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A B S T R A C T  
A general solution is developed for the symmetric bending stress distribution at the tip of a crack in a plate 
taking shear deformation into account through Reissner 's  theory. The solution is obtained in terms of polar 
coordinates at the crack tip and includes the complete class of solutions satisfying all the three boundary 
conditions along the crack. The solution has arbitrary multiplicative constants and in specific problems, 
these constants can be determined from conditions on the exterior boundary by well-known numerical 
techniques such as collocation, successive integration. Results of a numerical solution for a square plate 
with a central crack subject  to uniaxial bending are presented along with a critical discussion of the 
sensitivity of the numerical solution which is associated with the exponential character of Bessel terms in 
this higher order analytical solution. 

Nomenclature 

2a = crack length 
h = plate thickness 
2 5 a  2 

E = Young's Modulus 
v = Poisson 's  ratio 

D = bending rigidity of plate, Eh3/12(l - v 2) 
M0 = reference bending moment  
tr0 = extreme fibre stress due to Mo, 6Mo/h 2 

r, 0 = polar coordinates with crack tip as the origin (Fig. l), r being nondimensionalized with 
respect  to a 

W = normal displacement,  nondimensionalized with respect  to Moa2/D 
Mr, Mo, Mro = bending and twisting moments  per unit length of plate element (Fig. 1), nondimensionalized 

with respect  to M0 
Qr, Q0 = transverse shear forces per unit length of plate element (Fig. I), nondimensionalized with 

respect  to Mo/a 
trr, tr0, zr0 = stresses on that surface where a positive moment  produces tension, nondimensionalized with 

respect  to tr0 
~¢ = a stress function in Reissner 's  theory, nondimensionalized with respect  to Mo 

Ktb~ = bending stress intensity factor 

l~(z) ] = Modified Bessel Functions of first and second kinds respectively 
K . ( z ) ]  

~o(ix, m) = (Ix + I)(Ix + 2 ) . . .  (Ix + m) for m # 0 
= 1 for m = 0 

F = Gamma function 

* Structures Division. 
** Materials Division. 
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Subscripts: 
R 
F 

t(1), I(2) 
/x 

denotes rigid body movement terms in the solution 
denotes solutions corresponding to fractional values of/z 
denote first and second kinds of solutions corresponding to integer values of/~ 
used as a subscript to a quantity refers to that component of the quantity which is a 
contribution from the value of t~ under reference 

1. Introduction 

It appears that it is only in recent years that the stress problem of cracked plates has 
been examined from a higher order plate bending theory taking shear deformation into 
account. The earliest attempt due to Knowles and Wang [1] was concerned with the 
problem of an infinite plate under uniform uniaxial bending far from the crack and 
was restricted to the case of vanishingly small plate thickness. Hartranft and Sih [2] 
and N.M. Wang [3] studied the same problem considering the plate thickness to be 
finite. All these investigations were based on Reissner's theory and led to the 
conclusion that the singular stresses under bending have the same functional form as 
in the plane stress case [4]. Thus the predictions of classical theory [5] are known to 
be erroneous with respect to the angular distribution of stress around the crack tip. As 
a more serious practical consequence, there is an associated error in predicting the 
stress intensity factor whose importance in fracture mechanics is well-known. Results 
reported in [2] and [3] show that the stress intensity factor varies very rapidly in the 
h/a range of 0 to 1/4. In fact, Hartranft and Sih [2] have shown that the stress 
intensity factor versus h/a curve has infinite slope at hla = O. It is seen from their 
numerical results that even for h/a ratio as small as 0.2, the bending stress intensity 
factor is 62% greater than that given by Knowles and Wang [1] for hla ~0 .  Since h/a 
does not appear as a parameter in classical theory formulation, the inadequacy of this 
theory in handling the bending case in crack problems becomes apparent. 

All the Reissner's theory investigations cited [1-3] were carried out for the case 
of infinite plate. Analysis in this paper takes finiteness of the plate into account. Apart 
from this, the scope of the paper itself is slightly different and, in a sense, wider. The 
aim here is to develop a general solution which can be readily applied to a wide class 
of problems. While analyses in earlier studies were based on the integral equation 
approach, this analysis uses the differential equation approach. 

