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We have performed N M R  measurements on the flare-out texture of superfluid 
3He-B in a cylindrical container of 5 mm diameter in axial magnetic fields of 
28.4 and 56.9 roT. The transverse cw N M R  spectra have been analyzed both 
with respect to their overall shape and the spin-wave absorption peaks close to 
the Larmor frequency. Our analysis of the stationary state spectra, based on 
texture computations, yields the longitudinal resonance frequency rE(T), the 
magnetic healing length ~H (T), and the dipolar length ~D(T), which we report 
for pressures below 29 bar. A lattice of quantized vortex lines appears in the 
rotating state, and two additional textural free energy terms have to be included 
in the analysis. One of the terms is linear in the applied magnetic field and 
arises from the spontaneous magnetization of the vortex cores. The second 
term is quadratic in magnetic field; it is generated both by the superflow field 
Vs(r) about the vortex core and the difference in the induced magnetizations 
of the vortex-core and the bulk superfluids. The rotational orienting effects 
have been studied for rotation speeds ~ up to 2 rad/sec. 

1. INTRODUCTION 

Since the discovery 1 of the superfluid phases of liquid 3He in 1972, a 
large number of experimental and theoretical investigations have been 
carried out on these coherent states of matter at ultralow temperatures. Up 
to 1981, all efforts, with the exception of some early theoretical work, had 
concentrated on the properties of superfluid 3He in stationary sample 
containers. The early eighties were marked by new achievements in this 
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respect when two rotating ultralow-temperature cryostats were put into 
operation. 2'3 It then became possible to study superfluid 3He in rotation 
and, over a relatively short period of time, a considerable amount of new 
information was accumulated on many unique and mostly unexpected 
rotational flow phenomena in these anisotropic superfluids. 4-~° 

Superfluids in general are characterized by spontaneously broken gauge 
symmetry and therefore display a peculiar equilibrium structure in a state 
of rotational flow. The simplest type of rotational motion, corresponding 
to the "solid body" distribution of the velocity field, is incompatible with 
the constraints imposed by the topology of the order parameter space. It 
is for this reason that in superfluid 4He, for instance, the uniformity of the 
order parameter distribution is broken in rotational flow conditions by the 
formation of  a lattice of singular quantized vortex lines with a density no 
proportional to the angular velocity 1) of rotation. The superfluid 3He phases 
are described with order parameters possessing a much more complicated 
structure and therefore display a correspondingly larger variety of  rotational 
flow phenomena. The 3He-A order parameter is invariant under a combined 
gauge-orbit transformation, which opens up the possibility for the vorticity 
to be continuously distributed over one unit cell in a lattice of quantized 
vortex lines, i.e., 3He-A is capable of mimicking solid body rotation even 
in the absence of vortex lines with a singular core. For 3He-B the situation 
is quite different; its symmetry group contains as a continuous subgroup 
the combined rotation of  the spin and orbital coordinates but does not 
contain the gauge group. As a result, both the gauge symmetry and the 
relative spin-orbit symmetry are found to be broken. Thus 3He-B is character- 
ized by phase and by spin-orbit coherence, which in rotation at equilibrium 
leads to the formation of  a lattice of singular quantized vortex lines, similarly 
as in superfluid 4He. However, in 3He-B a large number of different structures 
for the singular core become possible. 

The quantized vortices of 3He-B are singular in the sense that inside 
the vortex core, with a cross-sectional size of the order of the superfluid 
coherence length, the order parameter changes continuously from one of 
the many core state distributions to its asymptotic B-phase form well outside 
the core. 11 This does not mean that the core would mainly consist of a 
normal state fraction as is the case for the 4He vortex where the order 
parameter goes to zero at the center of the core. In superfluid 3He the cores 
have macroscopic extensions, and the order parameter includes in its most 
general form nine complex components. It thus becomes possible to match 
the B-phase order parameter smoothly to some nonzero, intracore structure 
with a minimum loss of condensation energy. In fact, it can be shown that 
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in the core region, depending on pressure and temperature various order 
parameter distributions become possible solutions, and that a first-order 
phase transition between two structures with different discrete symmetries 
is a plausible explanation ~2'13 for the hysteretic discontinuity which is 
observed in the NMR measurements in the rotating state. 4'14 

An applied magnetic field removes the isotropy of the superfluid energy 
gap and causes the B-liquid to exhibit orbital anisotropy. Via the interplay 
of different anisotropic interactions caused by both the intrinsic 3He-B 
properties and by external influences, a spatially varying "texture" in the 
alignment of the anisotropy axis is formed. For instance, in a stationary 
cylindrical container in an axial magnetic field, the stable equilibrium texture 
is a "flare-out" configuration (see Fig. 1). It results from the combined 
action of the magnetic field and the container walls in the presence of the 
gradient energy which resists rapid changes in the order parameter orienta- 
tion. In addition, in the rotating state, the kinetic energy of the superflow 
circulating around the vortex core contains a term which depends on the 
relative orientation of the superfluid velocity and the axis of orbital 
anisotropy. This contribution among others, which is proportional to n~, 
thus changes the equilibrium texture as a function of the rotation velocity 
ft. The misalignment of the ansotropy axis from the external field direction 
causes the NMR frequency to shift from the Larmor value, which in turn 
provides a highly sensitive means for studying the order parameter texture 
experimentally. These considerations form the basis for our measurements 

IIIII\\ 

Fig. 1. Schematic illustration of the axially symmetric flare-out texture in a 
cylindrical container. A transverse cut through the cylinder is shown on the 
r ight-hand side, the arrows denote the projections of  ~ in the transverse 
xy-plane. A longitudinal cut along the cylinder axis is shown on the left, the 
arrows illustrate the radial distribution of/3. The orientation of  fi is specified 
by means  of  the azimuthal angle a and the polar angle ft. 
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and their interpretation. The results illustrate a rich variety of textural 
phenomena and the profound influence from the quantized vortex lines in 
the rotating state. 

In Sec. 2 we shall first briefly recount some of the theoretical ingredients 
for describing the anisotropic properties of the magnetized B-liquid, the 
flare-out texture in a cylindrical container and its distinctive NMR signature. 
In Sec. 3 we present the results from the stationary state measurements 
along with the method for extracting the values of the different textural 
parameters. Section 4 deals with the rotating state measurements which 
allow two additional textural free energy contributions to be determined. 
These arise from the influence of the rectilinear quantized vortices and yield 
quantitative data on the vortex structure. The main results from these 
measurements have been briefly reported in different contexts; here we have 
attempted to provide a more uniform presentation of the NMR properties 
and the original experimental data. The stationary state NMR properties 
were actually known more than a decade ago (see Refs. 15-17), but the 
present measurements have added some new details. Perhaps more impor- 
tant is the extended conceptual understanding which is gained from includ- 
ing rotation as a further dimension to the externally controllable parameter 
space. 

2. THEORETICAL PRELIMINARIES 

2.1. Textural Energies 

In contrast to the A-phase, which exhibits intrinsic orbital and magnetic 
anisotropy, 3He-B is isotropic in the absence of external influences. However, 
in an applied magnetic field, it acquires orbital anisotropy via spin-orbit 
coherence and a direct coupling of the magnetic field to the spin degrees 
of  freedom. To study the consequences from the induced orbital anisotropy, 
we have to refer to the structure of the order parameter in the presence of 
a magnetic field H. For the magnetized 3He-B, the components of the order 
parameter matrix are given by 

A~i = A~R~,(fi, O)e ie~ (1) 

where ~b is the phase angle of the superfluid condensate and A ~  is the 
uniaxial gap matrix 

A ~  = Allh~h~ + A±( t~  - h~h~) (2) 

The unit vector h=  H/H specifies the magnetic anisotropy axis, while A± 
and Atf are the energy gaps perpendicular and parallel to the anisotropy 
axis (A±--All = A when H = 0 and T <  Tc). R~i(fi, O) are the elements of a 
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rotation matrix for rotating the spin and orbital coordinates relative to each 
other by an angle 0 about an axis oriented along the unit vector fi, i.e., 

Ro(fi, O) = t~ - (1 - cos ®)(~i~ - ninj) q- eijknk sin O (3) 

The rotation becomes fully specified in the presence of the spin-orbit 
coupling, i.e., the magnetic dipole-dipole interaction which is given by the 
free energy expression 

1 * + A~ ,Ai~)  (4) Fo = 5gD(A~Ai l  * 

Here the magnitude of the dipolar coupling parameter go is best character- 
ized by its relation to the angular frequency toL(P, T) = 2~'vt` of longitudinal 
NMR (see Fig. 10) 

gD = XBto~/(3 y2A2) 

The B-phase longitudinal NMR frequency tot. in turn determines the scale 
of the frequency shifts in conventional transverse NMR (cf. Eq. (31)). The 
transverse NMR shift is the principal experimental observable in the present 
measurements, xB(T) is the B-phase susceptibility, A a(T) the zero-field 
energy gap, and 3' the gyromagnetic ratio of the 3He nuclear magnetic 
moment. Returning back to Eqs. (1) and (4), we note the remarkable property 
of 3He-B that Fo obtains its minimum value when the rotation angle ® is 
fixed at Oo=arccos( -1 /4) .  Furthermore, in the relatively low-magnetic 
fields of the present experiment, the order parameter field in Eq. (1) displays 
a texture which is formed by a slow variation in the local orientation of 
the rotation axis ft. 

To determine the equilibrium distribution of the directrix fi, one has 
to consider the orientation dependent energy contributions to the orbital 
anisotropy energy. The most important contribution is the magnetic 
anisotropy energy of the magnetically distorted B-liquid, which orients the 
stationary bulk liquid far from any surfaces and is given by the orientation 

. dependent part of the spin-orbit coupling in Eq. (4). The tensor A,~A, j  can 
be expressed in terms of an orbital anisotropy axis which is oriented along 
the unit vector 1B such that 

^ A ~  ^ A A , IB = hR(n, O) = cos Of  1+ (1 -cos  ®)(fl • n)n+sm Oh x fi (5) 

Then 

A,,A,j* = A ~ laiIBj + A2(80 - leilej) (6) 

With these notations we obtain from Eq. (4) a free energy contribution 

4 FDH = - - ~  XB ( ~ ) 2  [SB (~q-2 COS O)fl • ' B - - l t ~ 2 ( f l  ' 1B) 2] (7) 
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which depends on the relative orientation of IB and h. Here 6B= 
(A±--AII)/A ± is the gap anisotropy parameter which is of the order 8B = 
(H/Hc) 2 when H<</-/~. Hc represents the field for which the magnetic 
anisotropy energy (XN--xB)H2/2 equals the condensation energy for 
Cooper pairing. With cos Oo = -1/4,  one can finally write the magnetic 
orientational free energy in the form 

6FDn = -aH2(n "/!)2+ const (8) 

where the orientational magnetic anisotropy constant a is given by 

1 { ~ L ~  2 

Although the orientational free energies are minute, experimentally, the 
textures become observable by virtue of the high degree of correlation in 
the superfluid phase and the high resolution of the NMR method. 

