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The interaction of the fermionic quasiparticles with bosonic collective modes 
in 3He-A recalls the interaction of massless chiral fermions with photons, 
W-bosons, and gravitational waves in high-energy physics. The chiral anomaly 
and vacuum polarization are responsible for singular dynamics of 3He-A at 
T = 0 .  

1. INTRODUCTION 

There are a number of peculiarities in the low-temperature dynamics 
of superfluid 3He-A, which are now understood to have a strong analogy 
with phenomena intensively studied in particle physics. The basis of the 
analogy is the fact that the low-temperature behavior of this liquid is defined 
by quantum field theory, which describes the fermionic quasiparticles (the 
chiral fermions, which have no mass, due to the gapless spectrum in 3He-A) 
interacting with bosonic fields (there are at least 18 collective bosonic 
excitations in both phases of superfluid 3He, corresponding to the oscilla- 
tions of the order parameter, 3 x 3 complex matrix A~i). Among the bosonic 
fields there are the collective modes, which recall the photons, W-bosons, 
and gravitons in particle physics both by their influence on fermionic 
excitations and by their Lagrangian. 

All the peculiarities are the consequence of the zero mass of the fermions 
resulting from the cancellation of the gap at two points (nodes or boojums) 
on the Fermi surface at k =  +kFi, where 1 is the direction of the orbital 
angular momentum of Cooper pairs in 3He-A. In particular: 

1. This gives rise to the nonanalytical, logarithmically divergent free 
energy gradient expansion, 1 which has a direct analogy 2'3 with the cancella- 
tion of the electronic charge in quantum electrodynamics (QED) due to 
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vacuum polarization. 4 The coupling constant between the chiral 3He-A 
fermions (electrons) and orbital waves (oscillations of the 1 vector, which 
correspond to photons in QED) drops logarithmically at large distance. 

2. The nonconservation of the superfluid current at T = 0  5,6 results 
from the chiral anomaly 7 describing the creation of the chiral current from 
the vacuum, which is possible due to the massless spectrum of fermions. 
In the language of 3He-A, this anomaly means that the fermionic quasiparti- 
cles are created in the process of  the dynamics of  the 3He-A superfluid 
vacuum and as a result the vacuum linear momentum transfers to the 
momentum of  excitations. This momentum transfer is regulated by the 
Schwinger equation s for the source of the chiral current -/5 in QED: 

G,J'~ = ( e2/16"/7" 2) e~*~"/3G~Gt ~ (1) 

where F.~ = O,A,.  - O, .A, .  T h e  corresponding gauge field in 3He-A is A = kFl. 6 
3. The same chiral anomaly gives rise to the anomalous supercurrent 

j.n = -½Col(I" rot 1), Co = k3/3"rr 2 (2) 

which for a long time was the stumbling block on the path to a derivation 
of a closed system of  dynamical equations for 3He-A at T = 0. 

4. The gapless spectrum of fermions gives a nonanalytic, nonzero 
density of  states on the Fermi surface, which produces a nonzero normal 
density at T = 0 and a specific heat linear in T in the presence o f l  texture. 5'6'9 

5. The strange behavior  of  the internal angular momentum in 3He-A 
(see, e.g., Ref. 5) is also related to the gapless spectrum. This comes from 
the possibility of  the easy transformation of the vacuum angular momentum 
of  Cooper  pairs into the angular momentum of  fermionic excitations. 1° In 
the language of QED, this corresponds to the easy creation of electrons 
and positrons from vacuum if the fermions are massless (on the creation 
of electron-position pairs in a strong electric field see Ref. 11). 

These analogies between 3He-A and particle physics allow one to apply 
the powerful methods of  particle physics to 3He-A. On the other hand, 
3He-A can serve as a testing ground for modern theory in high-energy 
physics. In particular, in spite of  the analogy 3 between 3He-A and the 
standard model of  electroweak interaction, 12 the coupling between the 
W-bosons (spin-orbital  waves) and fermions in 3He-A does not display 
the asymptotic freedom 3 that takes place in the standard model. Also, the 
origin of  the mass of  the W-boson is different in these field theories. In 
addition, the 3He-A dynamics can choose between different possible theories 
of  gravitation. The dynamics of  the collective clapping mode, which corre- 

