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We report an experiment in which superfluid flow through a single lO-tzm 
diameter orifice is examined at pressure heads as low as 0.03 dyne/cm 2. 
Accurate measurements of low pressure head are made possible by a recircu- 
lating flow cryostat, capable of generating a calibrated, continuous flow of 
superfluid helium. Current vs. potential data for temperatures between 1.46 
and 2.14 K are analyzed according to the Iordanskii-Langer-Fisher thermal 
nucleation theory, modified to apply to a model in which vortex half-rings 
are inhomogeneously nucleated at the sharp-edged mouth of the orifice. We 
offer two possible interpretations of the results. 

1. I N T R O D U C T I O N  

The homogeneous nucleation theory originally due to Iordanskii 1 and 
to Langer and Fisher 2 (ILF) explains in an elegant way how free vortex 
rings created by random thermal fluctuations can extract energy from the 
flow of superfluid helium. When a thermally nucleated vortex ring expands 
to the size of the flow channel, it annihilates a wavelength of the phase of 
the superfluid wave function, thus decelerating the fluid. In an isothermal 
flow experiment in which the flow velocity vs is maintained constant, the 
pressure head Ap required to maintain steady flow is proportional to the 
frequency v of production of "critical vor t ices"-- those that can successfully 
cross the channel and contribute to dissipation. The vortex production 
frequency is, in turn, proportional to a Boltzmann factor relating to the 
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probability for finding the fluid in a flow state containing a critical vortex. 
Explicitly, the pressure head due to thermally nucleated vortices is 3 

Ap = OK Vuo exp [ - E a  (v,)/kT] (1) 

where p is the fluid density, x is the quantum of circulation, V is the 
volume available for nucleation, Uo is some attempt frequency per unit 
volume, and Ea(vs) is the activation energy, or the free energy required to 
create a critical vortex. The correct interpretation of the attempt frequency 
remains a serious problem with the ILF theory, but it has usually been 
identified with the atomic collision rate2'3--something like 10 34 sec -1 cm -3. 
Donnelly and Roberts 4 have calculated a similar value from the specific 
model of critical vortices nucleated as rotons. 

In the original version of the ILF theory, the critical flow state was 
taken to consist of a free circular vortex ring whose self-induced velocity 
just holds it stationary in the flow. Since self-induced velocity depends 
upon the curvature of the filament, the critical vortex is identified by a 
critical radius Re. Larger, slower rings will expand and contribute to 
dissipation; smaller, faster ones will contract and vanish. The energy of a 
free critical vortex ring is 

Eo(vs)  = ~ (Os/p)v;  1 (2) 

where ps is the superfluid density, and 

¢J = px 3(rl - 1/2)('0 - 5 /2 ) /1  67r (3) 

Here,  77 is the vortex parameter  defined by 

rl -= in (8Rc/a) (4) 

where a is the core radius. For most geometries, rl is nearly constant and 
has a value of about three. 

Several experimental investigations 3'5-1° have shown qualitative agree- 
ment with the ILF theory, but, in general, critical velocities are lower and 
temperature dependences are weaker than predicted. Most early experi- 
ments were performed in submicrometer-sized channels in order to suppress 
the various "extrinsic" dissipation mechanisms. One of the authors, 9 
however, produced intrinsically limited flows in single 10-1xm pinhole 
orifices by "guarding" the sample with rouge superleaks. This experiment 
showed substantially higher critical velocity and stronger temperature 
dependence than previous investigations, but still did not match the theory. 
In order to explain the remaining discrepancies, it was suggested that the 
vortices responsible for dissipation were being nucleated inhomogeneously 
in localized, high-velocity regions at the orifice lip or near irregularities in 
the channel wall. Since the local velocity determines the activation energy, 
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such a process would lower the critical velocity. Furthermore, these vortices 
would not be free rings, but would be truncated rings attached to the 
channel walls. Their lower energies would tend to bring down the critical 
velocity even further; but more importantly, velocity nonuniformities in 
the velocity-enhanced regions distort the shape of the critical vortex, 
ultimately resulting in altered temperature dependence of the critical 
velocity. 