The magnetic orientational energy in Eq. (8) favors parallel or anti- 
parallel alignment of h along fl. In addition one has to take into account 
the influence from the walls of the container and the bending of the 
h-orientation from that at the walls towards the alignment along the external 
field direction far inside the bulk liquid. The equilibrium texture corresponds 
to the configuration for which the magnetic and bending energies integrated 
over the volume are minimized, subject to the boundary condition that the 
orientation at the walls is fixed by a separate minimization of the surface 
energy. The resulting textures have a characteristic length scale, the magnetic 
healing length ~n, which is of the order of 1 mm in typical NMR conditions. 
The large value of ~, is a prominent property of the B-liquid, a manifestation 
of the inherent stiffness of the h-field by way of the large size of the gradient 
energy as compared to the bulk liquid orientational energies. The B-phase 
textures in the stationary state were first comprehensively discussed in Ref. 
15, which also describes the flare-out texture for the cylindrical geometry 
in an axial magnetic field. In the present context, the main emphasis will 
be centered on the textures of the rotating state and, specifically, on the 
methods of extracting new information on the structure of isolated vortex 
lines via their influence on the large-scale, global texture. Therefore, in the 
remainder of this subsection, we shall limit the discuss±or- on one particular 
example of the orientational effects from the presence of vortices and, with 
respect to the more general textural features and principles, we refer to the 
existing literature. 15-~7 However, we want to point out that rotation is the 
most effective means of erasing defects from textures and, therefore, we 
have used the present stationary state NMR spectra, which have turned out 
to be exceptionally clean and ordered, for extracting values for the various 
textural parameters like toL(P, T) and ~:,(P, T). 
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Let us next focus on the orientational influence from the superflow 
circulating an isolated vortex line with a velocity field vs = (h/2m)Vdp in 
the presence of  an anisotropic superfluid density p(S).18 The hydrodynamic 
expression for the energy density in the supercurrent is given by 

Eft _ ! , ( s ) ,  , ow - 2~, ~ ,~si~sj (9) 

For this we need to consider the anisotropic part of the kinetic energy of  
the magnetized 3He-B. Note first that the induced orbital anisotropy leads 
to a corresponding anisotropy in the quasiparticle excitation spectrum 

Ep = [e2(p) + la(p)12] 1/2 (10) 

where e ( p ) =  p 2 / ( 2 m ) - e F  and &(p) is the anisotropic energy gap. For a 
p-wave state, A(p) is linear with p such that A~ = A~i ~i (since JPl-~ PF) and 

la( )l = = A~[1 - •B(2 - s~)(~ • i s ) ]  (11) 

Consequently, since In acts as an anisotropy axis of the gap, the density 
of the normal component of  the magnetized B-liquid has to be expressed 
by the uniaxial tensor 

p ~ ) =  _(.)I t ~' II "B,,Bj + P(,')(~,j -- IB,IBj) (12) 

where, however, the density anisotropy (~Pan = p(n)plln) remains small since 
~n << 1. A standard weak coupling calculation with the inclusion of the 
Fermi-liquid corrections gives for the density anisotropy the result 

2 ( I + F ~ / a ) Z ( T )  
~Pan/P = --~ oB [ 1 ~ 2  (13) 

Here Y(T)  is the Yosida function while the related function Z ( T )  is given 
by 

f+~ tanh ~ de(p) 
Z ( T )  = ( A . / 2 T )  2 J_o~ cosh2(Ep/2T) ~ (14) 

Ep is the isotropic excitation spectrum Ep=(e2(p)+A2)  ~/2. Note that 
Y(T~) = 1 and drops monotonically to zero as the temperature decreases 
while Z ( T )  has a maximum at T-~ 0.7 T~ and vanishes at both T = T~ and 
T = 0 .  

Writing 

pl; ) = p6q - p~) = (p - p(~'))8 O + apa.lml~ (15) 

we arrive at the following expression for the anisotropic contribution to the 
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kinetic energy of superflow: 

1 ^ 2 
t~Faow = 8Fort =~ 8pan(Vs " IB) 

^ 2 
_ 2 X n (  t o L ) 2 6 n ( v .  1.) (16) 

15 \ ~IVD] 

Here, to facilitate the comparison with the orientational contribution from 
magnetic anisotropy in Eq. (8), we have introduced the dipole velocity VD, 
defined by the relation 

-2 3 03, 2 ( I + F ~ / 3 ) Z ( T )  
vD - 2 XBto~ [1 + F~ Y(T)/3] 2 (17) 

This Eq. (17) reduces for T ~  Tc to 

VD = (go/p~) 1/2 

In Eq. (16) we have also used an alternative notation 8F~n to emphasize 
that this contribution to the anisotropy energy results from the combined 
effect of the hydrodynamic flow and the magnetic field. 

Combining the kinetic term 8F,n in Eq. (16) with the spin-orbit contri- 
bution 8Foil in Eq. (8), we obtain expression (18) for the anisotropy energy 
density of the magnetized 3He-B in the presence of superfluid counterflow 

4 ^ 1 (V~'IR/ ] 
Fan = aFou + 6F,~. - 15 XBaB f~" 1B +'~ (18) 

\ V D / J  

It should be kept in mind that when v~ is large, we must also add the dipolar 
contribution FovOCv~ • R • v, to the energy density in Eq. (18), but its role 
is insignificant at the present level of magnetic fields when H >> 14o. The 
dipolar field Ho ~- [ goA2/(XN -- X~)] 1/2, which characterizes the magnitude 
of the dipole interaction with respect to the susceptibility anisotropy, is 
only - 3  mT. 

Next we analyze the role of the anisotropy energy in Eq. (18) in the 
formation of the h-field texture of rotating 3He-B. Initially immediately after 
turning on the rotation, the counterflow of the superfluid and the normal 
components must be most strongly felt, when the normal liquid has already 
become involved in the solid-body motion while the superfluid is still at 
rest (as in 4He-II, the establishing of an equilibrium lattice of quantized 
vortices requires a macroscopic time, of order 10 sec.4). In this initial 
nonequilibrium situation vs = - I t  x r (since Eq. (18) should be applied to 
a rotating system of coordinates) and if l~r> vo in the main part of the 
volume, then the counterflow must have a substantial effect on the h-field 
texture) 9 As the superfluid component gradually becomes involved in the 
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rotation and the vortex lattice is formed, the effect of the counterflow is 
weakened and, once an equilibrium state with (V xvs)=  211 has been set 
up, then the counterflow will become concentrated only around the vortices. 
Consider now the situation where the radius of  the Wigner-Seitz cell of  the 
vortex lattice r~ = [h/(4mfl)] 1/2 is much smaller than ~:H, the usual experi- 
mental condition, then we can average the second term in Eq. (18) over 
the vortex lattice. Since the superflow vs, which circulates around the vortex 
core, is perpendicular to 11, it follows that 

" 2 ((v~i~) 2) = ½(v~)[1 - (1~. Is) ] (19) 

Thus we find that to within a constant term 

F~. -aH2[( f i  " 2 2 ^ ~  ^ ^ 2 = • h) -3Af(hR(n, {3o)11 ) ] (20) 

where the dimensionless parameter Af=(v~)/(2v 2) characterizes the 
strength of  the global coupling of the system of  vortices to the fi-field, is 

Noting now that for the system of quantized vortices 

(v~)=nv ~rmr 2~rrdr=hllln(r~/~C)m (21) 

where ~:~ and r~ are the radii of the singular vortex core and the Wigner-Seitz 
cell of  the vortex lattice, respectively. Using Eq. (17) for the dipole velocity 
vo, we then arrive at the following estimate for Af = Af(P, T): 

3 hp (c~,)2 (I+FI(P)/3)Z(T) 
Af-2 2mxs , -~ ,  [I+F~(P)Y(T)/3] 21n(r~/~c) (22) 

In Fig. 2 the temperature dependence of  Ay is shown at various press- 
ures. The important features are the continuous increase of Ay with decreas- 
ing pressure while the temperature dependence is nonmonotonic: As starts 
from a finite value near Tc (neglecting the divergence of  s~c at To), passes 
through a maximum at about 0.5Tc and then rapidly falls to zero with 
decreasing temperature. The last property is clearly a consequence from 
the Galilean invariance, as a result of which the orbital anisotropy of  the 
superfluid must disappear as T-~ 0 (recall that according to Eq. (16) 8F~H cc 
8pan). In Sec. 4 we shall see that these features are prominently reflected 
also in the experiments. However, due to the approximate nature of Eq. 
(22) and the arbitrary definition of the core radius ~,  a comparison with 
experiment can only be made on a qualitative level. 

Equation (22) accounts for the global orienting effect from the superflow 
which circulates around each individual vortex line with the cutoffs in the 
integral fixed at ~:~ and r~. However, the region inside the core (r < s~), to 
where the B-phase does not extend, also gives a contribution to the 
anisotropy energy. To estimate the corresponding core parameter Ac, which 
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Fig. 2. Temperature dependence of the orientational free energy parameter A f, 
i.e., the magnitude of the textural influence of the superflow in the vortex 
lattice. The curves are based on Eq. (22), the values of the numerical constants 
are from Refs. 38 and 44, the vortex core radius £c = £0 = hvv/(keTc) and the 
Wigner cell radius r~ = 200 Izm. 

will  have to be p r o p o r t i o n a l  to the cross-sec t ional  a rea  ~.~:2 of  the  core,  it 
is necessary  to gain  i n fo rma t ion  abou t  the core s t ructure,  i.e., the  o rde r  
p a r a m e t e r  d i s t r ibu t ion  ins ide  the  core region.  In  cont ras t  the  flow cont r ibu-  
t ion  h:  is only  weakly  sensi t ive to the core  s t ructure,  s ince it d e pe nds  
loga r i thmica l ly  on r~/~c. Such a decompos i t i on  o f  the o r ien ta t iona l  effects 
f rom the vor t ices  into extra-  and  in t racore  con t r ibu t ions  is to some extent  
arb i t rary .  A more  cons is ten t  t r ea tment  w o u l d  call  for  a ca lcu la t ion  o f  the  
overa l l  p a r a m e t e r  A, which  mus t  a p p e a r  in Eq. (20) ins tead  o f  A:. Such a 
p r o g r a m  has so far been  rea l ized  only in the  G i n z b u r g - L a n d a u  region 2°'22 
whereas  the  bu lk  o f  the  exper imen ta l  i n fo rma t ion  has been  ob t a ined  at 
t empera tu re s  far  be low To. No te  that  the es t imate  o f  h:  in Eq. (22) is ba sed  
on a h y d r o d y n a m i c  t r ea tmen t  (using add i t i ona l  i n fo rma t ion  abou t  the 
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orbital anisotropy of the magnetized 3He-B) and the range of its validity is 
not limited to the vicinity of To. 

