm (the Fast Fourier Transform) has allowed the rapid calculation of 
direct Fourier transforms, so that this older method of computing power spectra is used 
less now. Unfortunately, the Fast Fourier Transform also requires that data be equally 
spaced, so it cannot be used with unequally spaced data without interpolation. 

Results similar to Equations (33) and (35) may be obtained for the cross-spectra of 
two stochastic processes, f( t)  and g(t). For example one may show that 

( F * ( v ) ~ ( v ) )  = G~oef~(~)* VT(v), 
Vr(v) = [OT(V)[ 2, (39) 

and 

( F*(v)CN(v) ) = ~ sa, e eo(v)* VN~so~(v) , 

Vmso)(v) = O. s~(v)Omo~(v), (40) 

where Pro(v) is the cross power spectrum be tweenfand  9, and ON(s)(v) and Omo~(v ) are 
the functions 0N(v) calculated at the times f(t) is observed, and the times #(t) is ob- 
served, respectively. If  these are the same, then VN(Io)(v) reduces to VN(v) defined in 
Equation (36). 

3. Spectral Windows 

In the previous section, we have shown that the finite transform Fr(v) and the discrete 
transform FN(v) are given by the convolution of the true F(v) with spectral windows 
Wr(v) and WN(v). We have also shown that for stochastic processes, Fr(v)F*(v) and 
FN(v)F*(v) are given, in the mean, by the convolution of the power spectrum of the 
stochastic process with power spectral windows Vr(v) and VN(v). In this section, we 
discuss the properties of these spectral windows. 

The awkward problem of spectral window normalization has been briefly referred 
to above. There are generally two aspects to normalization, the first one of mathemati- 
cal convenience, so that inessential features of a function (such as its amplitude) are 
eliminated while essential features (such as its shape) are retained, and the second 
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one of physical convenience, so that the 'right '  answer is produced in the most con- 
venient form. It is not always obvious what should be the ' right' answer; for example, 
if one is analysing a periodic function, so that the Fourier transform will show peaks 
at the fundamental frequency and its harmonics, does one wish to have the amplitude 
of each harmonic given by the magnitude of the peak in Fr(v), or by the area under the 
peak ? The normalization will be different in each case, and will be different again if a 
non-periodic function or a stochastic function is being analysed. 

For convenience in discussing the shape of the spectral windows, we shall consider 
in this section the functions 7r(v) and yN(V) which are defined by 

yT(v) = l fir(v) - sin nvT, (41) 
1 7~vT 

1 1 e i 2 n v t  k 
= fi -(v) = T v y  " (42) 

These functions clearly have the same shape as fir(v) and fiN(v) but have the normaliza- 
tion property that ?2r. N(0) = 1. (Note that the maximum possible value for Yr. N(v) is 
unity, whatever the data spacing.) In the following section, we shall discuss the physical 
aspects of the normalization problem for different types of function, and we shall con- 
clude that this mathematical normalization to 7(0)-- 1 is the most convenient in prac- 
tice. 

The sinc function shape of yr(V) is well known and is discussed in the standard texts 
(e.g. Blackman and Tukey, 1958). It has the property that its integral is l/T, and hence 
that of fir(v) is unity. The sinc 2 function, yr(V) 2, appears in the power spectral window 
for stochastic processes; its integral is also 1/T, and hence that of fir(V) 2 is T. 

In the more interesting case of discrete data, we have noted already that the shape of 
fiN(V) and hence of 7N(V) is determined by the distribution of the times tk. We may 
immediately note, however, that both 7N(V) and fiN(V) have divergent integrals 

+ 0 o  + c o  

f N1 ~ f NI~ fi(tk)-->OO, (43) 7N(V) dv = ~ ei2~'k dv = 
- ~ o  - 0 o  

so that we may expect difficulties with a physical normalization which depends on the 
integral of the spectral window, in the discrete data case. We also note that, although 
the shape of the spectral window depends on the exact distribution of times tk, if 
these points are distributed across the time interval ( -  7"/2, + 7"/2) according to some 
distribution function ~b(t), then 7~(v) can be written, in the limit for large N, as 