" sponds to the gravitational wave in Einstein theory, proves to be more 
consistent with one of the modifications of  the theory. 13 



Singular Behavior of the Superfluid 3He-A at T = 0 and Quantum Field Theory 303 

2. F E R M I O N S  A N D  B O S O N S  IN  3He-A 

The fermionic quasiparticle spectrum in superfluid 3He is obtained 
from the Bogoliubov equation 

--VF(k -- kF)) ~b (3) 

where the spinor matrix A is expressed in terms of  the order parameter 
matrix A~i: 

- gcr~A~ k d  kF, ~ = _ (4) 

( ~  are the Pauli matrices). 
For the equilibrium A-phase state, which is the eigenstate of  the spin 

projection Sz = 0 on the spin quantization axis d and of the orbital momen- 
tum projection Lz = 1 on the orbital quantization axis l, the order parameter 
is factorized as 

A~ ) '= Aod~ (A~ + iA~) (5) 

w h e r e  ~1 and A 2 are  unit orthogonal vectors with 1 = ~1 X ~2, and Ao is the 
gap amplitude. This results in the following fermionic spectrum in equili- 
brium: 

E 2 = vE(k - kF)2+ (Ao/kF)E(k x 1) 2 (6) 

which becomes to zero at two points, k -- +kFl. The low-energy excitations 
in the vicinity of these two nodes define the main low-temperature properties 
of 3He-A. 

Let us find which bosonic excitations of  the order parameter are coupled 
with these two species of low-energy fermions. Here we consider for sim- 
plicity deviations of the order parameter from the equilibrium value A~ ) 
in Eq. (5) that do not change its spin structure: 

A~ = d~ (e~l + ie~) kF (7) 

Here el and e 2 are arbitrary vectors, which in equilibrium are given by 

e ~o) = A01~I/kF = Ao~/kF ' e(2 o) = AoA2 / kF = Ao)~ / kF 

(X, y, z or x 1, x 2, x 3 are Cartesian coordinates). 
The nodes in the spectrum in the case of the order parameter in Eq. 

(7) are again at k = +kF1, if I is defined as l = el x e2/]el x e2t. In the vicinity 
of  the nodes the spectrum of fermions may be written in the following 
covariant form: 

E 2 = gO(k, - eA , ) (k j  - eAj)  (8) 
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"" i i where the metric tensor g'J is expressed in terms of "tetrads" el, e2, and 
i e 3 = VFli: 

g / j ~ . ~  i j eaea (9) 
a 

while the gauge field A is expressed in terms of 1: 

A = kFl (10) 

and the charge e takes the value +1 for fermions near the north pole of 
the Fermi sphere and -1  for the opposite pole. In equilibrium 

g(O)O = c~lil  j + c 2 ( ~ u _  I iF) ,  clF = VF, C L = A o / k F  (11) 

Equation (8) corresponds to the spectrum of a massless charged particle 
in gravitational and electromagnetic fields. The correspondence between 
the collective modes of the order parameter oscillations and the bosonic 
modes in particle physics is given in Table I, where Q is one of the quantum 
numbers ~6 for bosons in 3He-A and corresponds to spin projection in particle 
physics. Six modes (orbital waves, clapping modes, sound, and pseudo- 
sound) are oscillations of vectors el and e2. The other 12 modes are related 
to the deviation of the order parameter A~i from Ansatz (7); four of them, 
the W-bosons, are shown explicitly and discussed in Section 6, while eight 
correspond to the generalization of gravitation with tetrads depending on 
the isospin, these modes giving rise to additional degeneracy (numbers in 
parentheses in Table I) in a weak coupling approximation. On the collective 
modes in 3He-A see Refs. 14-16. The modes related to gravitation are 
discussed in the next section. 