Finally, summing up what has been said above, we come to the 
conclusion that the rotation-dependent orientational contribution to the 
density of the orbital anisotropy energy of the magnetized B-phase can be 
parametrized in the form 

Fan = -aH2[(fi • fl)2-2A (P, T)(fl • R(a, 19o). h )  2] (23) 

Here A (P, T) is used at this point as a phenomenological parameter which 
characterizes the global orienting effect on the h-field from the lattice of 
singular vortices. Although we do not have a theoretical description of the 
full behavior of )t at all pressures and temperatures, we have seen, neverthe- 
less, that it includes the extra- and intracore contributions Ay and Ac. Ay is 
nonmonotonic with respect to temperature and determines the overall shape 
of the A(T) curve. Ac, on the other hand, is more directly related to the 
vortex core structure and as such may undergo discontinuous changes in 
abrupt rearrangements of the core. These structural transitions, in turn, 
must also be reflected via the parameter A in Eq. (23) as sudden global 
textural changes. Furthermore, the two terms in Eq. (23) display competing 
orientational effects on the h-field. The first term (of dipole-dipole origin) 
favors parallel and antiparallel alignment of fi along the magnetic field, 
while the second term (from the averaged influence of the superflow circulat- 
ing the vortex core and the magnetic anisotropy in the core) tends to 
counteract the establishing of the preferred spin-orbit configuration. The 
overall effect depends significantly on the relative orientations of H and ft. 

Equation (23) as such is not yet sufficient to explain the differences 
between the textures of the stationary and rotating states. It was first 
experimentally observed 21 that the NMR frequency shifts depend on the 
sense of rotation, i.e., whether the rotation is clockwise or anticlockwise at 
fixed magnetic field orientation. Consequently, a further free energy term 
linear in both H and f l  had to be included into the analysis. This gyromag- 
netic contribution is written in the form 

Fgm=4aK(H • R(h, Oo)" •) (24) 

and is explained to originate principally from a spontaneous intracore 
magnetization distribution. Thus the gyromagnetic parameter K depends 
on the core structure, similar to Ac. Present models for the vortex core 
structures at both low and high pressures in the Ginzburg-Landau region 
are in reasonable quantitative agreement with the experimental values for 
both hc and K. 12'13'20'22 

Finally, we need to investigate how the free energy contributions of 
the rotating state expressed in Eqs. (23) and (24) influence the texture. 
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Consider the bulk liquid far from any container walls (R >> ~ . )  in an axial 
field (I-Ill~), then 

Fan=all z 1 - A : ~ ' ~  sin2/3 8Asin4/3 +const  (25) 

where/3 is the angle between fi and H. At equilibrium 

K (26) sin2/3 = l - I / A +  , A>-'lq:K/H 

where the upper sign applies to the case where H and ~ are parallel while 
the lower sign refers to antiparallel alignment. Thus in the open geometry 
in the absence of walls there exists a threshold value Acr = 1 q: K/H below 
which ~]]H as in the absence of rotation. When the angular velocity builds 
up (recall that A ocll) and the threshold Act is reached, an orientational 
phase transition takes place to a state with/3 ~ 0, ~r. This is reflected in the 
appearance of a shift in the transverse NMR frequency relative to the 
Larmor frequency Vo = yH/(2cr) by an amount 

w~ sin2/3 2 w 2 ( 1 -  1/A + K/(AH)) (27) = = 

The phase transition to the new state with 13 # 0, 7r breaks the axial symmetry 
of the initial texture with ~IIHIII~, again a consequence from the broken 
spin-orbit symmetry. 

In a real experiment, one always deals with a limited volume of 3He-B 
such that the effect from the boundaries becomes important and the fi-field 
is inhomogenous, as a rule. To account for the orienting effect of the walls, 
we have to include the gradient free energy which depends on certain spatial 
derivatives of the order parameter. For 3He-B it is written in the form 

1 c ~ 2 1  2 1 

= ~ X ,  ' f i+v~fi" (~r xfi)) / (28) 

where e.  is the velocity of spin waves propagating in a direction transverse 
to ~. In the literature the prefactor in the gradient energy is also written in 
the form 5XB(e±/T)2/4 = 16c/13, where the bending stiffness coefficient 
e=65XB(C./T)2/64. To write down the total free energy density, it is 
convenient at this stage to introduce the magnetic healing length ~:~4 as the 
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characteristic length scale with 

( c )  1/21 (65X~ 1/2c± (29) 

~x = H = \ 64a ] yH 

We then find in natural energy units all: for the axial field orientation 

fan = (1 -- A :F n/H) sin 2/3 +~h sin 4/3 (30a) 

16 2 ^ 2 1 fi)+~/5fi (Vxfi)) 2] (30b) ftext = ~ ~H[(Vi n) --]6(V/3( v ~  

where it proves useful to introduce the notation ~:~=(16/13)1/2(x. The 
equilibrium distribution of the h-field is found by minimizing the volume 
integral 

f (f~. +ftext) d 2r 

with the appropriate boundary conditions as imposed by the container 
walls. The perfect axially symmetric experimental arrangement leads to the 
flare-out texture, shown in Fig. 1, which we shall next briefly describe. 

2.2. Flare-Out Texture 

The flare-out texture represents the minimum energy h-field configur- 
ation in a cylindrical container with the magnetic field oriented along the 
symmetry axis. In the stationary state, it results from the competition of 
three different textural free energy terms: the magnetic anisotropy energy 
t~FDH given by Eq. (8), the gradient energy Ftext in Eq. (28), and the surface 
energy Fsurf (cf. Ref. 15). Fs,rf fixes the orientation of fi at the wall" such 
that the polar angle/3 = arccos(1/v/5)=63.4 ° and the azimuthal angle a = 
60 ° (cf. Fig. 2). 8FDn attempts to deflect fi towards the external field direction 
while the ratio 6FDx/Ftext specifies the rate at which the wall orientation 
may change towards the bulk orientation on moving away from the wall. 
The gradual recovery of the bulk orientation is governed by the magnetic 
healing length ~:H but is strictly speaking fully established only on the 
cylinder axis. In the rotating state, the bulk liquid anisotropy energies have 
to be augmented by the vortex free energy Fv given by the second term in 
Eq. (23), and by the gyromagnetic contribution f g  m in Eq. (24). 

The structure of the flare-out texture was first numerically investigated 
by Maki and Nakahara. 23 They used an approximate approach according 
to which the aximuthal angle was fixed at a = 60 °= const, independent of 
the radius r, while Hakonen and Volovik 24 used the infinite R approximation 
in which the cylindrical surface is replaced by a plane boundary. The first 
rigorous numerical solution was obtained by Jacobsen and Smith. a5 We 
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have repeated these calculations and have extended the range of values for 
the various parameters in order to permit a more detailed comparison 
between calculation and experiment. The results are schematicaly illustrated 
in Fig. 2, while Figs. 3a and 3b display the variations of a ( r )  and/3(r) with 
three different values of ¢~. The a (r) curves are relatively flat, particularly 
for large ~:~. The/3(r) curves incorporate two limiting regions: 1) at small 
r,/3(r) displays a linear dependence with/3 =/31r~ where /31 is a constant 
slope, while 2) on approaching the wall at r = R, the dependence becomes 
exponential and is roughly given by/3 (r) oc arc cos(I/x/5) exp[-(R - r) /¢ 'H].  

With increasing rotation velocity f~, the polar angle 13 opens up at any given 
radius r until it finally approaches the bulk liquid value (given by Eq. (26) 
for h > Act and shown in Fig. 17a) as a plateau in the 13 (r) curves, particularly 
when h is large and sc~ small. 

The linear region of/3(r) in the central part of the texture plays an 
important role in the NMR properties: the slowly varying textural 
inhomogeneity traps standing spin-wave excitation modes which leave 
deafly distinguishable resonance absorption peaks in the transverse cw 
NMR spectrum. The spacing between these absorption peaks follows accur- 
ately the eigenvalue spectrum of a harmonic oscillator and allows a direct 
determination of the harmonic potential, i.e., the slope ill. The first NMR 
measurements of B-phase textures were performed in cylindrical geometry, 26 
and later in parallel plate geometries 27'28 in order to simplify comparison 
between experiment and theory. Subsequently, also the spin-wave absorp- 
tion modes were discovered, ~7 when the static field homogenity was sufficient 
and a suitable spacing was selected between planes in a stack of the parallel 
plates. The spin-wave resonances were again prominently featured in the 
first texture measurements in the rotating state 2'4 in the cylindrical geometry 
and have since then become one of the basic tools for investigating 3He-B 
in rotation. 

In the following we consider the cw NMR spectrum from the flare-out 
texture to illustrate the procedure for extracting detailed data about the 
texture. There are two features in the NMR spectrum which are of import- 
ance here: 1) the general shape of the resonance absorption envelope, as 
generated by the frequency shifts obeying local oscillator behavior, and 2) 
the spin-wave absorption peaks, generated by collective, nonlocal oscillator 
behavior. 

2.3. N M R  Spectrum 

In transverse cw NMR, the resonance frequency v is shifted from the 
Larmor value Vo = y H / ( 2 1 r )  according to the formula 16'17 

1.12 1 2 2 2 COS2 /311/2 (31) ~ ( , , o + p ~ ) + [ l (  2 _  2 ,2  = pO t l J L )  - -  1]012 L 
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where 2~ruL = toL(P, T). In the high-field limit Vo >> uL, a fair approximation 
to the measured transverse resonance frequency v is obtained from 

V= Vo+ V~ sin2 fl [ l +(~12 cos2 fl ] (32) 
2 Vo \ Vo/ J 

where even the factor in the brackets may usually be set equal to 1. The 
measured transverse frequency shift v -  v0 is thus determined by the polar 
angle/3 in a straightforward manner. Adopting this local oscillator picture, 
according to which every part of the sample is supposed to resonate at a 
frequency determined by the local value of/3, the averaged envelope of the 
NMR spectrum is directly generated by the h-field texture such that the 
absorbed resonance power per frequency interval is proportional to 

210~ p(v)oc-~ rdr6(v-v(r))  (33) 

Here v(r) ~ Vo+ (v2/2vo) sin 2/3(r) and thus P(v) oc (2/R2)[0 sin 2/3/0r2] -1. 
Some examples of local oscillator absorption spectra are shown in Fig. 