+ T / 2  

7N(v) ~ I ~(t)ei2~vt dt. (44) 
I J  

-- T / 2  

Thus the spectral window is approximately the finite Fourier transform of the distri- 
bution of data points. In particular, if the data points are randomly distributed across 
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the time interval ( -  T/2, + T/2) according to a uniform distribution, we should expect 
a spectral window which approximates that of the continuous case - the sinc function 

~T(v). 
The case of equal data spacing represents perhaps the most non-random possible 

distribution of times, tk. If  we substitute Equation (11) into the expression for 7N(v), 
we find that 

1 ~ ei2nVtoei2nvkA t = e i2nvtoeinv(N+l)At  
7N(v) = 7~ 

sin nvNAt 
N sin nvAt" (45) 

It is always possible to choose to so that the exponential terms in this expression vanish 
- this will be the case, for instance, if to is taken as the mid-point of  the total time 
covered - and in this case ~N(v) becomes purely real, and we may refer to it as a phase- 
adjusted spectral window 

sin nvNAt 
~N(v) = N sin nvAt" (46) 

The most important properties of this function are: 

(i) it is symmetric: i.e., 

y ~ ( -  v) = yN(v); 

(ii) it is periodic, with period At -  1: i.e., 

(47) 

7N(V) = ~u(V --l- nAt- l ) ;  (48) 

(iii) for small values of v, it is approximately the same as )'r(v) with T=NAt:  i.e., 

sin nvNAt sin nvT 
7N(v) ~ NnvAt nvT (49) 

(iv) Combining its property of symmetry and periodicity, we see that 

7N(v) = ?N(nAt-' + v). (5o) 

In brief, 7N(v) is approximately like an infinite row of sinc functions spaced (At) -1 
apart. As N tends to infinity, ~N(v) tends to an infinite row of delta functions spaced 
(At) -1 apart, sometimes called an infinite Dirac comb. The corresponding power 
spectral window for stochastic processes in [TN(v)] 2 and is clearly approximately a row 
of  sinc 2 functions spaced (A t)-1 apart. It has the same symmetry properties, (47), (48), 
(50), as ~'N(v). 

We see that for equally spaced data, 7N(v) takes the value unity, its maximum value, 
at an infinite set of frequencies v .=n(At ) -L  For unequally spaced data, the periodi- 
city/symmetry property of ~N(v) will not generally hold; however, we may well expect 
that ?N(v) will take on large values, perhaps near unity, at frequencies far removed 
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f rom v =0.  Notice also that generally 7N(v) will not be purely real, so that there will be 

phase shifts in FN(v) compared to F(v).  The power spectral window, Vs(v)= t?'~,(v)[ z is 

of  course purely real by definition; it will generally also show some large values far 

removed from v = 0. 
I f  the spectral window has large amplitudes at frequencies far removed from v = 0, 

then frequencies in the true Fourier transform, or the true power spectrum of a sto- 
chastic process, which are far removed from the frequency of interest will contribute 

significantly to FN(v), For example, if WN(v) is large at v = Vo, say, then since 

/ ,  
FN(v) = F*WN = J F ( v  - v')WN(v')dr' ,  (51) 

it follows that a significant contribution to FN(v) comes from F(v-Vo). This pheno- 

menon is customarily described as aliasing, the frequencies v, v-Vo in the above ex- 

ample being aliases of each other. For the case of  equal data spacing, this aliasing is 
complete, so that these frequencies are indistinguishable from one another. This is 

easily seen, for if  a spectral window has the periodicity/symmetry property (40), then 

+ 0o ( 2 n  + 1 )v  N 

FN(V) = F(v') W(v - v') dv' = ~ F(v') W(v - v') dv' = 
n = - -  o t )  

00 ( 2 n -  1)V N 

-I- v N 

= ~, F(nAt -1 + v')W(v - v')dv' -- 
n =  - o o  

- . l  N 

+'a  N 

=- ~ FA(v')W(v - v') dv', 
t ~  

(52) 

where vN is equal to 1/(2At) and is usually known as the Nyquistfrequency. Thus the full 
F(v) is equivalent to an aliased Fourier transform 