TABLE I 

Collective Modes in 3He-A and Their Analog in Particle Physics 

Particle physics 
3He-A 

Mode Variable Degeneracy Q Variables Mode 

Orbital waves 1 2 :el A, g13, g23 Photons 

Clapping modes e~'+e~, 2 (6) +2 g12,½(gll_g22) Gravitational waves 
e ~ - e  y 

Pseudosound e~ + e y 1 (3) 0 )(gll + g22) Additional gravitons 

Sound e ~ -  e~ 1 (3) 0 - -  Torsion wave 

Spin-orbital A13 , A23 4 + 1 Wa W-bosons 
waves 
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3. G R A V I T A T I O N A L  W A V E S  

Only three components of the metric tensor g0 are dynamical variables 
producing the collective oscillations: g12, gH, g22. The components g13 and 
g23 correspond to vector l oscillations and therefore may be incorporated 
in the A field of the photon. The Lagrangian describing the gravitational 
waves propagating for simplicity along l is as follows~5: 

NF 4 1 2  2 LG=-~{-~I['3ClI(O3fa)--,.,,:L Ofa2 4 2 2  2 2 (Ot) ]+-3 A°(fl+f~+2f~)} (12) 

f~ = (g11 _ g22)/2g(O)a1 ' f2 = g12/g(Om 

f3 = (g,1 + g22)/2g(O)11 _ 1 

Here NF is the density of states, the massless variable f4 corresponds to the 
sound wave: this is the torsion wave, the oscillations of tetrads without 
change in gO (see next section) . . . .  

The first two waves, the clapping modes, correspond to the ordinary 
gravitational waves in Einstein theory with the spin projection Q = +2. The 
third wave, pseudosound, with Q = 0, has no analogy in general relativity. 
All the gravitons are massive, since the clapping mode and pseudosound 
are not Goldstone modes. It is interesting that the mass term in Eq. (12) 
may be considered as the cosmological terms in Einstein theory modified 
in Ref. 13 in the following way: 

- -  A ( - - ~ h l / 2 f l ~ ( O ) r ~ P ~ v  - -  1) Lcosm- l~, 6] k2~p,v~5 

= A(_g(O))l/2[1 1 2 2 2 +~(f l + f~ + 2f~)] (13) 

where A = A4/12~r 2 and g~C~ is the equilibrium metric tensor corresponding 
to Minkowski space. As distinct from the ordinary cosmological term, 
A( -g )  ~/2, Eq. (13) does not lead to the gravitating mass of the equilibrium 
vacuum. 

4. C H I R A L  F E R M I O N S  

The massless fermions are described by the Weyl equation, which is 
the square root of Eq. (8) and may be obtained from the Bogoliubov 
equation. Using the order parameter with fixed spin structure, Eq. (7), one 
obtains two Weyl equations for fermions near two nodes2'3: 

{ i O t  ! a j . --2"r [ea(-tOj-Aj)+(-iOj-Aj)eJa]}~7=O (14a) 

{iO~ l a j • +~a" [ e,,(-taj + Aj) + (-iOj + Afle~]} ~ = O (14b) 

Here ~.a = (1 ,  ~r2, r3) are the Pauli matrices corresponding to the Bogoliubov 
spinors, as distinct from the Pauli matrices o-a, which describe an ordinary 
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spin. The wave function ~7 describes the fermions near the north pole of 
the Fermi sphere (k -kF l ) .  These particles have positive electric charge, 
e---1, and right chirality, while ~: corresponds to particles near the south 
pole ( k - - k F l )  with e = - 1  and left chirality. 

Equation (14) may be written in covariant form, e.g., Eq. (14a) trans- 
forms to (a =0, 1,2,3; a =0,  1,2,3) 

e2y~V.r] = O, y" = (1, r l, T 2, r 3) 

V~, = 0 .  +l~o.,.b[y ", yb]_  iA~ 
(14c) 

where the connection 

q v p, 
~o,, ab - e .  ( 0 ,  e~b -- F ~ ~ e . b  ) 

is expressed in terms of the Christoffel symbol F and the gauge field A is 
modified by including the torsion tensor Av,~,~: 

.~  - a - ! ~  ~ a  A ~ = e ~ ( O ~ e ~ - O ~ e ~ )  - -  " ~ ' a  1 8 ~ O ~ f l L ,  ~ y , t ~ v ,  , 

As distinct from the standard Einstein theory, the torsion field is the 
dynamical variable giving rise to the sound wave (see Table I). 