4. These have been calculated for the three different flare-out textures shown 
in Fig. 3, neglecting all line broadening from field inhomogeneity and 
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relaxation. At small values of  ~?~/, the N M R  absorption P(u)  is characterized 
by a sharp maximum, which borders to the low-frequency cutoff at 1,o and 
originates from the central region of the texture. This absorption peak is 
followed by a long tail towards the high-frequency edge corresponding to 
the wall orientation with the maximum value of/3 = 63.4 °. With increasing 
~:n more and more of the resonance absorption is shifted to higher frequen- 
cies as the slope o f /3 ( r )  grows in the central part  of  the texture (cf. Fig. 
3). On comparing the calculated absorption spectra with measured signal 
envelopes, we observe a fair resemblance between the ~:~ = 0.5 R curve in 
Fig. 4 and the stationary state signal in the top part of  Fig. 5. This latter 
signal envelope has been measured at a low pressure of 10.2 bar and a low 
temperature of  T = 0.53 To, where sc~ becomes as large as 0.5 R - 1 mm (cf. 
Fig. 13). The signal in the lower section of  Fig. 5 has been measured in the 
rotating state and illustrates how the absorption shifts to higher frequencies 
with increasing A when the region with small fl values in the centre of  the 
cylindrical container shrinks (cf. Fig. 17). 
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Fig. 5. Measured NMR absorption signal envelopes from a 
flare-out texture: H - - 2 8 . 4 m T  (i.e., v0=922.5kHz), P =  
10.2 bar, and T = 0.53 T,. The horizontal axis is the frequency 
shift measured in kHz from the Larmor frequency v o. The sharp 
peaks close to the Larmor edge are the spin-wave resonance 
absorption modes. The high-frequency edge is fixed by the wall 
orientation requiring/3 = arccos(1/x/5). 
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While the general shape of the NMR signal envelope rather faithfully 
obeys the simple local oscillator picture, the sharp spin-wave absorption 
modes close to the Larmor edge in Fig. 5 can only be explained on the 
basis of a more accurate treatment of Leggett's general equations of spin 
dynamics. 15'17 In particular we need to allow for global, coherent spin 
precession which, in the high-field limit, can be reduced to a single equation 
describing the motion of  the transverse spin operator S+ = Sx + iSy : 

[ -  ~ :  2V2 + sin E fl ( r)] S+ = ES+ (34) 

In this Schr/Sdinger-like equation, the length scale is set by the dipolar 
length ~o, which is defined as 

~19 \32] wL \X--~w2L] = - ~  2mvo (35) 

The units for the eigenvalues E are given in terms of a relative frequency shift 

E = 2V°(V-Vo) (36) 
2 

/}L 

The equation applies for a situation where the inclination of fi from the 
external field direction remains small, like in the region close to the cylin- 
drical symmetry axis. In this part of the texture, fl(r)  is linear with a small 
slope, such that sin f l ( r ) = f l l r  , and Eq. (34) reduces to that of a harmonic 
oscillator. Thus the eigenvalues are given by the equally spaced harmonic 
spectrum 

E, = 2(n + 1)(~)1/2s¢0/31, n = 0, 1, 2 , . . .  (37) 

However, with homogeneous static polarizing and rf excitation fields only 
modes with even parity are excited and n = 0, 2, 4 , . . . .  These levels are 
n + 1 fold degenerate; however, again only the modes e i"6 with m = 0 are 
excited. The relative intensities of the modes are determined from 

In o c ~  f S~+mrdr 2 / I  ,S~+n)12 rdr 

A particular property of the two-dimensional oscillator is that I,/Io = 1. 
The width of the resonances is proportional to n + 1 and thus only the 
lowest modes are discernible. 23 

The harmonic approximation is expected to be sufficient as long as the 
radius of localization for the spin-wave excitation modes remains small, 
i.e., (~o/fl~)1/2<< ~'n. In practice the experimentally observable spin-wave 
absorption peaks turn out to follow rather closely the harmonic spectrum. 
More generally, however, Eq. (34) should be solved with the appropriate 
potential well sin 2/3(r) which has been plotted in Fig. 6 for the flare-out 
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Fig. 6. Calculated spin-wave potentials of the flare-out texture for the 

spin-wave Eq. (34). 

textures of Fig. 3. Figure 7 presents the energy eigenvalues E,, of the ten 
lowest eigenmodes as a function of ,~',/R with sco = 10/xm. The lowest 
three modes obey the harmonic oscillator-like spectrum accurately in the 
region ~'n/ R >- 0.3. 

In principle the width of the spin-wave absorption lines can be used 
to determine the spin diffusion coefficient D of the bulk liquid, unaffected 
by the presence of the walls, because the modes are located around the cell 
axis. Simple perturbation analysis, neglecting all off-diagonal elements, 
yields for the linewidth 2(n + 1)~lD/(2rr~ox/'f) in units of frequency. Experi- 
mentally, D is found from the NMR spectrum by finding the ratio between 
the position of the spin-wave line (cf. Eq. (37)) and its width, since this 
ratio is simply given by rr,~2ofu2/(voD) with f=48 /65 ,  and only requires 
knowledge about the dipole length. Owing to the increasing linewidth of 
the modes, the amplitude of the spin-wave resonances falls off as 1/(n + 1). 
Figure 8 displays two examples of spin-wave spectra obtained by adding 
equally spaced Lorentzian lines with linewidths increasing as n+  1 (n = 
0,2,4 . . . .  ). Such spin-wave spectra can be constructed to match the 
measured spin-wave resonance absorption shown in Fig. 5. 

The effect of rotation is to increase the frequency spacing of the modes 
while spin diffusion remains unchanged (cf. Sec. 4.2.). 
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Fig. 7. Calculated spin-wave spectrum, given in the dimensionless units 
of Eq. (37) and plotted as a function of the normalized magnetic healing 
length ~'n/R. The dipole length ~:o = 10/zm. 

3. RESULTS IN THE STATIONARY STATE 

3.1. Experimental Details 

The experimental apparatus and techniques have been described in 
Refs. 4, 29, and 30. The liquid 3He sample is cooled to superfluid tem- 
peratures in a rotating nuclear demagnetization cryostat. 29 The sample is 
contained in a long cylindrical epoxy tower with a radius R = 2.5 mm. At 
its bottom end, the tower connects to a copper cell with a sintered silver 
heat exchanger for thermal contact to the copper refrigerant. A saddle- 
shaped coil, consisting of two rectangular halves, is wound around the 
upper end of  the tower and is used for the superfluid 3He NMR. An 
additional solenoidal NMR coil, with its axis oriented transverse to the 
cryostat axis, is located directly above the 3He tower and is filled with a 
liquid 3He sample at the same liquid pressure but higher temperature. This 
NMR coil is thermally anchored to the mixing chamber of the precooling 
3He/aHe-dilution refrigerator and provides a simultaneous reference signal 
at the Larmor frequency. The axial polarizing field is generated with an 
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Fig. 8. Simulated spin-wave resonance spectra formed by summing 40 Lorent- 
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Az,. The half-width F, (full width at half of maximum amplitude = 2F,) of 
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end-compensated superconducting solenoid located outside the vacuum 
jacket in the liquid He bath. Its field inhomogeneity is A H / H - 4 x  10 -5 
over the N M R  sample. 

The transverse continuous wave N M R  signals from both the superfluid 
3He-B sample and from the Fermi liquid reference are recorded in parallel 
using two independent spectrometers and a linear, triangular field sweep. 3° 
Thus the Fermi-liquid reference indicates the relative location of  the Larmor 
frequency during each field sweep and diminishes drift problems associated 
with the polarizing field and the sweep. In addition, the scaling factor of 
the frequency axis, the longitudinal resonance frequency ~L(P, T), is directly 
determined from each individual N M R  spectrum of the flare-out texture, 
which further reduces errors, in particular due to variations in temperature 
scales between different experiments. In part, this procedure was also a 
necessity since, to our knowledge, there exists no published data on ~'L(P, T) 
at low pressures which would satisfy our needs. The temperature is deter- 
mined from the integrated intensity of  the nuclear free precession signal of  
plat inum powder  immersed in the 3He-B liquid, measured by means of 
pulsed N M R  at a fixed field value during every second field sweep. Only 
the linearity of  the inverse nuclear susceptibility with temperature is of  
importance in the '95pt N M R  measurement since all temperatures in this 
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work are specified on the relative T/Tc scale. The Pt NMR signal corre- 
sponding to Tc is determined separately for each cool-down and warm-up 
by following the evolution of the 3He NMR signal during the thermal sweep 
through To. 

The present axial field measurements have been performed at 28.4 and 
56.9 mT. The rotation velocities extend up to 2.0 rad/sec. The measurements 
cover a liquid 3He pressure range of 0.5-29 bar. In all cases the object has 
been to investigate an equilibrium distribution of vortices. This is accom- 
plished by rotating the cryostat intermittently, i.e., it is accelerated from 
rest to the desired rotation velocity at each temperature where measurements 
are performed using a carefully monitored start-stop routine. Spin-wave 
resonance absorption has been studied at 28mT mainly at the higher 
pressures of  10-29 bar while line shape analysis has been the principal tool 
at the lower pressures of  0,5-10 bar, also at 28 mT. As a further cross check 
we have also employed the line shape analysis technique at 0.5 and 25 bar 
in the higher magnetic field of 57 mT. From the stationary state measure- 
ments, three central parameters have been determined, namely the longi- 
tudinal resonance frequency UL(P, T), the magnetic healing length ~:H (P, T) 
and the dipolar coherence length ~D(P, T). In addition, some representative 
values of more qualitative nature will be given for the effective spin-diffusion 
coefficient D(P, T). These parameters control the flare-out texture and are 
essential for the analysis of the rotating state textures in order to extract 
representative values for the A and K parameters. 

3.2. Longitudinal Resonance Frequency 

An accurate determination of the longitudinal resonance frequency 
UL(P, T) from the NMR signature of a flare-out texture is a delicate question. 
In Fig. 9 three different NMR signal envelopes are shown. The first one, 
(a), corresponds to a situation where the flare-out texture is defective and 
includes a soliton wall. 31 The stationary soliton produces a square root 
singularity in the absorption spectrum at the frequency corresponding to 

=-4-,rr/2, i.e., when the condition fi • H = 0 is fulfilled. The location of the 
soliton peak on the frequency axis has been used to identify PL(P, T) 
according to Eq. (32). This value for UL locates the frequency corresponding 
to/3 = +63.4 ° at the extrapolated endpoint of the envelope of signal (b) in 
Fig. 9. This line shape, which represents a clean flare-out texture, is obtained 
from the soliton-contaminated signal after a rapid acceleration at 
0.1 rad/sec 2 or more. In passing, it is useful to note that acceleration or 
deceleration of rotation is a very effective means of annealing defects from 
textures in both the A- and B-phases. Subsequently after loosing the soliton 
anomaly, the identification indicated in Fig. 9(b) was employed for extract- 
ing UL from the flare-out signal envelopes. 
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Fig. 9. NMR absorption signals measured at 0.5 bar and 28.4 mT: a, Line shape at 
0.77T c for a sample which has not yet been rotated; the absorption peak at/3 = 90 ° 
is produced by stationary soliton-like textural defects; b, after acceleration at a rate 
of  0.1 rad/sec 2, the clean flare-out signal emerges and is shown here for the stationary 
state; c, at high temperatures ( T =  0.85Tc) the signal is distorted by a peak at the 
high-frequency end which is believed to be an artifact of  the measurement. 