+ 0 0  

FA(v) = ~ F(nzJt -1 -t- V) (53) 
1 1 = - - o ( 9  

defined only over ( - v N ,  + vr~). Similarly, we may define an aliased power spectrum 
for a stochastic process 

+ c o  

pA(v) = ~. P(nAt -1 + v). (54) 
~ = - -  r :O  

Obviously, many different forms ofF(v)  could give rise to the same FA(v), and likewise 
many different forms of P(v) could give rise to the same PA(v). This is the sense in which 

the frequencies [n(At)-l+ v] are aliases of  each other. The behavior of  the spectral 
windows for the unequally spaced data case cannot be described so neatly in terms of 
complete aliasing. 
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The heart of the matter in any practical application is clearly the particular data 
spacing involved, and the particular spectral window it gives rise to. Also, the fact that 
the spectral window depends only on the choice of times, tk, allows one, at least in 
principle, the possibility of designing a spectral window by the choice of these times. 
In particular, it may be possible, with the same total number of data points, to reduce 
the effect of aliasing by carefully choosing non-commensurate intervals between succes- 
sive tk. It appears to be nearly impossible to handle this analytically, so we have per- 
formed some computer experiments with various unequal data spacings to see what 
spectral windows are produced. 

We have distributed 25 points over the same time interval with spacings ranging 
from equally spaced, to one with two points at each end and the rest at the center. The 
intermediate spacings represent varying degrees of concentration toward the center. 
The spacing Atk between tk and tk+l is proportional to 

k -1/~, (k = 1...12) 

(25 - k) -1/~', (k = 13...24), 

where a is a constant. Figure 1 shows the spectral windows obtained for various values 
of ~. The frequency unit is the Nyquist frequency for equal spaced data, i.e. 12.5/T, 
where T is the total data length, and we have plotted the data out to five times the 
Nyquist frequency to show the aliasing peaks for equal spacing, and the way in which 
these are reduced when the data spacing is changed. In terms of lack of side lobes on 
the central peak, and the reduction of aliasing peaks, the case 7 = 2 seems to be about 
the best. We have searched at even higher frequencies in this case and find no peak as 
high as 30~  of the central peak out to 18.86 times the 'Nyquist frequency', none as 
high as 50~  out to 39.33 times the 'Nyquist frequency' and none as high as 60Yo to 
the limit of our search, 92 times the 'Nyquist frequency'. When possible, this seems to 

be an effective way of reducing aliasing. 
Unfortunately, one cannot often preselect the spacing of one's data, This is more 

often determined by outside influences of a non-scientific nature. To give an idea of  
what may be obtained in practice, Figure 2 shows the power spectral window for data 
obtained by Kinman (1973) in a long series of photometric observations of the quasi- 
stellar object 3C345. Because the data covers a long period of  time, the central peak 
is very sharp and well defined. In addition, there are three small secondary peaks, with 
the rest of the spectral window being very close to zero. These three small peaks occur 
at periods of precisely one year, one lunar synodic month and one calendar month. 
It is satisfying that these are just the periods at which one might expect something 
unusual to happen, since it is well known that any astronomical object has a seasonal 
appearance in the night sky, so that a one year periodicity is bound to show up in 
any long series of astronomical observations. In addition, photometric observations 
can be made with precision only at times of the dark of the Moon, hence the appear- 
ance of the synodic month. The appearance of the calendar month is a little more 
surprising, but it must be remembered that observatories do run their affairs according 



FOURIER ANALYSIS WITH UNEQUALLY-SPACED DATA 155 

to the civil calendar and that scheduling of observing time is done in units of the ordi- 
nary week, even though account is taken of the periods of dark Moon time. The 
important thing to notice is that the power spectral window is very well behaved at 
frequencies other than those at which we expect some trouble. 

4. Physical Normalization 

It was pointed out in the previous section that one usually wishes to normalize the 
result of a mathematical operation such as the Fourier transform so that one obtains 
a result which is directly relevant to a physical property of the system one is investi- 
gating. We have, so far, shown that 

(a) FT(~) = rF(~)%r(v),  
(b) F~(~) = JVF(v)*yN(v), 
(c) (FrF*(v))  = var (f)TZP(v)*Tr(v) 2, (55) 

(d) (F~F*(v)) = var (f)N2P(v)*?N(v) 2. 