This paper reports an experiment which indicates that most of the 
dissipation in a pinhole of this type may be due to inhomogeneous 
nucleation of flattened half-rings attached to the orifice lip. The apparatus 
used in this investigation drives a continuous superflow through a 10-tzm 
pinhole guarded with jeweller's rouge superleaks. The pressure head is 
measured with capacitive manometers sensitive to less than 0.03 dyne/cm a, 
and since the continuous superflow permits integrating pressure heads over 
several minutes, the processes are assured of being in steady state, and full 
advantage is taken of the manometer sensitivity. By contrast, in a gravita- 
tional flow experiment with this type of orifice and typical reservoir cross 
sections ( -  1 cm2), d p / d t  = 0.1 dyne/cm 2 sec at low temperatures. 

2. A P P A R A T U S  

The continuous superflow apparatus n is illustrated schematically in 
Fig. 1. Flow at a constant mass flux is maintained by a distillation pump 
similar to that used by van der Heijden et al. ~2 The thermomechanical 
effect-draws fluid through the superleak SL into the heated evaporator 
tube. Vapor then passes through the exit orifice at the top of the evaporator 
and condenses in the surrounding condenser, which is cooled by close 
contact with the bath. A vacuum space insulates the evaporator and con- 
denser from each other. The mass flux is fixed by the heat input to the 
evaporator, and the flow velocity is calculated from the mass flux and 
sample geometry. Film backflow is restricted by the small (1-mm-diameter) 
vapor exit orifice, but a calibrated correction was also applied to the data. 

The flow circuit is completed through the sample channel by way of 
four "thermal valves, ''13 which can be used to shunt or reverse the flow. 
The shunting feature is particularly valuable because it provides a con- 
venient, nondissiptative reference path. 

A pair of capacitive manometers is used to measure the pressure 
difference across the sample. Each manometer is a vertically oriented 
coaxial capacitor into which fluid is admitted to vary its capacitance. The 
capacitance of each manometer tunes a .tunnel diode oscillator so that a 
change in frequency of oscillation is proportional to a change in fluid level 
in the manometer. The difference frequency, corresponding to pressure 
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Fig. 1. Schematic of the continuous flow cryostat. Superfluid is drawn 
through the superleak SL into the heated evaporator tube E. Vapor 
from the evaporator passes to the condenser C, where it condenses 
and enters the flow circuit. Flow may be shorted or reversed by means 
of the four thermal valves TV1--4. Pressure head across the sample 
is measured by two capacitive manometers M1 and M2. 

head, is obtained by mixing the two manometer signals with a doubly 
balanced diode mixer. The sensitivity of the manometers is about 4.7 × 
10 -3 cm/kHz,  with noise of about + 15 Hz. This corresponds to a resolution 
of less than 1/xm of liquid helium, or about 0.01 dyne/cm. :  

The sample itself is a "utility optical pinhole" supplied by the Ealing 
Corp. It is a 3-mm-diameter nickel foil disk, 20/xm thick, with a single 
hole of 10/x m nominal diameter electroformed in the center. The particular 
orifice used in this work appears slightly elliptical when viewed under a 
microscope. Its axes are 9.9 and 8 .8+0 .5 /xm,  making an open area of 
6.8 x 10 -~ cm,: The channel is flared on one side, as shown in Fig. 2a. 
Scanning electron micrographs of this orifice indicate that the angle between 
the inner surface of the channel and the surface of the plate (denoted by 
8 in Fig. 2) is about 90 °. The radius of the lip is less than 0.05/xm. The 
micrographs also reveal the presence of numerous micrometer-sized, 
variously shaped bumps and indentations on the interior surface of the 
channel. The data reported here are all for flow from the flared side to the 
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Fig. 2. The sample channel. (a) A cross section 
of the orifice. (b) Mounting of the orifice on a 
flange guarded by superleaks. 

sharp-edged side, but spot checks in the opposite direction revealed similar 
behavior. 