Closer to Tc the high-frequency tail developed into a second maximum 
as shown in Fig. 9(c). This anomalous absorption peak is believed to be 
caused mainly by the inhomogeneity of the rf excitation field HI ,  generated 
by the saddle-shaped coil on the 3He tower. The value of H1 increases 
monotonically towards the wall but the rate of increase depends strongly 
on the azimuthal angle. It is possible that part of  the sample is driven close 
to saturation or in a nonlinear fashion near some wall locations. 32 At any 
rate, even here the extrapolation procedure of  Fig. 9(b) appears to give 
reasonable values for uL which were first identified as the longitudinal 
resonance frequency in direct measurements of  the longitudinal resonance 
at the melting pressure in Ref. 33. 

In Fig. 10 a summary is shown of the uL(p, T) determinations from 
the present measurements. At 5.0, 10.2, and 15.5 bar UL has been identified 
exclusively from the soliton peak which yields the most reliable results. At 
0.5 and 25.0 bar, both the soliton peak and the high-frequency edge of the 
flare-out signal envelope have been used for the identification and con- 
sequently these results should be viewed in the light of  larger uncertainty 
limits. Nevertheless, the 25.0 bar data can be compared to earlier NMR 
measurements in Ref. 16; the agreement appears to be satisfactory: at most 



248 P . J .  Hakonen et al. 

I I 

A 

N 
"1- 

c )  

o 

v 

> 3 

<> 25.0 bar 
o 15.5 bar 

10.2 bar 
v 5.0 bar 
[] 0.5 bar 

0 I ,[ I I --~\J 

0.5 0.6 0.7 0.8 0.9 1.0 

T/T c 

Fig. 10. Isobars of the square of the B-phase longitudinal resonance frequency b'L(e ~ T) 
vs. temperature. At 0.5 bar results have been included from both the stationary (open 
squares) and rotating states (filled squares). 



NMR and Axial Magnetic Field Textures 249 

a 4% shift to larger toE values could be present in the new data. Such a 
difference, however, is of  the same magnitude as the uncertainty in the data. 

Close to Tc and for P - 15.5 bar the data in Fig. 10 can be approximately 
expressed with the formula 

v~ = (0.26P + 1.7)(1 - T~ To) 10,o Hz 2 (38) 
1 - 1 . 7 ( 1  - T~ To) 

The smoothed data do not deviate by more than +8% from this expression 
in the range from 0.8 Tc to To. Unfortunately, the results close to T~ are 
extremely sensitive as to which Pt NMR reading is selected to correspond 
to T~. This correspondence can only be determined up to a point since 1) 
it is only at T~ that any changes in the Fermi-liquid signal start to develop, 
and 2) signal recovery with fine absorption details requires a slow field 
sweep matched to a correspondingly slow temperature sweep through T~ 
such that the linearity of  the latter sweep becomes a difficulty. A 0.5% error 
in the Pt NMR reading of  Tc would change the slope of v~ as a function 
of  1 - T~ T~ by 10%. We believe that our T~ determinations are correct to 
within + 1%. 

In Fig. 11 isotherms of  VL(P, T) are shown. The smooth and monotoni- 
cally increasing curves are parabolic least-squares fits to the data. These 
curves have been used to provide the VL(P, T) values needed in the sub- 
sequent data analysis. At 29.3 bar the data from Ref. 16 have been used. In 
Fig. 11 we have also included the results from Refs. 16 at 18.7, 21.1, and 
25.4 bar. These measurements drop below the present ones towards decreas- 
ing pressure: the maximum difference can be found at 18.7 bar which is the 
lowest pressure of the earlier measurements. There the deviation is 10% at 
0.8To and 7% at 0.6T~. 

Leggett 34 gives a consistency check for the ratio of the longitudinal 
resonance frequencies in the A- and B-phases: 

5 XA(AB~ 2 
[V(LB'/v(LA']2=2 ~ \-'~A] (39) 

Close to the polycritical point at 21.2bar, this ratio is simply 5/2. On 
comparing our v(L~(P, T) data to the A-phase longitudinal frequencies 
v(ff(P, T) from Ref. 16, the ratio in (39) becomes 2.80, while the A-phase 
ringing frequencies of  Webb et al. 3s yield a ratio of  2.16. Thus we conclude 
that within about +10% the consistency requirement appears to be satisfied. 
Unfortunately, we have not measured the A-phase frequencies v(La~(P, T) 
at the lower pressures in the present experimental set-up (however, for 
29.3 bar data are given in Ref. 30). 

Close to Tc the slope of  v~ vs 1 - T~ T~ can be used to study strong 
coupling corrections to the energy gap. This has previously been done in 
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have been read from the smooth curves drawn through the measurements in Fig. 10. Circles 
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the A-phase where the strong coupling effects, which gain in importance 
towards high pressures, can be more readily extrapolated to Tc (see, e.g., 
Ref. 16). The longitudinal resonance frequency can be expressed in the form 

v~ oc K( P)( A(P' T)~ 2XN (40) 
\ k~T~ I x B  

Here K(P) is a pressure dependent factor which involves the Landau 
parameter F~ and the density of states N(0)  at the Fermi surface, among 
others. 34 At low temperatures XN/XB is almost independent of pressure 
and thus the pressure dependence of K(P) can be obtained from the 
low temperature limiting values of vL(P, T = 0 )  and the calculated 
pressure dependence o f  A(P,T=O)/(ksT~). 36 Close to To, A2oc 
k 2 T2(1 - T~ T~)AC/C> where AC/C> is the B-phase specific heat discon- 
tinuity at To. Extrapolating to T~ one obtains AC/C> oc v~/[(1 - T~ Tc)K]. 
At vapor pressure, the specific heat jump is known to be close to the BCS 
weak coupling value of 1.42, while with increasing pressure the strong 
coupling effects result in an approximately linear increase of AC/C> with 
liquid density. We find that AC/C> increases by (23+10)% from 0 to 
25.0 bar. In this comparison the values measured at 0.6 T~ had to be used 
for vL(p, T = 0). Nevertheless, the result is consistent with three different 
specific heat measurements which all give an increase of 29% over the same 
pressure range. 37-39 

In conclusion we observe that the present measurements of the B-phase 
longitudinal resonance frequency VL(P, T) appear to be both consistent and 
as a whole in agreement with other measurements. Measured values of 
vL(P, T) have been listed in Table I. 

3.3. Magnetic Healing Length 

Once the longitudinal resonance frequency vL has been determined 
the local oscillator approach can further be used to extract the magnetic 
healing length ~n from an analysis of the line shape. A direct comparison 
of  the measured and calculated line shapes is complicated by experimental 
artifacts such as inhomogeneities in the rf  excitation or the static polarizing 
fields (cf. Fig. 9c). In view of  these difficulties we have chosen a relatively 
coarse procedure for determining ~n such that the results would be as 
insensitive as possible to minor line shape aberrations. In the following we 
use the notations ~:n and ~:~ = (16/13)1/2~H in parallel. 

As indicated i n  the inset of  Fig. 12, the resonance absorption is 
integrated separately over two sections A and B of  the s in2f l= 
( v -  Vo)2Vo/v 2 axis: the first interval is 0 < sin2/3 < X and the second X < 
sin2fl < 0.8, where, as a consistency test, the division X has been given 
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Fig. 12. Outline of the procedure for determining the magnetic healing length s¢~ from 
a comparison of the measured NMR absorption signal with the calculated local oscillator 
spectrum. The NMR absorption is integrated separately over two sections of the scaled 
frequency axis (U--UO)2UO/UZL, as shown in the inset. In this plot the ratio of the 
calculated integrated intensities (IB/I A)x is shown as a function of the magnetic healing 
length ~ for three different values of the division point X. 

different values such as 0.4, 0.5, and 0.6. The ratio ( In / Ia)x  determined 
from a measured NMR signal is then compared with corresponding ratios 
obtained for calculated local oscillator absorption spectra which have been 
computed with a known value of ~H. The latter calculated ratios are read 
from graphs shown in Fig: 12 where (I~/IA)x has been plotted as a function 
of ~H for three different choices of the division X. 

In Fig. 13 the results for (H are shown at three different pressures 0.5, 
5.0, and 10.2 bar in a magnetic field of 28.4 mT. Obviously, the choice of 
the division X does not appear to be critical. This fact has been considered 
to be the main justification for the present analysis and for not attempting 
to account for the rf field inhomogeneity more directly. This omission, 
however, may have the tendency of boosting ~n towards higher values in 
the low-pressure regime, as can be guessed by comparing the signals (b) 
and (c) in Fig. 9. In fact, the data measured by Paalanen et al. 4° in a parallel 
plate geometry at 0 and 10 bar fall below our ~H values, as indicated in 
Fig. 13: at 0 bar the difference is 30% or less, while at 10 bar it has dropped 
to less than 8%. Doubling the magnetic field to 57 mT yields slightly lower 
values for ~HH: at 0.5 bar and 0.6To, the drop is about 6%. 
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Fig. 13. Isobars of the normalized magnetic healing length , ~ / R  = (16/13)~/2~H/R vs. 
temperature at three pressures (R = 2.5 ram, H = 28.4 roT). The different choices for 
the division point X, as defined in Fig. 12, have been marked as follows: (ZX) X = 0.4; 
(©) X = 0.5; (V) X = 0.6. The curves are fits to the data with Eq. (41) and the coefficients 
in Table II. The dashed curve represents the results from Ref. 41 measured at 2.72 bar. 
The filled squares are the 0 bar and the filled circles the 10 bar measurements from Ref. 
40. 

As evident from Fig. 13, below 0.9To ~n settles down on a near linear 
temperature dependence and this, in fact, is the temperature region where 
our analysis becomes tractable. Above 0.9 Tc ~ ,  (T) is governed by a square 
root law such that the overall temperature dependence can be expressed in 
the form 

( 1 - T / T c  ) 1/2 (41) 
J~'n/R = cl  1 - c2(1 - T~ To) 

where cl and e2 are parameters to be determined by least squares fits to the 
data. By means of such fitted curves, our results can be compared to the 
high-temperature measurements of Spencer and Ihas 41, performed at 
2.72 bar in a cylindrical geometry and shown in Fig. 13 as the dashed curve. 
At 0.9 Tc their result falls more than 30% below what one would interpolate 
from our data for a pressure of 2.72 bar. The pressure dependence of  the 
~q isotherm at 0.75Tc is shown in Fig. 14 where the high-pressure end has 
been fixed to Osheroff's measurement ~7 at the melting pressure in the 
temperature range 0.42-0.75 To. The fitted values of the parameters c] and 
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Fig. 14. Isotherm of the normalized magnetic healing length ~'n/R at 0.75T,. as a 
function of pressure: open circles, present measurements; filled circle, Ref. 17; filled 
squares, Ref. 40. 

c2 have been listed in Table II; values at other pressure can be obtained by 
interpolating with the help of  isotherms such as the one in Fig. 14. 

Finally, we conclude this subsection with the pressure dependence of 
~H which can be used to estimate the strong coupling corrections to the 
/3-parameter combination /3345 ~ /33 -I-/34 "~'-/35 where /3; are the coefficients 
of  the fourth order free energy invariants. The bending stiffness coefficient 

TABLE II 

P/ba r  c 1 c 2 Ref. 