We may now consider what the effect will be of applying the finite and discrete trans- 
forms to various function types. We shall restrict our attention here to the three func- 
tion types: ' good'  functions, in the sense used by Lighthill (op. cit.), periodic functions, 
and stochastic functions. 

' G o o d '  functions (or non-periodic determinate functions) are those for which 

f lf(t)l dt (56) 
- oo  

exists, and thus the Fourier transform exists, without the need for introducing genera- 
lized functions. An example would be the profile of a spectral line or a group of spec- 
tral lines. Periodic functions include multiply periodic functions. An example would 

be the light curve of a pulsating variable star. Stochastic functions, of course, represent 
noise of  various origins, including the nearly white noise associated with observational 
errors. 

To obtain an meaningful physical normalization, we shall require that a finite, non- 
zero, physically meaningful result be obtained in the limit as T (or N) tends to infinity. 
Other approaches are possible, but this one is convenient and has the incidental ad- 
vantage of showing us the effect of changing the data length on the Fourier transform 
for different function types. 

We first note that if Ur(v) is any function with an integral of  unity, and with the 
property that as T--> ~ ,  it becomes narrower and narrower, tending in the limit to a 
delta function, then 

lim Q(v)*Ur(v) = Q(v). (57) 
T-coo 

Since )~r(v) has an integral of l/T, it follows from (55a) and (57) that the finite 
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transform of a good function tends to the value of F(v) as T---> oo. In this sense, the 
good function is well-behaved, satisfying the requirement that a meaningful result be 
obtained as T---> oo so that no additional physical normalization is required. 

If  f (t) is a periodic function 

f ( t )  = aei2~% t + be-~Z~Vo t, (58) 

then 

Fr(v) = aSr(v + Vo) + bdr(v - Vo). (59) 

In the limit as T--> ~ ,  this becomes a delta function at -Vo and another at +Vo. If  
one wishes to have the area under the peaks at v = + v0 give the corresponding ampli- 
tude, then, since c~r(v) has a unit integral, no further normalization is required. On the 
other hand, if one wants the size ofthepeak to give the corresponding amplitude, then 
it will be necessary to divide by T as a normalizing factor [since 5r(0) = T] to obtain 

1 1 
d = lim ~ FT(-- Vo), t~ = lira ~ Fr(vo). (60) 

T--+ oo T ~ o o  

In other words, the amplitude of the peak increases directly as T, the area under the 
peak stays constant with T. 

Finally, from (55c), and (57), it is clear that (FrF*)  increases directly as T, so that 

the estimate 

A 1 1 
~ ~  = - -  F T ( v ) F ~ * ( , , )  ( 6 1 )  

var ( f )  7 

will tend to the true value of P(v) as T--> oo. Alternatively, we may say that the rms 
value of Fr(v) goes as T 1/2 for a stochastic function. 

Imagine, then, an f ( t )  composed of a combination of good functions, periodic 
functions and stochastic functions. It is clear from the respective behavior of their 
Fr(v) that the relative contribution of each to the finite Fourier transforms will vary 
with the data length T. This is a complicated way of saying, for example, that it is 
possible to detect a periodic signal in the presence of noise if observations are continued 
long enough. It also shows the importance of removing periodic and other trends from 

stochastic processes before analysing them. 
The situation with the discrete transform is a good deal more difficult because of the 

phenomenon of aliasing, and because the spectral windows 6N(v) and I c~N(v)]2 cannot be 
normalized to an integral of unity. For equally spaced data with complete aliasing, 
then, if we agree to accept the aliased spectrum FA(V) or pA(v) as a physically meaning- 
ful result, the same discussion we gave above for the continuous case also applies to 
this case, i.e. FN(v) for a good function tends to a constant limit as N--> ~ ,  that for a 
periodic function goes as N, and that for a stochastic functions goes as N 1/2. There- 

fore, 
1 

d = FN(-- Vo), ~ = ~ FN(Vo) (62) 
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and 

/x  1 1 . 
PA(v) = var--(f) ~r Fs(v)F~ (v). (63) 

For the case of unequal data spacing, where complete aliasing is not present to simplify 
the situation, it is not possible to make a priori judgements as to the normalization 
properties of the three types of function, except that since aN(0) = N for all data spacing, 
one expects Equation (62) also to be valid here, provided the data spacing is not 
extremely pathological. 