The orifice plate is cemented to a stainless steel sample mount, which 
in turn is bolted to the cryostat, as shown in Fig. 2b. Sealed to each side 
of the sample mount  is a fitting with a 2-mm-diameter  rouge-packed 
aperture. These superleaks are the "guards" which seem to be conducive 
to observation of intrinsic critical velocities. 

We report  here a series of pressure head measurements as a function 
of flow velocity for temperatures between 1.46 and 2.14 K. 

3. ANALYSIS 

Calculation of the total free energy of an appropriately shaped half-ring 
pinned to the orifice lip is a difficult problem, but with the aid of some 
simplifying assumptions, the temperature dependence of the critical velocity 
may be deduced from this model, and the values of the nucleation theory 
parameters may be roughly estimated. 
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The local velocity of superfluid flow as a function of the distance y 
from a sharp edge with dihedral angle 0 is H 

where A is a constant, and 

v ( y )  = v~Ay'~-~ (5) 

a = 7r/(27r - 0) (6) 

The shape of the half-ring attached to the edge can be found by 
applying the criterion for a critical state: the local self-induced velocity v0 
must everywhere on the ring match the local flow velocity v(y). The 
geometry of the ring is related to the flow field through the local induction 
approximation, 14 which states that the self-induced velocity of an element 
of vortex filament is proportional to its local curvature; that is, 

Vo = B / R  (7) 

For a circular ring 

B = K ( r / -  1/2)/47r (8) 

which is nearly constant; for other shapes, the term involving *7 is probably 
slightly different. Applying the condition for a critical state, 

B / R  = v~Ay'~-i (9) 

Because the assumed local wall geometry has no length scale, the 
geometry of the ring scales with velocity in such a way that it retains its 
shape, but only varies in size as vs changes; so the ratio of radius of curvature 
at a point to the distance of the point from the edge is a constant. Specifically, 
for the point farthest from the edge, 

R (yo)/yo(vs) = C (10) 

where yo(vs) is the maximum value of y, and C is a constant. For a semicircle, 
C = 1; for a flattened half-ring, C > 1. 

Solving Eqs. (9) and (10) for the size of the half-ring yields 

yo(v,) = (B/CAv~) '/~' (11) 

Now the activation energy is approximately proportional to the length 
of line in the critical vortex, which, if the ring maintains its shape as v~ 
varies, is proportional to the maximum radius of curvature R (yo). If the 
energy per unit length of line is s, and the ratio of line length to maximum 
radius of curvature is D, then the activation energy is 

Ea = eDR (Yo) = eDCyo (12) 
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For a circular ring, 

e = (psK2/8~-)(n - 5/2) (13) 

which should also hold for other shapes to logarithmic accuracy. For a 
circle, of course, D = 2~"; for a flattened half-ring, therefore, D < ~-. 

Finally, Eq. (11) can be substituted into Eq. (12) and the result written 
in a form reminiscent of that found for the homogeneous case: 

E,~(vs) = f l ' (pJp )v-j 1/~ (14) 

where 

/3'= (pe /p~)DC(B/CA)  ~/'~ (15) 

A convenient approach to analyzing the pressure head data according 
to this model is to take the logarithm of both sides of Eq. (1). Defining 

F = In (pK Vv0) 

this procedure yields 

In Ap = F -  ( /3 ' /k) (pJpT)v~ 1/'~ 

Solving for the velocity, 

/3' 

(16) 

(17) 

Now if the velocity data are plotted on log-log scales against the 
temperature-dependent  quantity ps/pr,  the result should be a family of 
straight lines, one for each value of Ap, and all with slope a. This plot is 
shown in Fig. 3. The values of a are far from the homogeneous nucleation 
value of 1, but close to the value of 0.67 expected for a right-angle orifice 
lip. The variation of a with hp is quite small; for purposes of analysis we 
adopt the value for hp = 1 dyne /cm 2, a = 0.69. 