0 0.60 - 1.0 40 
0.5 0.92 0.05 This work 
2.7 0.58 0.63 41 
5.0 0.64 1.26 This work 

10 0.47 ~1.0 40 
10.2 0.56 0.60 This work 
34.4 0.29 0.85 17 

Magnetic healing length ¢'n/R: fitted values of the para- 
meters c I and c2 in Eq. (41) at different pressures in a 
magnetic field of 28.4 roT. The curves in Fig. 13 depict the 
fitted ¢~ / R. 
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c, introduced in connection with Eq. (28), has the form 17 

13 h 2 
c = 6--4 m - ' ~  [1 - Y( T)] --pro (42) 

where m* is the quasiparticle effective mass and p the liquid density. The 
last factor p/m has been included to convert from energy per atom to 
energy per unit volume. Close to Tc we write 1-Y(T)oc(h/k~Tc)2oc 
( 1 - T / T c ) A C / C > .  The magnetic anisotropy parameter a, introduced in 
Eq. (8), is expressed as 42 

~X~ (XN - X~) 
a - 2 4 ~ / 2 A 4 f 1 3 4 5  (43) 

By taking into account the pressure dependences 43 XN--xBOC 
XN(A/Tc)2/(I+F~) and Bcs a 2 /3345 0CXN(1 + Fo)/To, we can finally write for the 
pressure dependence of  ~nH = (c/a) 1/2 at T-~ T~ 

pTc/3345T2 1 AC(1 - T/Tc) 1/21 (44) 0C r 1/2(1 -F Fg) 
L c> 

Here tO2c = t o 2 / ( 1 - T I T ¢ ) .  Using Greywall's values 39 for m* and F~ and 
Wheatley's tables 44 for p and XN, we conclude that within +10% 
(/3345//33 Bcs) • (AC/C>) 2 turns out to be a constant with pressure. The same 
result can be obtained by using values for /3345 calculated by Sauls a n d  
Serene 45 and the measured AC/C> °37-39 

3.4. Dipolar Coherence Length 

In the spin wave equation (34), the length scale is set by the dipolar 
coherence length ~:o = (65/32)1/2C±/tOL. In the harmonic approximation, the 
frequency spacing of  the resonance modes is simply proportional to ~:o and 
to the slope/31 of the polar angle/3(r)  in the center of the flare-out texture. 
Experimentally, the spacing is found to follow accurately the harmonic 
spectrum and thus the dipolar length can be read directly from the measured 
signals once the magnetic healing length ~:H (P, T) is known and the flare-out 
texture thereby becomes fixed (cf. Fig. 7). 

The results for ¢o from the stationary state measurements, based 
primarily on the two lowest eigenfrequencies (cf. Fig. 19), are shown in 
Fig. 15 as a function of temperature at four different pressures. In Fig. 16 
~:o is plotted as a function of  pressure at a temperature of 0.63-0.64 T~. In 
this figure the solid line gives the pressure dependence of ¢o oc 

2 1/2 [p[1-Y(T)]/(m XBtOL)] , where the gap renormalization in Y(T), 
important close to T~, is not included. The curve has been adjusted to 
t to = 9 / z m  at 30bar  for a best fit. This choice for the high pressure value 
of  ~o agrees within 10% with Osheroff's measurements of the spin-wave 
velocity c± =x/2c1117 = (32/65) 1/2 tOL¢O at the melting pressure. 
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Fig. 15. Dipolar coherence length ~:o, determined from a comparison of the measured and 
calculated spacing of the spin-wave resonance modes, plotted as a function of temperature at 
different pressures. 

The values obtained here for ~:o depend sensitively on what values are 
used for ~:H in the data analysis, in particular at low pressures. I f  we use 
for ~:u the values measured by Paalanen et al., 4° for instance, then Go has 
to be increased from 34/zm to 44/zm at 0.5 bar  while at 10 bar the required 
increase drops to 10%. We estimate that the overall uncertainty in our ~:o 
values is about 15%. 

It is interesting to note that the ratio Go/~¢~ determines the basic textural 
anisotropy parameter  a, defined in Eq. (8), which is used as scaling para- 
meter  for the textural energies, as expressed, e.g., in Eqs. (30). Thus one 
obtains 

a = ~ X~ \ ~ o ~ H ]  

The parameter  a is sometimes also written in terms of an effective g-value 
shift 17 

5 Ag 
a =~X~ g 
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Fig. 16. Dipolar coherence length ~:o, determined from the measured frequency spacing 
of the spin-wave resonance maxima, plotted as a function of pressure at 0.63-0.64T c. The 
solid line represents the theoretical pressure dependence, adjusted to ¢o = 9 tzm at 30 bar. 
The error bars illustrate the experimental uncertainty in determining the spacing of the 
spin-wave peaks. 

Our analysis of the stationary state spectra gives ~ and ~n as a function 
of temperature at one common pressure, namely 10.2 bar. Taking the ratio 
of the data presented in Figs. 13 and 15, we find that hg/g varies from 
5.2 • 1 0  - 6  at 0.44Tc through a shallow maximum of 6.0 • 1 0  - 6  a t  0 . 5 4 T  c to 
4.6" 1 0  - 6  at 0.66T~. These values agree with the magnitude of  Osheroff's 
measurements at melting pressure 17 but not in the sign of  the curvature of 
the ag/g curve with respect to temperature. 

3.5. Spin Diffusion 

On a phenomenological level, spin diffusion is incorporated in the 
spin-wave equation (34) with the additional term (i/2~r)vDV2S+. A per- 
turbation expansion with neglect of all off-diagonal elements then gives for 
the eigenfrequencies instead of Eq. (37) 

E, + iF,, =[2v/-f ~o~l + iVvofll/(~xTf ~ov2](n+ l) (45) 

w h e r e f  = 48/65. The parameter which determines the decay of the amplitude 
of  the resonances is the ratio of the energy to the width of  the mode 
E / 2 F =  2 2 Irf~D vL/(roD). An effective spin diffusion constant can thus simply 
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be determined by comparing the measured spin-wave spectra to a superposi- 
tion of equally spaced lines with linewidths increasing as 2 (n +  
1)BlD/(2zr~oxFf) in units of  frequency, as shown in Fig. 8 for two different 
ratios of  E/F. This analysis suffers from the unaccounted line broadening 
due to magnetic field inhomogeneities but, nevertheless, the measured and 
the simulated reference spectra seem to agree well with each other. 

At 29.3 bar in the temperature range 0.55-0.70Tc, the effective spin 
diffusion is found to be roughly constant with a value D ~ =  
2.2 • 10 -2 cm2/sec. This result is obtained with seo = 9/zm. At 10.2 bar with 
~o = 19 tzm the analysis gives Dc~r = 2 .2 .10  -2 cm2/sec at 0.50T,, 
4 .5 .10  -2 cm2/sec at 0.54T, and 7.5 • 10 -2 cm2/sec at 0.60T,. These values 
for the spin diffusion coefficient in 3He-B are of the same order of  magnitude 
as in the normal phase at T, for which Brewer et al. give D ( T c ) =  
11 • 10-2cm2/sec at lObar and D( T,) = 2.4 .10-2 cm2/sec at 29bar. 46 
Qualitatively, the results display the experimental observation that the 
spin-wave modes become more and more visible with decreasing tem- 
perature, i.e., as Den decreases. This feature has also been observed by 
Candela et  a/.  47 who have studied standing spin waves localized in a magnetic 
field gradient to the vicinity of  a confining wall. 

4. RESULTS IN THE ROTATING STATE 

4.1. Introduction 

In uniform rotation at constant angular velocity f~, the equilibrium 
state of the flare-out texture is modified by the appearance of  a lattice of 
singly quantized rectilinear vortices. This orienting effect, which because 
of  the long-range magnetic coherence is averaged out over the vortex lattice, 
produces an additional tilt of  the anisotropy axis fi from the central axis 
of  the flare-out texture. It is controlled by the textural parameters A and K 
which were introduced in Eq. (25) and, via the vortex density n~ = 4mla/h, 
are directly proportional to IL These parameters reflect the structure of the 
rectilinear vortices and today, with the advent of  the solutions for the two 
B-phase vortex structures, they can be calculated in qualitative agreement 
with experiment. 9'22 

Figure 17 summarizes our calculations on the orienting effect of  rotation 
on the flare-out texture by showing quantitatively the dependence of  the 
polar angle/3 as a function of  the reduced radius r/R on the value of A. 
As long as all other textural parameters controlling the flare-out texture are 
known from the analysis of  the stationary state measurements as a function 
of  temperature and pressure, the graphs in Figs. 17a-f can be used to 
determine the values of  the rotation dependent textural parameters by 
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0.5. In figures (d)-(f) ,  the corresponding local oscillator spectra are 
shown with the resonance absorption plotted vs. the scaled frequency 
shift. The stationary state curves (A = 0) can also be seen in Figs. 3 and 
4 in a more compact  presentation. 
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comparing the plots with the experimental results. In this context it is useful 
to note that in an axial magnetic field the gyromagnetic contribution Fgm, 
as defined in Eq. (24), is of similar form as the magnetic orientational 
energy in Eq. (8). Thus the modifications in the texture due to x /H can be 
obtained by simply incorporating them as a renormalization of ~h, to 
~:~/(1 + r /H)  1/2 and of h to h/(1 ± K/H). Accordingly the plots in Fig. 17 
are sufficient for evaluating the rotation induced changes in the flare-out 
texture. The general feature characterizing the NMR properties is illustrated 
in Figs. 17d-f, which show the resonance absorption calculated in the local 
oscillator approximation: with increasing 11, more and more of the absorp- 
tion is piled towards the high-frequency end of the NMR absorption region. 
In particular, at high rotation speeds, a plateau in the/3 vs. r plots of Figs. 
17a-c is seen to emerge, corresponding to a bulk-liquid-like orientation, 
which in the resonance absorption curves of Figs. 17d-f produces a distinct 
absorption maximum. 

Three different alternative methods have been employed for analyzing 
the rotating state spectra. 1) At high pressures 10.2 bar -< P-29 .3  bar the 
spacing of the spin-wave resonance absorption peaks yields directly the 
slope/31 of the polar angle/3 =/31r in the center of the flare-out texture 
which then allows one to read the corresponding interpolated A value from 
the graphs in Fig. 17. At low pressures the spin-wave resonance modes are 
not sufficiently well resolved, owing to their smaller frequency spacing when 
~'L(P, T) decreases with decreasing pressure. The homogeneity of the 
polarizing field is limited to AH/H ~ 4.10 -5 and thus the smallest observ- 
able spin-wave spacing is of the order of 40 Hz at a resonance frequency 
Vo- 1 MHz. Consequently, similar to the stationary state measurements, at 
low pressures 0 .5bar-<P-10.2bar  one has to resort to the line shape 
analysis based on the local oscillator model. This has been done using one 
of two alternative methods. 2) The ratio of the integrated NMR absorptions 
under the low- and high-frequency portions of the measured signal 
envelopes can be used as a measuring stick to determine A in much the 
same manner as ~:u was determined in Sec. 3.3 from the stationary state 
results. 3) One can also use the frequency shift of the absorption maximum 
with bulk-liquid-like properties for determining A from Eq. (26). In the 
overlap cases, where two of the different data analysis techniques have been 
used and can be compared, good agreement is generally found. 