Equations (14) may be generalized to include the deviation of the order 
parameter A,i from the Ansatz (7), i.e., to take into account the spin structure 
of the order parameter. Here we consider only four additional collective 
variables, A13 and A23. They form the so-called spin-orbital waves, which 
are gapless in a weak coupling approximation. 16 These fourfold-degenerate 
modes correspond to W-bosons in the standard theory of electroweak 
interaction, since Eqs. (14) become as follows [we shall write only Eq. (14a)]: 

{ i O t  1 a j . . . .  j _ --2"r [ea(--lO j -A, -O' .W} ) + ( - @ - A y - o ' . W  j )e~]}~ - 0  (15) 

Now we use Eqs. (14) and (15) for the investigation of the 3He-A 
singular behavior at low temperature. The classical Bose fields of the order 
parameter, corresponding to the electromagnetic, gravitational, and W 
fields, influence through these equations the fermionic vacuum, producing 
the vacuum polarization and anomalies. The effect of the Bose fields on 
the vacuum is crucial due to the zero mass of fermions. 

5. NONANALYTIC GRADIENT EXPANSION AND THE 
CANCELLATION OF ELECTRIC CHARGE 

It is well known in QED 4 that the electric charge is screened by the 
polarization of the fermionic vacuum. If  the fermions are massless, the 
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screening is complete, i.e., the electronic charge een logarithmically drops 
to zero at large distances (or at small frequency): 

e2eff = 3~r / l n (A2 /w  2) (16) 

where A is the ultraviolet cutoff parameter. 
This may be directly applied to 3He-A. At large In ( A 2 / w  2) t]he elec- 

tromagnetic Lagrangian is overwhelmingly defined by the vacuum polariz- 
ation term 

tem= ( -g ) l /2F~vF~ 'V/16~re~  (17) 

which is covariant, since it is defined by the electron-photon interaction, 
described by the covariant equations (14). Substituting 

F ~ = g " g  ~aF,a, A = kFl, 

and the equilibrium metric tensor 

g(0)00 = - -1 ,  g(0)33 = C~, g(0)11 g(0)22 2 

A = Ao (18a) 

(__g(0))1/2 _ (CI[ C2)-1 

(18b) 

and using c±<< cjl, one obtains from the Eqs. (17) and (16) the leading term 
in the Lagrangian, describing the dynamics of  the 1 vector: 

Lem rot 1)2- _ (19a) - 24,n.2 m ~-5 (1 x VF 3 

The first term in the square brackets of this logarithmically divergent 
Lagrangian has been obtained by Cross, 1 while the second one corresponds 
tO the logarithmically divergent orbital susceptibility. 17 

In the static case the calculation of the 1 texture energy is equivalent 
to that of the magnetic energy of the fermionic vacuum in the presence of 
the magnetic field B = kF rot 1. Applying the procedure described in Ref. 18 
to the case of the anisotropic fermions, one obtains the "magnetic" energy 

k~vF . ao 
Fm= 24rr 2 (i x rot 1) 2 In VF[I X rot II (19b) 

which also may be found directly from Eq. (19a), where w should be 
substituted by the "Larmor"  frequency 6 

~oL = aOVFIl X rot 11 = c tc , ln . I  

This nonanalytic term in the gradient expansion is in accordance with a 
suggestion made in Ref. 19. 



308 G.E. Volovik 

6. P H O T O N S  A N D  W - B O S O N S  

The oscillations of the vector 1, the orbital waves, may be obtained 
from Eq. (19a). These photons are extremely anisotropic since g(0)33>> 
g<O)l~ = g<O~22 and their spectrum is 

tO2h = c~(q. 1) 2, cll = vF (20) 

It is interesting to find also the coupling constant of the fermions with 
W-bosons. The calculation of the vacuum energy in the presence of  the 

'~ -OiW 7 -OjW~' shows that the leading term in "colored" magnetic field F~ - 
the Lagrangian for W-bosons has the same structure as Eq. (17): 

( - -  rr ] 1/2 1~7(c¢) ]~'(c~)/zv / 1 ~ ~ 2  (21) 

This means that there is the cancellation of  the "weak" charge 3 in 3He-A 
instead of the asymptotic freedom predicted in the standard model of 
electroweak interaction. The difference comes from the different vacuum 
structure in these field theories: the 3He-A vacuum is of  pure fermionic 
origin and does not contain the zero-point oscillations of the bosonic fields, 
which produce an additional magnetic energy of the vacuum in the standard 
model. 