In the present work, the complete class of possible solutions is obtained for 
symmetric bending stresses in the vicinity of a crack tip in a plate taking shear 
deformation into account through the use of Reissner's theory. The solution, obtained 
in local polar coordinates with crack tip as the origin, satisfies all the three force 
boundary conditions along the crack identically. The solution contains arbitrary 
multiplicative constants to be determined from conditions on the exterior boundary 
through standard numerical techniques for a specific problem. No restriction upon the 
h/a ratio is needed in the present solution so that in the solution of specific problems, 
the thickness effect is automatically taken into account. Use of the general solution 
developed here is demonstrated with reference to an example of a square plate with a 
cefftral crack subjected to uniform uniaxial bending along two opposite edges. 

2. Analysis 

The present analysis is carried out for the case of symmetric bending of the plate with 
respect to the crack. Also, the analysis is carried out for the case where there is no 
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normal loading on the plate. In other words, the solutions obtained can be used in a 
situation where the plate is subjected only to known edge loads or known kinematic 
constraints on the exterior boundary. 

We choose a system of polar coordinates (r, 0) with a crack tip as the origin (Fig. 
1). 

2.1. Nondimensionalization 

For the sake of convenience, we nondimensionalize all the physical quantities in our 
analysis according to the following scheme. Here the symbol to the left of the colon 
denotes the nondimensionalized physical quantity and the symbol to the right denotes 
the nondimensionalizing factor. 

r:a, W :Moa2/D, [O'r, OrO, TrO]:Or 0 

[Mr, Mo, Mro]:Mo, [Qr, Qo]:Mo/a, X :M0 

2.2. Governing equations and other relations 

The governing equations in the absence of distributed normal loading and the various 
other relations in Reissner's formulation [6] expressed in terms of quantities non- 
dimensionalized as above can be written as 

WW = 0  (1) 

V2X - 4k2x  = 0 (2) 

The various other relations are 

c92W [l OW 1 02W'~, 1 [ 02,,r.r2,1W, . . . .  O-r(r ~-~A)],  v - z a  ~r = ~4r = _Tz_  + ~ q :__~_ + ~ _ _ ; ~ / _ ~ _ _ ~ / ~  v o 1 (3) 
vl \# ul I uLw [ ~I~ L(/'I 

cro= Mo r Or 

,3 [10W'~ 1 - ~  
T~o = M~o = (1 - v ) - ~ r - ~ -  ] + - ~ - ~  r ~-~(V W) V X (5) 

G = ( v ~ W ) - r  oo (6) 

Q° = l ~ (V2W) + oXor (7) 

where tr,, tr0 and ~0 refer to the nondimensional stresses on that surface where a 
positive bending moment produces tensile stress (For sign conventions, see Fig. 1). 

Qe Qr 

Figure 1. System of coordinates and stress resultants. 

Mre 
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2.3. Boundary conditions for  the crack faces 

Since the crack 
conditions must be satisfied: 

Mo(r, +-Tr) = 0 

M,e(r, +- ~r ) = 0 

Qo(r, +-~r) = 0 

boundary surface should be stress-free, the following three boundary 

(8) 

(9) 

(lO) 

2.4. Solution 

A solution to Eqn. (1) can be written as 

W~ = r'~÷2[A, cos p`0 + B~ cos(p. + 2)0] (11) 

where p` is real. Its use as a subscript to a physical quantity implies that we are 
referring to that component of the quantity which corresponds to the particular value 
of p. under reference. Equation (11) can be considered to represent the most general 
type of solution for W as far as our present problem is concerned. For (p` + 2) = 0, the 
solution (11) assumes certain special forms involving terms like In r, 0 and 0 In r but 
these must be dropped in the present analysis in order that the slopes should be finite 
at r = 0 .  

We now seek a solution for Eqn. (2) which in combination with the above 
solution for W satisfies all the crack boundary conditions identically. Summation over 
all possible values of p  ̀gives complete solution to the problem. 

Separation of variables leads to solution for X in (r, 0) in terms of Modified 
Bessel functions of first and second kinds [7]: 

f(~ = [CI~(2kr) + E)I_~(2kr)] sin p`0 if ~ is not an integer, (12) 

~ = [CI,~(2kr) + DK,(2kr)]  sin p`0 if/~ is an integer. (13) 

where C a n d / )  are arbitrary constants. An inspection of Eqns. (3)-(5) shows that the 
moments involve second derivatives of g and so the rotations of a line normal to the 
middle surface should depend on the first derivatives. For integer p., the Modified 
Bessel function of second kind K~(2kr) involves In r and negative powers of r and 
thus it should be dropped out in our solution from the condition of finiteness of 
rotations. For fractional p`, the Modified Bessel function of second kind is obtained by 
simply replacing ~ by -p. in the function of first kind. So, without any loss of 
generality, we write only Modified Bessel function of first kind in the solution for X 
keeping in mind that p  ̀will take positive as well as negative values. The actual range 
of p., however, will be limited from the condition of finiteness of rotations. A typical 
solution to (2) is then written as 