4.2. Spin-Wave Resonance Absorption 

As shown in the inset of Fig. 19a, the spin-wave absorption peaks move 
further apart with increasing rotation speed. The computed dependence of 
the spin-wave modes on rotation via the A parameter has been compiled 
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in Figs. 18a-f. In these six figures, the ten lowest eigenvalues E,  have been 
plotted as a function of  ~H for six different values of h. From these graphs 
it can be seen that if ~'n/R and h fall in the intervals 0.2 < ~'H/R < 0.5 and 
0 < A < 2.5 then the spin-wave spectra are expected to yield A with reasonable 
resolution. These are, in fact, the appropriate ranges of variation for ~'H/R 
and h in the present experiments at pressures above 10 bar and in a field 
of  28.4 mT. 

In Fig. 19 the measured frequency shifts of the three lowest spin-wave 
absorption peaks have been plotted as a function of temperature, with the 
stationary state results on the right-hand side and the rotating data, obtained 
with f~ = 1.4 rad/sec, on the left. Forward rotation with 11 1'1" H, which 
corresponds to a minus sign in Eq. (25), has been denoted with open circles, 
while filled circles apply for reverse rotation with 1~ ~1' H. Since the resol- 
ution in determining the third eigenmode is often poor, the splitting between 
the first two modes has been used to extract s¢o from the stationary state 
(see Sec. 3.4). In a similar fashion, h has been determined from the rotating 
state data by fitting the averages (v,++ v~)/2. Finally, the gyromagnetic 
splitting can be expressed in the form 

1 + K~H OE, AK OE, 
( vn - v~) - -  + - -  - -  (46) 

2H  O~=~ H aA 

since K/H is small ( -0 .05) .  In this way K/H can be determined from the 
gyromagnetic splitting of any mode which then fixes the whole spectrum. 
This splitting is of order 10 Hz at a resonance frequency of Vo- 1 MHz and 
can be determined with desirable precision only at higher pressures at 
temperatures below the vortex core phase transition. In the spin-wave spectra 
in Fig. 19, the vortex core transition is present only at 29.3 bar, where it is 
prominently displayed as a remarkable discontinuity at T =  0.60To. 

Figure 19a illustrates the compatibility of  the measured and calculated 
eigenmodes after fitting srD, ,~, and K/H at fixed temperature intervals to 
smoothed curves through the measured data. As explained above, for the 
fitting procedure, each parameter requires only one frequency splitting and 
thus the redundancy in the data, i.e., the presence of  three eigenmodes with 
gyromagnetic shifts in each case, only serves to demonstrate the internal 
consistency of  the analysis. However, to obtain this agreement, a zero shift 
has to be applied to Eo which, in the normalized units of Fig. 19, appears 
essentially temperature-independent with a magnitude of AEo-- 5 • 1 0  - 4  at 
29.3 bar. This corresponds to a NMR frequency shift of the superfluid 
resonance relative to the normal state Larmor value, a g-value shift with 
Ag/g=2. 10 -5 at T=0.5Tc  and 1 • 10 -5 at T=0.TTc. The order of magni- 
tude of  these g-value shifts agrees with those quoted by Osherott 15'17 and 
our values at the end of  Sec. 3.4. 
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The graphs represent a summary of the fits to the spin-wave 
resonance absorption measurements in Figs. 19. 

In Fig. 20 the A values determined from the spin-wave spectra have 
been compiled as a function of  temperature at different pressures. These 
results are in good agreement with NMR frequency shift measurements in 
tilted magnetic fields, 21 which can be analyzed simply on the basis of the 
bulk liquid behavior. In Fig. 20 the phase transition of the vortex core 
structure is again prominently present in the 29.3 bar data at T = 0.60To. 
Here the discontinuity mainly reflects the change in the induced magnetiz- 
ations of  the two core structures. The parameter K/H, which measures the 
spontaneous magnetization of the core structure, also undergoes a discon- 
tinuous change at the transition. At 29.3 bar K/(H~)--0.024 below and 
-<0.005 sec/rad above the transition temperature. Both the properties of  the 
,vortex core transition as well as more details about the determination of  K 
will be presented in a forthcoming report dealing with similar texture 
measurements in tilted magnetic fields. 4g 

4.3. Line Shapes 

Line shape analysis in the rotating state proceeds in much the same 
fashion as in the stationary case in Sec. 3.3. There the determination of  the 
magnetic healing length ~:H was based on a comparison of a computed 
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reference value with the measured result for the ratio (IB/IA)x of the 
integrated resonance absorptions in the high- and low-frequency portions 
of  the N M R  signal envelope (see Fig. 12). In the rotating case, where ~:/4 
is already known from the stationary state analysis, the same procedure is 
employed to provide a value for A based on the computed graphs for the 
ratio ( I s / I a ) x  as a function of ~:H and A, as shown in Fig. 21. The division 
point separating the high and low frequency parts of  the signal has here 
been chosen to be X = sin2/3 = 0.5, although the divisions X = 0.4 and 0.6 
have also been used in the data analysis with equivalent results. 

In Fig. 22 a sequence of  consecutive N M R  signals is shown while the 
rotation speed is gradually increased from zero up to 1.4 rad/sec.  These 
low-field ( H  = 28.4 mT) measurements have been performed at our lowest 
pressure of  0 .5bar  with T=0.77Tc where ~H/R--0 .44.  In Fig. 23 the 
corresponding A values are plotted as a function o f fL  The linear dependence 
confirms the consistency of  the data analysis and also the fact that A depends 
linearly on the density of  vortices in the container. Comparing the different 
line shapes in Fig. 22, we note that at high rotation speeds, the integration 

5 

t.o 

i 
1 

I 
0.1 0.2 0.3 0./., 0.5 0.6 0.7 0,8 0.9 

~H/R 
Fig. 21. Signal analysis on the basis of the intensity distribution according to 
the local oscillator model: the calculated ratio (IB/IA)x=o s of the integrated 
resonance absorptions in the high-frequency (Is) and low-frequency (IA) 
sections of the local oscillator spectrum, shown as a function of ~H and A. The 
graph representing the stationary state (A = 0) is shown in expanded scale in 
Fig. 12. 
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Fig. 22. NMR absorption signal envelopes at 
consecutively higher rotation velocities: P= 
0.5bar, T=0.77Tc, H=28.4mT, and ~ =  
0.44R. These signals demonstrate the changes in 
the NMR spectrum with increasing 12 when ~ 

! is large (in contrast to Fig. 25 where ~n is small). 

i I 

0.00A 0.8 

(v -v o) / (V2LI2VO) 

P=0.5 bar 

f~=O 

Q=0.27 rod/s 

fi= 0.63 rad/s 

Q=1.14 rad/s 

fi =1.38 rad/s 

procedure becomes increasingly inadequate. First of all, the integrated 
intensity IA in the low-frequency part decreases rapidly with increasing fL 
Secondly, at the same time, the uncertainty in fixing the relative frequency 
scale, i.e., in identifying the sin 2/3 = 0.8 absorption edge and the correspond- 
ing division point X, becomes critical. The second problem can be removed 
by choosing sin 2/3 = 0.8 such that the determination of k becomes indepen- 
dent of the choice for X. The final result in Fig. 23 appears satisfactory, 
perhaps fortuitously, but also because the diverging character of the constant 
k curves at high fZ in Fig. 21 compensates for the increased scatter in 
(IB/IA)x. 

Unlike in the A-phase, a critical rotation velocity for the formation of 
vortices is not clearly observable in Fig. 23. This is due to the fact that 
basically the B-phase NMR signal identifies the presence of vortices via 
their influence on the texture and thus monitors the vortex density whereas 
in the A-phase it is directly the number of vortices which adds up in the 
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P=0.5 bar 
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0 0.5 1.0 1.5 
Q (rod/s) 

Fig. 23. The vortex susceptibility parameter h as a function 
of  rotation velocity 12 as determined from the line shapes in 
Fig. 22 using the graphs in Fig. 21. The open circles correspond 
to forward rotation (IlTTH) at 0.77 To, while the filled circles 
represent reverse rotation (II$?H) at 0.76T c. 

intensity of a satellite NMR absorption peak. 3° The counter flow current, 
originating from a deficit of  vortices, is located in a narrow sliver next to 
the container wall and is too weak to cause any observable changes in the 
B-phase NMR line shapes in this context. 19 

In Fig. 24 A /~  is shown as function of temperature at 5.0 and 10.2 bar 
pressures, as deduced using the line shape analysis. The 10.2 bar data agree 
within 15% with the results obtained from the spacing of the spin-wave 
absorption peaks (cf. Fig. 20) and similarly with measurements in inclined 
magnetic fields 48 which are represented by the dashed line. At 5.0 bar the 
frequency shift of the main absorption line can be used to measure A close 
to T~ where ~:H is still small and the l)-dependent absorption peak can be 
monitored (cf. Sec. 4.4.). As expected, these Avalues are also in good 
agreement with those derived from the line shape analysis. 

Finally, we may note from Fig. 24 that within the scatter of the data, 
the gyromagnetic shift is only barely distinguishable at low pressures. 
However, the 5.0 bar measurements point to the fact that on approaching 
T~, K remains finite and appears to reach at T~ the value K / f ~ -  
0.7 m T .  sec/rad. 
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Fig. 24. A/I~ as a function of T/T¢, as determined from the line shape 
analysis; squares, P = 5.0 bar and f~ = 1.7 rad/sec; circles, P = 10.2 bar 
and l~ = 1.4 rad/sec. Open symbols refer to forward and filled ones to 
reverse rotation. The magnetic field is 28.4 mT. At 5.0 bar A has also been 
determined from the bulk-liquid-like frequency shift of the main absorp- 
tion maximum (triangles). The dashed curve at 10.2bar represents 
measurements in a magnetic field tilted from the axial orientation, 
analyzed assuming bulk-liquid-like behavior (cf. Ref. 48). 