Having adopted a value for a, we may use Eq. (17) to determine the 
values of the nucleation prefactor F and the activation energy parameter  
/3' from the pressure head dependence of the velocity. Figure 4 shows a 
plot of In Ap vs. (ps/pT)v~l/'L The simplified inhomogeneous nucleation 
model predicts a single line of slope - /3 ' / k  and intercept F. Roughly, at 
least, that result obtains, with/3'  = 2.2 + 0.5 × 10-11 cgs and F = 15 + 4 cgs. 

Given o~, and continuing with the assumption that the critical vortex 
is not too far from semicircular, the expected value o f /3 '  can easily be 
calculated from Eq. (15), provided that the velocity coefficient A and the 
core parameter  r/ can first be estimated. An approximate integration of 
the velocity distribution over the orifice cross section gives a value A = 

(18) 
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Fig. 3. The temperature dependence of velocity. 
The solid line is fitted to the In Ap = 0 data. Its 
slope is a = 0.69. 
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0.054. The vortex parameter rt can be found by solving Eq. (4) with Rc 
from Eqs. (10) and (11). The extremes over the experimental range are 
3.1 and 3.6. Finally, for a semicircular ring, Eq. (15) becomes 

/3, = 8 I_ 47rA 3 (19) 

at 1.94 K, a result of comparable magnitude to the experimental value. 
The measured value of F is somewhat more difficult to account for. 

If F is calculated from its definition, Eq. (16), naively using the entire 
channel volume for V, and using 1034 Hz/cm 3 for Uo, the result is about 
48, a value much higher than is measured. The measured value of F can 
be accounted for (keeping 90 = 1034 Hz/cm 3) only if the nucleation volume 
is about 10 -24 cm 3. Now the typical size of a critical ring is, from Eq. (11), 
on the order of only 10 -7 cm, so if the nucleation volume is taken to be 
only a layer of thickness yo near the lip, the active surface must be about 
10 -17 cm 2. This tiny area could not be accounted for even if vortex produc- 
tion were dominated by a short section of extra-sharp lip with radius of 
order 10 .&. This does not deter us from suggesting, however, that such 
sections may exist, for the straightness of the plots of Eq. (18) strongly 
suggest an edge-nucleated l~'rocess. Any edge roundness on the order of 
the size of the critical ring would cause an upward curvature of those graphs 
at high vs, and none is seen. 

In order to escape the difficulty of unexpectedly low values of F, other 
workers, notably Campbell e t  al .  15 and Harrison and Mendelssohn, 8 have 
adjusted the attempt frequency 90. A strong temperature dependence is 
found, with 90 falling exponentially as temperature rises. This is qualitaffvely 
similar to our results. 

A closer look at Fig. 4 reveals the temperature dependences of F and 
/3'. When the data are fit for each temperature separately, different values 
for F and/3 '  result, which are given in Table I, together with calculated 
values of ~/ and 13' for the experimental velocities. The measured values 
of F and/3 '  show similar temperature dependence. The calculated values 
of/3 '  are less temperature dependent and about three times smaller than 
the measured values. 

It is not surprising that the ratio /3'/F is found to be temperature 
independent; this is forced by the analysis. Properly, we should return to 
Eq. (18) and try to redetermine a simultaneously with a temperature- 
dependent F or/3'. Since/3' depends on reasonably well-understood proper- 
ties of the quantized vortex, it would be surprising if it had stronger than 
the logarithmic dependence on v, and T implied by Eq. (3) or (15) and 
(4), apart from the uncertainties of the vortex configuration and of the 
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T A B L E  I 

Comparison of Experimental  and Theoretical  Values of the Nucleation 
Parameters  a 