$~ = sin C0 
k2mr~+em 

m=0,1,2 .... Lm_q~(p̀ , m) (14) 

where 

q~(p ,̀ m) = (p. + 1)(p` + 2 ) . . .  (p. + m) for m/> 1 

=1  for m = 0  (15) 

In writing the above solution, some multiplicative constants are dropped in the 
Modified Bessel function of first kind for the sake of convenience. There is no loss of 
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generality here as the solution is later multiplied by an arbitrary constant. Through an 
inspection of the boundary conditions and Eqns. (3)-(7), a solution for X which in 
combination with W from (11) satisfies the crack boundary conditions can be written 
by inspection as 

0 ¢  

= ,~, Ctx+2nXtx+2n (16) 
X~ n =0 2 . . . .  

From the solutions (11) and (16), the boundary conditions are satisfied term by 
term in the power series in r. This leads to a set of homogeneous equations for the 
arbitrary constants. For these equations to be consistent, it can be seen that/~ should 
be equal to one of the following values: 

/x = ---(2j + 1)/2, j -- 0, 1,2, 3 . . . .  (17) 

o r  

=+-j,j =0 ,  1,2,3 . . . .  (18) 

Solutions corresponding to fractional and integer /~ are henceforth referred to, 
for the sake of brevity, as solutions of fractional and integer type respectively. 

If ~ = -+(2j + 1)/2, the first boundary condition (8) is satisfied identically. Satisfy- 
ing the third boundary condition (10) term by term in the power series in r leads to a 
series of recurrence relations involving C(.÷2.).v which are to be solved successively 
(for details, see Appendix 1). C(~+2.).F is then obtained as a finite series for which 
summation is found to be possible. We get 

4(p~ + 1)(-k2)" A 
C(.+2.).F = L_n_q~(/x + n - 1, n) zat~'F (19) 

where the additional subscript F is used to refer to fractional/x. We now satisfy the 
boundary condition (9) term by term in the power series with respect to r. It will be 
found that with C(~+2n).v already determined above, the boundary condition (9) is 
automatically satisfied in terms involving r "-2, r ~+2, r ~+4, r ~+6 . . . .  etc. A formal proof 
of this is given in Appendix 1. Satisfying the condition in r ~ terms leads to 

B~v [4+(1 - v)tX]A 
' = - ( 1  - v ) ( tx  + 2) ~,F ( 2 0 )  

For integer values of/~, the second and third boundary conditions (9) and (10) are 
satisfied identically. Satisfying the boundary condition (8) for each power of r, we get 

4(-k2) ~ [l~(I .L+!)+E_(l~+2)( l -V)]A. , i ( j~ 
Ctt+En'l(l) - In . 1 q~(I ~ + n, n)Ln(lx + n) 2 

_ 2(/~ + 2)(1 - u)(-kE)"B~.io~ for n ~ 0 , / x ~  0, 1 (21) 
[n - lq~(l~ + n, n) 

_ 4(-k2) ~ [ 2 _  (/~ + 2)(1-V)]A~,,(,) 
In - l q ~ ( ~  + n,  n )  2 

_ 2(p~ + 2)(1 - v)(-k2)nB,~,~. ~ for n # 0, ~ = 0, 1 (22) 
In - lq~(/x + n,  n )  

= 4(/x + 1)A.,m) for n = 0 , /~#  0, 1 (23) 

= 0 for n = 0, p~ = 0, 1 (24) 

where the additional subscript I is used to refer to integer /~. The other additional 
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subscript (1) is used to denote integer type solution of first kind. We will later see that 
there is another kind of solution of integer type. The coefficients of A,,1o) and B,~,I(D in 
Eqns. (21) and (22) are actually obtained in the form of finite series for which 
summation is found to be possible as in the case of fractional ix. 