Because of these problems of physical normalization, the non-integrability of 
a,x(v) and the different treatment required for different types of function, it has proved 
most convenient in practice to program the calculation of N-1FN(v) rather than 
FN(v). Then the resulting spectral window 7N(v) is always normalized to 7N(0) = 1. The 
interpretation of the amplitudes in the transform or power spectrum obtained must 
then be made in terms of the particular model one has for f(t) as discussed in the 
previous section. In practice, this rarely is a problem, for Fourier analysis or power 
spectrum analysis is often used primarily as an exploratory tool to discover the signifi- 
cant periodicities or characteristic time scales present. More detailed analysis is then 
carried out on the basis of a specific physical model suggested by the exploratory 
analysis. 

5. Conclusions 

We conclude that it is possible to use the transform FN(v) for arbitrary data spacings 
in Fourier and power spectrum analysis with results that are comparable to analysis 
with equal data spacing. The main difference is that whereas aliasing can be predicted 
in advance for the case of equal data spacing, it must be analysed after the fact, in 
terms of the actual tk used and the resultant spectral window, for the case of unequal 
data spacing. 
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Appendix: Calculation of FN(v) 

This appendix contains explicit instructions for calculating the Fourier transform 
FN(v) using FORTRAN. It is assumed that the data are stored so that F(I)  contains 
the datum and T(I )  the time of the I ' th  observation. There are N observations. It is 
necessary to choose (i) a frequency interval DF, and (ii) high and low frequency indices, 
K H and KL so that the transform will be calculated at all frequencies from v = K L , D F  
to v = K H , D F .  KL and KH are, of course, integers. In practice, since one must know 
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the spectral window, one needs information in the vicinity of  v = 0, so K L  is almost 
always 0. Also, it is useful to cover the spectral window fairly densely, so D F  should 

not be too large. The real part  of  FN(v) is stored as FR(K),  where v = K , D F ,  the 
imaginary part  is F I (K) ,  and the amplitude squared is F F ( K )  (although we normally 
divide this by N 2, so as to normalize the spectral window to unit amplitude at zero 

frequency). The real part  of  the spectral window is D(K),  the imaginary part  G(K)  

and the (normalized) amplitude squared [[yy(v)[ z] is GG(K) .  PI  has the value ~z. The 

basic program is then 

D O I K  -- KL, K H  
FR(K)  = 0. 

F I ( K )  = O. 

D(K)  = O. 
G(K)  = 0. 

A = 2 . , P I , K , D F  
DO2I  = 1, N 

A = A*T( I )  
C = COS(A) 

S = SIN(A) 
FR(K)  = FR(K)  + F ( I ) , C  

F I ( K )  = F I ( K )  + F ( I ) , S  

D(K)  = D(K)  + C 

G(K)  = G(K)  + S 

2 C O N T I N U E  
F F ( K )  = ( F R ( K ) , F R ( K )  + F I ( K ) , F I ( K ) ) / N , N  

G G ( K )  = ( D ( K ) , D ( K )  + G ( K ) , G ( K ) ) / N , N  

1 C O N T I N U E  

Note that FF (K) and G O ( K )  have been normalized by dividing by N a. What  is printed 

or punched as output depends on specific needs. As an initial investigation, we nor- 

mally use a plotter to give F F ( K )  and G G ( K )  graphically, and also output the numeri- 
cal values of  all calculated quantities. Finally, note that it is usual in most investiga- 

tions to remove the mean and the first moment  (trend) of  a set of  data before subjecting 
it to a Fourier analysis. This avoids bias from non-physical zeros in the data, and from 

long-term secular changes which are perhaps not of interest. It  should be borne in 
mind, however, that this process does distort to some extent the low frequency end of 
the derived spectrum, since, among other things, it forces the power at zero frequency 

to be zero. 
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