4.4. Frequency Shift of the Main Absorption Maximum 

When ~ is small, the central region o f  the flare-out texture acquires 
bulk-liquid-like textural properties during rotation. These features are illus- 
t rated in Fig. 25 by a sequence o f  successive N M R  absorpt ion signals at 
consecutively higher rota t ion velocities. The measurement  has been perfor-  
med at high pressure ( P  = 25.0 bar) and in relatively high magnet ic  field 
( H  = 50 mT) such that the magnet ic  healing length remains small (s¢~/= 
0.15 R) even at low temperatures  ( T  = 0.57 To). The N M R  signal displays a 
p rominent  max imum which in the stat ionary state borders to the Larmor  
edge. With increasing 12 the peak is b roadened  and shifted to higher 
frequencies,  at first only barely but  above a critical angular  velocity o f  
12c - 1.3 r ad / sec  more  rapidly. This peak corresponds  to the plateau in the 
/3(r) curves o f  Fig. 17a at large values o f  A, and its f requency shift is 
approximate ly  given by the bulk liquid expression in Eq. (26). In Fig. 26 
the scaled f requency shift Av/[v2/(2Vo)] is plot ted as a funct ion o f  l~. The 
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Fig. 25. NMR absorption signal envelopes at different 
rotation velocities demonstrating the increasing 
frequency shift of the main absorption maximum with 
increasing I~: P=25.0bar, T=0.57Tc, H=50mT,  
and ~:~ =0.15 R. 

solid line corresponds to the bulk liquid behavior in accordance with Eq. 
(26). The measurements fall on the dashed line which has a more gradual 
dependence on f~, in particular in the vicinity of  the critical velocity 12c 
where h passes through the value h = 1. Clearly the finite size of  the container 
and the influence from the wall orientation affect the texture in the central 
region at low velocities but, with increasing f~, Eq. (26) is obeyed with 
improved precision. At high 12 and small gH/R, the bulk-liquid-like 
frequency shift of the main NMR absorption maximum thus provides a 
straightforward means of  determining A, independently of any prior knowl- 
edge of  seu or ~:o. 

An example of the bulk-liquid-like frequency shift analysis is shown 
in Figs. 27 and 28. In the former the scaled values of the frequency shifts 
Ap + and A~,- have been plotted as a function of temperature, measured at 
a rotation velocity of  12=2.0rad/sec.  In Fig. 28 the results have been 
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Fig. 26. The frequency shifts ~v ~: of the main absorption 
maximum, extracted from the signals in Fig. 25 and plotted as 
a function of the rotation velocity ~ while the cryostat is 
decelerated (dI't/dt < 0): open circles, forward rotation 
(II~'~'H) at T= 0.58Tc ; filled circles, reverse rotation (I~'~H) 
at T = 0.56T c. The solid curve represents the bulk liquid shift 
v+-~,o according to Eq. (26) with h/f~=0.748 sec/rad and 
K/(H~) = 0.016 sec/rad, obtained by adjusting Eq. (26) to the 
measured shifts at f~ = 1.99 rad/sec. The dashed line depicts 
the observed behavior in the presence of the orientational 
influence from the walls of the sample container. 

conver t ed  to values  o f  h / ~  us ing Eq. (26). The  s e c o n d - o r d e r  na ture  o f  the  
tex tura l  t r ans i t ion  at h = 1 is expe r imen ta l ly  very obvious  at low tem- 
pe ra tu res  where  the f requency  shift  o f  the  ma in  abso rp t ion  m a x i m u m  
s u d d e n l y  appea r s  as h increases  s teeply and  exceeds  1 at abou t  0.3To (see 
Fig. 27). 

To i l lus t ra te  the  genera l  p roper t i e s  o f  h (T) ,  Fig. 28 has been  supp le -  
men ted  with add i t i ona l  da t a  f rom measu remen t s  in a field o f  l ikewise  
56.9 mT bu t  now or ien ted  at an angle  /z = 25 ° with respect  to the  axia l  
d i rec t ion .  This  s i tua t ion  can  s imi lar ly  be dex te rous ly  ana lyzed  on the bas is  
o f  bu lk - l iqu id - l ike  b e h a v i o r  and ,  moreover ,  over  a wider  range  since the 
res t r ic t ion  h > 1 does  not  apply .  The genera l  form o f  the h ( T ) / f ~  curve in 
Fig. 28 c losely  resembles  the  ca lcu la ted  h con t r ibu t ion  f rom Fig, 2. This 
figure a l lows one to gauge  the a p p r o x i m a t e  magn i tudes  o f  its two com-  
ponen t s ,  the  in t racore  con t r ibu t ion  hc and  the superf low term hy. C lea r ly  
at  t empera tu re s  be low 0.3 To, hf is van ish ing ly  smal l  such tha t  the m e a s u r e d  



278 P .J .  Hakonen et  al .  

0.4 0 

0.30 

o 

~J 0.20 

0.10 1 

i 

P=25.0 bor 

I I I I 
0.2 0./, 0.6 0.8 1.0 

T / T  c 

Fig. 27. Temperature dependence of the frequency shifts v ÷ - z, o 
(open circles) and v -  - l ,  o (filled circles) for the main absorption 
maximum: P = 2 5 . 0  b a r ,  H = 5 6 . 9  m T  ( i . e . ,  ~'o = 1 8 4 5  k H z ) ,  and 
f~ = 2 . 0  rad/sec. 

value of  k represents exclusively At. The rapid increase of h in the relatively 
narrow temperature range T = 0.25 - 0.45 Tc is well explained by the rapid 
change in A/. In the Ginzburg-Landau region, both kc and Ay are finite, 
with temperature independent values. 22 Experimentally the slope of  k (T) 
at Tc is still an open question. In Fig. 28 the measurements have been 
extrapolated to Tc on the basis of measurements which extend up to 
T = 0.87Tc in a field of 28.4 mT at an inclined orientation o f / z  = 25o. 48 

In contrast to the bell-shaped curve of A(T) in Fig. 28, K increases 
monotonously with decreasing temperature. The calculated temperature 
independent Ginzburg-Landau value is K / ~  ~ 0.15 mT.  sec/rad at 25 bar. 22 
The poor experimental resolution does not allow any useful comparisons 
with this value. However, with decreasing temperature, K increases rapidly 
approaching K / f ~ 2 m T s e c / r a d  at 0.2T~. At 0.65T~, K undergoes a 
discontinuous jump from 0.3(8) in the high-temperature phase to 
0.6(4) mT.  sec/rad in the low-temperature phase. 
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Fig. 28. The vortex susceptibility parameter ~t plotted as 
A/f~ vs. T/Tc: squares, the data from Fig. 27; circles, 
measurements in a magnetic field tilted by an angle tz = 25 ° 
with respect to the axial orientation (see Ref. 48); P =  
25.0 bar; H = 56.9 mT; fl = 2.0 rad/sec. 

Finally, a second example of the analysis of the bulk-liquid-like 
frequency shift is shown in Fig. 29. These measurements have been perfor- 
med at a low pressure of 0.5 bar where A is large and the region suitable 
for the frequency shift analysis is relatively wide. The results in Fig. 29 have 
also been compared to a second measurement where A is determined from 
the signal intensity distribution as explained in Sec. 4.3. The two sets of 
results are in good agreement. The value of A/f~= 1.69 calculated by 
Thuneberg 22 agrees reasonably with the extrapolated curve (if we use the 
present value for VL(I)). An estimate for the average of the experimental 
K value is K/I~= 1 .3+0.6mT.  sec/rad in the temperature interval 0.77- 
0.88Tc. The calculated Ginzburg-Landau value is 0.37 mT.  sec/rad. 22 A 
more comprehensive compilation of A(P, T) and K(P, T) is postponed to 
a forthcoming report. 48 

5. CONCLUSION 

This paper presents experimental data and numerical computations on 
the axisymmetric textures both in the stationary and rotating states. The 
axially symmetric flare-out texture is in general well understood; good 
agreement is reached in relating experimental spectra to theoretical calcula- 
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Fig. 29. Temperature dependence of A/I~: P = 0.5 bar, H = 56.9 mT, and 
f~ =0.78 rad/sec; open and filled symbols refer to forward and reverse 
rotation, respectively; circles, bulk-liquid-like frequency shift of the main 
absorption peak; squares, intensity distribution of the NMR spectrum 
according to the local oscillator model. 

tions and pertinent textural parameters are here extracted from such com- 
parisons. A direct fit of  the measured and calculated N M R  absorption as 
a function of frequency has not been attempted, both because of complica- 
tions in the experimental techniques and in the theoretical treatment, such 
as, for instance, the unknown line broadening. Instead, we have used more 
specific features in comparing the measured cw N M R  spectra to calculations. 
Primarily three properties of  the N M R  signal envelopes have been selected 
for this purpose: 

1) the frequency spacing between the spin-wave resonance absorption 
peaks; 

2) the overall intensity distribution under the signal envelope as com- 
pared to the expected resonance absorption according to the local 
oscillator picture; and finally 

3) the bulk-liquid-like shift of  the main resonance absorption 
maximum in the rotating state close to To. 

The different methods of analysis give consistent and supplementary results, 
in overlapping cases good agreement prevails. 

From the stationary state spectra the following textural parameters 
have been extracted: 
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1) the longitudinal resonance frequency UL(P, T), characteristic of 
3He-B, is determined from a stationary soliton-like wall defect with 
sin 2/3 = 1 and, when this was not available, from the high-frequency 
edge of the flare-out signal, corresponding to the orientation with 
sin 2/3 = 0.8; 

2) the magnetic coherence length ~,(P, T) is derived at pressures 
P -< 10 bar from the intensity distribution under the signal envelope, 
and 

3) the dipolar coherence length ~o(P, T) is obtained at pressures 
P >--10 bar from the spacing of the spin-wave modes. 

From the rotating state spectra, two additional parameters have been 
derived which control the textural free energy contributions proportional 
to the density of the quantized superfluid vortex lines in 3He-B: 

1) using all three different techniques of NMR signal analysis h (P, T) 
is determined; it contains the orienting contributions from the 
quantized supercurrent circulating the core and the difference in 
induced magnetizations inside and outside the vortex-core matter; 

2) the orienting effect from the spontaneous magnetization of the core 
structure, described by the parameter K(P, T), is extracted directly 
from the gyromagnetic splitting of the frequency shifts of the spin- 
wave absorption peaks or of the main absorption maximum, when 
the direction of rotation is changed. 

To preserve internal consistency in the data analysis, the values listed 
for the different textural parameters are the ones which have been derived 
from the analysis and then have been re-employed for extracting further 
parameters. Values smoothed with respect to both temperature and pressure 
have not been tabulated in this report. However, it is recommended that 
smoothed values should be worked out whenever our parameter values are 
used. Finally, we point out that this report will be supplemented by a 
forthcoming paper which contains additional data on the vortex parameters, 
obtained from similar measurements but at field orientations tilted with 
respect to the common direction of the rotation axis and the axis of 
cylindrical symmetry of the sample container. 48 These later measurements 
are analyzed by comparing the results to bulk liquid behavior, which gives 
good agreement with the present data analysis in axial fields, provided that 
~H does not grow too large. 

NMR on the flare-out texture has proven to be a versatile probe of 
superfluid 3He-B: it provides both global and local information about the 
order-parameter distribution. The global overall features allowed us to 
extract useful textural lengths, while the local properties (such as the 
susceptibility anisotropy and the local magnetization distribution) enabled 
determination of the vortex parameters. The flare-out texture proves useful 
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also for the study of vortex-free rotational states of 3He-B in the presence 
of normal fluid-superfluid counterflow. 
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