The case ix = 1 requires a special mention. With W as defined by (11) for ix = 1, 
the boundary condition (8) is automatically satisfied in terms involving r "-2 without 
any contribution required from X. So, the series form for the X solution as defined by 
(16) is taken dropping the first term (See Eqns. (24)). As a result of this, we find that $~ 
does not appear anywhere in the solution. A closer examination reveals that we have 
a special type of solution involving $l which is defined by 

Wl(2) = O, XI(2) = n=O,~,2 .... Cl+2n, I(2)~?1+2n (25)--(26) 

We call this an integer type solution of a second kind which is identified by the 
additional subscript (2). This solution involves only X and requires no W solution for 
satisfying the crack boundary conditions. In other words, it corresponds to a case 
where the plate does not undergo deflection anywhere but still experiences a stressed 
state due to rotation of lines normal to the middle surface. This is a speciality of this 
solution which distinguishes it from the integer type solution of first kind. Using Eqns. 
(25) and (26) and satisfying the boundary condition (8) term by term in the power 
series with respect to r, there follows 

( - k 2 )  n 
Cl+2n ,  1(2) = ]2n + 1CL I(2) (27) 

2.4.1. Convergence of  the X series 

For a given W, of the form given by Eqn. (11), we have now obtained a series form 
for X, as in Eqn. (16). Through a simple convergence test, this infinite series for X, as 
well as its termwise differentiated forms can be shown to be convergent for all r and 0 
and for all the different types of solutions we have derived in the foregoing analysis. 
Let us, for instance, take the solution for fractional ix. Denoting the m th and (m + 1) st 
terms in (16) as Ur~ and urn+l, it can be seen that 

For l_arge m, 

Ur~+~ .~ k2r2(l~ + m - 1) sin(/~ + 2m)O [ 
m ( i x + 2 m - 2 ) ( i x + 2 m - 1 )  sin(ix + 2m - 2)0 I 

~ O a s  m ~  

The X, series is, therefore, convergent. The various derivatives of X,~ can be similarly 
shown to be convergent. 

2.4.2. Range of  ix 

The actual permissible ranges of ix in Eqns. (17) and (18) are governed from the 
condition that the displacement and slope at the crack tip should be finite. The 
restriction is actually on the lower limit of ix. The condition of finiteness of slope is 
more stringent and leads to the requirement that r .÷~ should be finite as r-~0. Thus, 
we can write down the permissible range of ix as 

ix = -1/2, 1/2, 3/2, 5[2 . . . .  ~ (28) 

ix =0,  1,2,3 . . . .  o¢ (29) 
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IX = -1 was excluded in (29) because r ~÷~ is indeterminate at r = 0 for this value 
of Ix. Let us have a closer look at this case. For IX -- -1,  both the terms in the solution 
form (11) become r cos 0 and the slope corresponding to this is finite for all r. So, 
/~ = - 1  is also permissible. This corresponds to a rigid body rotation. Secondly, 
although Ix = - 2  does not satisfy the condition that r ~+1 should be finite, one of the 
terms in the solution form (11) corresponding to this value of Ix, namely W =  
constant, is admissible as it does not violate the condition of finiteness of slope. It is, 
in fact, a rigid body displacement. So, we see that Ix = -1,  -2  are trivial cases and in a 
general formulation, we can exclude them from the range of Ix and separately add a 
term of the type 

WR = AR + BRr cos 0 (30) 

XR = 0 (31) 

where the subscript R corresponds to rigid body movement of the plate. It may be 
noted that as WR does not produce any stress, it does not require a X solution to 
satisfy the crack boundary condition. 

2.4.3. Complete solution 

At this stage, let us recapitulate the different types of solutions we have derived and 
the corresponding relations. The complete solution is written as the sum of four types 
of solution, each solution being a combination of solutions for W and X denoted by 
the format [W, X]: 

[W, X] = [WR, XR] -t- [WF, XF] + [Wl(1), XI(I)] -t- [ Wl(2), XI(2)] (32) 

The first type of solution is the [WR, XR] set corresponding to rigid body movement 
and given by Eqns. (30) and (31). Inclusion of this term is necessary in problems 
involving kinematic boundary conditions. The [Wv, XF] set corresponding to fractional 
values of/x is the second type of solution and is given by 

0 e  

[WF, XF] = ~=-1/2,~2,3/2 .... [W~t, X.] (33) 

where the quantities under summation are defined by Eqns. (11), (14)-(16), (19) and 
(20). The integer type solution of the first kind [Wx(~), X~(~)] constitutes the third type of 
solution and is given by 

[Wl(1), Xl(l)] =/x=0.~,3,. ' ' ~  . [W,, X,] (34) 

where W, and X~ are defined by Eqns. (11), (14)-(16) and (21)-(24). The fourth and 
last type of solution is the integer type solution of the second kind [Wxt2~, X~(2)] defined 
by Eqns. (25)-(27). 