/3 '(exp) /~ '(theor) 
T, K F, cgs 10 -11 cgs r/ 10 -11 cgs 

1.463 19.6 2.87 3.43 0.623 
1.571 19.9 2.98 3.46 0.654 
1.740 17.5 2.53 3.45 0.645 
1.854 13.2 1.98 3.35 0.549 
1.943 13.3 2.01 3.38 0.577 
2.017 11.1 1.77 3.31 0.513 
2.083 9.9 1.52 3.28 0.487 
2.141 8.0 1.14 3.20 0.419 

aThe values of "q are calculated for experimental  conditions at In Ap = O. 

t empera ture  dependence of the core radius a. Therefore,  to investigate the 
effect of a t empera ture-dependent  F, we will treat  ¢J' as a constant. A 
strong tempera ture  dependence of F is also surprising, but cannot be ruled 
out, as there is no satisfactory theory for uo. 

The salient experimental  fact, including also gravitational flow 
measurements  with similar orifices, 1° is that data for constant Ap plotted 
as in Fig. 3 always give a straight line. This implies that any tempera ture  
dependence of F is well represented by the form 

F(T) = Fo(Ps/pT) ~ (20) 

with some exponent  6. Then the slope a '  measured in Fig. 3 is to be 
reinterpreted (for In Ap ~ 0) as 

a ' = a ( 1 - 6 )  (21) 

The dependence of velocity on pressure head gives F as before. We can 
obtain a self-consistent fit to the present  data with a = 1.03, & = 0.33, 
Fo = 35, and/~ '  = 2.4 x 10 -12 cgs. 

To evaluate this fit, we note that F varies f rom 30 at 1.463 K to 14 
at 2.141 K, which are closer to the anticipated value. Since a = 1, which 
corresponds to a half-ring in a locally uniform flow, the expected value of 
¢3' is approx imate ly /3 /2 -~4  × 10 -12 cgs. This would be reduced if velocity 
enhancement  near the walls were taken into acount, so the fitted value 
appears  reasonable.  

4. C O N C L U S I O N S  

We suggest two possible interpretations of these results. The first is 
that F has an intrinsic tempera ture  dependence given by Eq. (20) with 
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8 ~ 0.33, and vor tex nucleat ion occurs on a relatively flat por t ion  of wall, 
so there  may  be a velocity enhancemen t  (say by a factor  E) ,  but  there  is 
no appreciable  velocity gradient  on a scale up to the largest critical ring 
radius Rmax for  the velocity range studied. Consequent ly ,  a -~ 1. Nucleat ion 
must  still occur  p redominan t ly  in the region of max imum velocity, for  which 
the orifice lip is the pr imary  candidate.  For  consistency, Rmax must  be 
smaller than the radius RL of the lip. We  estimate the enhancemen t  E as 
a funct ion of RL as 

E ~ 0 . 5 ( 5  , n  ~1/3 ~ m / ~ L )  (22) 

Combin ing  this with Eqs.  (7) and (8), and using the min imum mean  velocity 
of 90 cm/sec ,  we obtain  the condit ion RL > 50/~.  This is well be low the 
observat ional  constraint.  The  energy  pa ramete r  is consistent within the 
uncer ta inty  of possible correct ions to r/ for small vortices. There fo re  this 
in terpreta t ion appears  satisfactory, apar t  f rom requiring an unexplained 
s t rong t empera tu re  dependence  of F. 

The  al ternate  in terpreta t ion assumes that  the t empera tu re  dependence  
of vs is in fact due to a segment  of very sharp edge, and F is nearly constant .  
This is possible if the measured  dependence  of Ap on velocity does not  
simply represent  independen t  nucleat ion of vortices, but  that  some o ther  
process comes  into play at finite nucleat ion rates. The  sort of thing required 
could be t empora ry  pinning of supercritical vortices so as to reduce  the 
local velocity at the nucleat ion site. If something  like this occurs, we have 
insufficient in formaton  to extract  F and B'- 
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