The spectrum of  W-bosons found from Eq. (21) is the same as that of  
photons. However, this is valid only in the weak coupling approximation. 
The strong coupling corrections result in the mass 

¢O~v = c~(q. 1)2+ mZw, rn~v~ A~6 (22) 

where 6 is the so-called spin-fluctuation parameter, which is responsible 
for the strong coupling effect; ~ << 1 at low pressure. 

It is interesting that the origin of the mass of the W-bosons in 3He-A 
is quite different from that in electroweak theory. In 3He-A the W-bosons 
are massless in the weak coupling approximation due to hidden symmetry ~6 
and the mass mw appears due to strong coupling corrections violating the 
symmetry. In the standard model of electroweak interaction the mass of 
W-bosons appears due to spontaneously broken symmetry as result of  the 
Higgs phenomenon. 

7. CHIRAL ANOMALY AND M O M E N T U M  CONSERVATION 
LAW 

Another consequence of  the chiral and massless nature of the fermions 
in 3He-A is the chiral anomalyT'lS--the nonconservation of  the fermionic 
current due to the influence of gauge and gravitational fields on the fermionic 
vacuum. The source of  the fermionic chiral current is given by the Schwinger 
equation (1) if one neglects the anomaly caused by gravitation, which is of 
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higher order in the order parameter gradients (see below). The source on 
the the right-hand side of Eq. (1) is a pure derivative; thus, the total cu r ren t  
of particles plus vacuum is conserved: 

O~(J~+J~vac)=O, Jv~ac = -(1/4"rr 2) e~'~aA~O~A~ (23) 

Jvac is not gauge-invariant, i.e., the fermionic vacuum violates However, 
the gauge invariance. 

Just the same situation with the nonconservation of the mass current 
exists in 3He-A. The vacuum supercurrent, i.e., the superfluid mass current 
at  T = O, 

j = pvs +1 rot(lpl) _1Co1(1, rot 1) (24) 

is not conserved. There is a source of the vacuum current (or the source of 
linear momentum) 

O,ji + 0 ~  = -3  Co1~( 0,1. rot 1) (25) 

This was interpreted 5"6 as the transfer of  the vacuum linear momentum j to 
the momentum P of excitations with P + j  being conserved. Thus, there 
arises the analogy between P , j  in 3He-A and o o Js, Jva~ in particle physics. 

This analogy is exact. The jo component of the chiral current is the 
density of  the right particles minus the density of the left particles: 

jo = rl+r/_ ~+~ (26) 

Since the right particles have momentum +kfl and the left particles -kvl ,  
the momentum of excitations in 3He-A is related to jo: 

P = kFIJ ° (27) 

Therefore, using Eq. (23) and neglecting the higher order terms, one obtains 
the equation for P: 

OtPi "-F O j ~ i j  = ~ I~F,~F, t3 e ~ t3  = 2~ 2 k3 li(O,l • rot 1) (28) 

where we inserted the gauge field A = kvl. The right-hand side of Eq. (28) 
is just the source of the vacuum current in Eq. (25) with the opposite sign; 
thus, the total linear momentum of liquid, P + j ,  is conserved. 

The momentum transfer from vacuum to excitations (or to the normal 
component,  if the system of  excitations is in a local equilibrium) is well 
known in ordinary superfluids, such as 4He, if quantized vortices are present 
in the liquid. Such a vortex is a mediator in the process of transfer of  the 
momentum by means of  the Magnus forces. In 3He-A the mediator is also 
the vortex, but the vortex in k space, i.e., the boojum on the Fermi surface 
where the superfluidity is broken (the gap is zero) as in the core of a 
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quantized vortex. Also as in the vortex, phase winding occurs around the 
node in the gap (see, e.g., Ref. 10). Thus, the source of  linear momentum 
in Eq. (25) may be considered as a local Magnus force. The global Magnus 
force acting on the vortices in 3He-A which are nonsingu!ar may be obtained 
by integrating the local Magnus force over the cross section of the vortex. 

The "gravitational" field also contributes to the chiral anomaly2°: 

2 e ( F ~ F ~ ,  + ~ R ~ R 2 ~ )  (29) O f l ~  = 16~" 

and thus to the source of supercurrent. Here R is the Riemann curvature, 
and F,~ is the modified electromagnetic field [see Eq. (14c)]. 