2.4.4. Singular stresses 

An inspection of the stress-displacement relations shows that for any specific value of 
Ix the stresses should be of order r "-2. So, it would appear that only /z = 0 and 1 
among the integer type solutions of first kind should give rise to singular stresses but 
formal algebraic work reveals that the 1/r 2 and 1/r terms in these cases vanish 
identically and the stresses are actually of order unity and r respectively. It would 
also appear at first sight that in the integer type solution of second kind, the stresses 
should be of order 1/r but, here again, the 1/r terms vanish and the stresses are of 

Int. Journ. o[Fracture, 17 (1981) 537-552 



544 M.V.V. Murthy et al. 

order r. It is thus seen that solutions corresponding to integer Ix do not involve 
singular stresses. 

For fractional values of IX it can be easily shown with the help of (19) that the 
r ~-2 terms in stresses vanish identically and the stresses are actually of order r ~. So, it 
follows from (28) that the only value of IX that leads to singular stresses is IX = - 2  i. 
The functional form of the singular stresses can be determined from Eqns. (11), 
(14)-(16), (19), (20) and (3)-(5): 

A-1/2(1 + v)[~ 0 l c o s  30] + O(1) (35) 
trr = X/r c°s 2 - 4  2 .I 

a-,/2(1 + v)[~ 0_+1 ~ ]  
tr0 = ~ cos 2 ~cos +O(I)  (36) 

A-l/2(1 + 
v)[1 s i n O + l  s i n a i  +O(1) (37) 

1 

r~ = ~ L4 2 4 

It may be seen that the finite parts of stresses which are shown to be of order 
unity in the foregoing equations do not correspond to IX =-½ (for which they are of 
order ra/2). Equations (35)-(37) are written so as to represent the total solution and not 
the solution due to Ix = -2 i alone. The finite stresses of order unity in these equations 
actually correspond to Ix = 0. 

It may be seen from Eqns. (35)-(37) that the stresses have the same inverse square 
root singularity and the same distribution with respect to 0 as in the case of pure 
stretching [4]. This is in conf.ormity with the findings in earlier investigations [1]-[3]. It 
is also seen that the distribution of singular stresses with respect to (r, 0) is in- 
dependent of the plate thickness which is in agreement with the results of Hartranft 
and Sih [2] and N.M. Wang [3]. However, in the solution of any specific problem, the 
thickness effect will be seen in the value of the constant A-~/2 which appears in the 
singular stresses as a multiplicative factor and governs the strength of singularity. 

The bending stress intensity factor K(b) according to the usual definition follows 
from Eqns. (35)-(37) as 

K(b) = V~(1 +/.,)A-I/2oroV'-Q (38) 

2.4.5. Transverse shear stresses 

Let us now examine the order of magnitude of transverse shear forces in the complete 
solution defined by (32). The first type of solution [WR, XR] does not produce any 
stress. An inspection of the stress-displacement relations and the solutions we have 
obtained suggests at first sight that, for any specific value of IX, the transverse shear 
forces should be of order r ~-1. However, as a consequence of the relation (19), it is 
found that they are of order r ~÷~ for fractional Ix. So, for the fractional type of 
solution, the transverse shear forces are of order r ~/2 corresponding to the lowest 
value of fractional/x i.e.,/~ = -2 i. Similarly, as a consequence of the relations (23) and 
(24), the transverse shear forces are of order r "+1 for all values of Ix in the integer 
type solution of first kind, except/~ = 1 for which they are of order r ~'-~. This means 
that for IX =0,  1,2,3,4 . . . . .  the transverse shear forces are of order r, unity, 
r 3, r 4, r 5 . . . .  respectively. For the integer type solution of second kind defined by 
Eqns. (25) to (27), it is easily seen that the transverse shear forces are of O(1). So, 
considering the total solution, the transverse shear forces in a general problem should 
be of O(1). This conclusion is in agreement with the results of Hartranft and Sih [2]. 
In contrast, the transverse shear forces as obtained from the classical plate theory are 
of 0(:3/2). 
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3. Numerical solution 

The general approach to solving a specific problem, such as described in the intro- 
duction, is to include in (32) enough terms so that the associated (unknown) constants 
are sufficient in number to permit satisfying the boundary conditions, e.g. by collo- 
cation, on the remainder of the region. For example, let the upper limit for /z  in (34) 
and (33) be n and n - 1/2 where n can be increased until satisfactory convergence is 
achieved. 