8. SUPERCURRENT AND NORMAL COMPONENT AT T = 0  

It is important that the transfer of the vacuum momentum j into the 
momentum of excitations P occurs in the vicinity of two boojums on the 
Fermi surface where the gap is zero. In this region the equations for 
excitations have a covariant form an therefore the result for the source of 
momentum in 3He-A and that for the source of chiral current in QED 
coincide. On the contrary, expressions (24) and (23) for the vacuum currents 
in 3He-A and QED are different. This is because the vacuum current is 
defined by deep vacuum levels where the Bogoliubov equation for fermions 
is very different from the Dirac-Weyl equation in QED. 

Note that the calculation of the vacuum supercurrent in 3He-A had its 
own problems 21 since an ordinary gradient expansion is not valid near the 
boojums. Nevertheless, an exact calculation of the supercurrent by the 
method used for the calculation of the chiral current in 2 + 1 electrodynamics 
showed that the Eq. (24) does holdg: the region near boojums, where the 
gradient expansion is not valid, gives only a correction of higher order in 
the gradients to Eq. (24). This correction, 5'6'9 

] ~ p(VF/Ao)I[I X rot !1(1" vs) (30) 

is, however, very important, since this corresponds to nonzero density of 
the normal component even at T = 0: 

p ~ ( T  = O) ~ plilJ(vF/Ao)ll  × rot 11 (31) 

This is the result of the nonzero density of states in 3He-A in the presence 
of I texture, which is similar to the nonzero density of states for the massless 
electron in a magnetic field. 6 

Thus, the excitations are important in the 3He-A dynamics even at T = 0. 
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9. ANGULAR M O M E N T U M  PARADOX 

The angular momentum paradox, the different values of the angular 
momentum of  3He-A obtained at different approaches, is also related with 
the chiral anomaly. The natural value of the internal orbital momentum L 
of  liquid is the density of  the Cooper pairs, ½p at T = 0, multiplied by hi, 
the orbital momentum of one Cooper pair: 

L = ½pl (32) 

However, the microscopically derived dynamics of the I vector corresponds 
to the dynamics of a very small value, - (Ao /e  F)2L, of the internal momentum 
(see, e.g., Ref. 5). 

The resolution of this paradox is that there is a transfer of the angular 
momentum of  the vacuum L into that of excitations L . . . .  quite similar to 
the linear momentum transfer. The source of  the quasiparticle momentum 
was found in Ref. 10 by consideration of the Wess-Zumino action in 3He-A: 

OtL~xc = -½CoOtl (33) 

In the language of  particle physics this equation describes the creation of  
electron-positron pairs from the vacuum by an external electric field E = 
-kFOtl, since L~xc corresponds to Js: the current of the created charge 
particles increases in time under an electric field if the dissipation is 
neglected. Such easy creation is possible only if the particles are massless 
as in 3He-A. 

The same source, but with the opposite sign, should exist for the vacuum 
angular momentum L in order to conserve the total momentum L+Lex~: 

OiL+ 6F/  60 = ½CoOtl (34) 

where 6 F / 8 0  is the torque, with 0 the angle of rotation of the order 
parameter. From Eqs. (34) and (32) it follows that 

½(p - Co)0tl + llOtp = - 6 F / 6 0  (35) 

Since Co = k3/37"r 2 is the density of  liquid in the normal state, the quantity 

½(p - Co) - (AO/eF) 2 In(eF/Ao) 

involved in the I vector dynamics is very small, i.e., the effective dynamical 
momentum of Cooper pairs is in agreement with microscopic analysis. 

The difference in the results of the calculations of the static angular 
momentum of  liquid (see, e.g., Ref. 21) is also resolved if one takes into 
account the contribution of  the excitations in the wave function of 3He-A 
(Ref. 6 and preprint in Ref. 9). 
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10. CONCLUSION 

Here we have considered the influence of  the anomalies and vacuum 
polarization effects on the reversible dynamics of 3He-A at T = 0. However, 
for practical purposes (the investigation of the motion of quantized vortices, 
solitons, A-B phase boundary, etc., at low temperature) we need details of 
the dissipation of excitations, which always exist even at T = 0. Thus, the 
motion equations for the vacuum variables vs, 1, and p should be supple- 
mented with the kinetic equation for quasiparticles with different chirality. 
Only after this is done can the problem of the low-temperature dynamics 
of  3He-A be solved. 
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