We now consider the numerical example of a square plate with a central crack 
subjected to uniform bending along two opposite edges (Fig. 2). Making use of double 
symmetry, we need to consider only one quarter of the plate, OPBQ, with the 
following boundary conditions: 

Side PB : Mx = Mxy = Qx = 0 

Side BQ: My = 1, Mxy = Qy = 0 

Side OQ: M~y = Qx = oW[ox = 0 

The application of a collocation procedure is well known and the details are 
furnished in Appendix 2 for those interested in numerical analysis. As a matter of 
general interest however, it was found that a straightforward application of the 
method was not sufficient for our purposes, especially as regards the distribution of 
boundary points for collocation. The exponentially increasing character of the Bessel 
function contribution to the solution necessitated a weighting density of the points 
which was best determined by trial and error. In addition, it was found that increased 
accuracy could be obtained by successive integration techniques [8]. 

The numerical results obtained are presented graphically in Fig. 3. It is seen that 
the finite plate results tend to approach the infinite plate solution due to Hartranft and 
Sih [2]. However, a direct comparison is not possible because convergence from the 
present method is found to be not very satisfactory for L[a > 4  and continuously 
deteriorates as L/a increases. Thus, we cannot examine the limit as L[a ~o¢. A similar 
difficulty is also experienced for values of h/a less than 0.5. In both cases, the 
difficulty is purely numerical in nature and arises as follows: 

In each approximation, the error in a boundary condition is distributed with its 
predominant content in a certain harmonic with respect to 0, the order of which 

2L 

/ 

B 

Figure 2. Square plate with a central crack under uniaxial bending. 
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0 '9  

-Ref. [ z ]  

( H a r t r a n f t  a n d  S i h )  
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\ ~ ~M~o 

l ~ (Knowles and Wang)  

0 ~ I I I I I I 
0 I 2 3 

2L 

0 '7  

- 0  5 

0 . 3  
4 

h / a  

Figure 3. Variation of bending stress intensity factor with plate thickness. 

depends upon the number of terms considered in the solution. In the next ap- 
proximation, we try to reduce this harmonic content by taking a few more terms in the 
solution. In most problems, this process brings in error with its predominant content 
in a higher order harmonic, the magnitude of the error itself having reduced. This 
happens in the present problem only if the maximum value of p~ chosen is sufficiently 
high and this limit increases as L/a increases and as h/a decreases. This becomes 
evident from an inspection of the series (16). When a new value o f / z  is chosen for a 
higher approximation, a X, as defined by this series is chosen and this automatically 
brings in higher harmonics in 0. So, for the results to converge, terms in series (16) for 
the new value of /~ should be in descending order of magnitude. In this series, the 
magnitude of terms first increases and then decreases with n if ~ is small. For 
example, modulus of the ratio of second term to the first term in this series for 
fractional tx is 

[k2r2/(ix + l)](aE/al)[sin(/x + 2)0/sin/~0[ 
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where 

a 2 = 1 4 - -  

~ 1 = 1 + - -  

(kr) 2 + (kr) 4 ~_... 

,1_1(/~ + 3) [~(tx + 3)(/~ + 4) 

(kr) 2 (kr) 4 
÷ ~ - , . .  

]_l(tx + 1) [2(/z + 1)(Ix + 2) 

As a rough estimate, we might consider that the last two factors are of the order of 
unity so that for the series (16) to have terms in descending order of magnitude, we 
have the approximate condition that (/x + 1)> k2r 2. So, for large L/a and small h/a, 
the solution should be considered up to a sufficiently large /~ before convergence 
trends can be seen and the number of equations to be considered increases rapidly 
with L/a and k, roughly as the squares of these parameters. It was found that beyond 
the range for which results are presented in Fig. 3, round-off errors come into the 
scene. Further trials were not attempted due to computer limitations, but it is likely 
that the round-off errors might present difficulties which cannot be easily overcome. 

The parameter kr which limits convergence in conventional numerical techniques 
is nothing but the ratio of the maximum distance of a point on the boundary from the 
crack tip to the plate thickness. Effectively, the limiting parameter in the square plate 
problem is the L/h ratio. So, there is a single parameter which controls convergence 
and it is the ratio of the two parameters L/a and h/a. This is also confirmed from 
numerical results which show that for a higher L/a, the lower limit of h/a up to which 
convergence is achieved is higher. For L/a = 3 and 4, convergent results were 
obtained at h/a = 1 but not at h/a = 0.5. For L/a = 2, while convergent results could 
be obtained at h[a = 0.5, even at a slightly lower value of h/a equal to 0.4, there was 
no convergence at all. So, the limiting value of L/h in the square plate problem 
considered is about 4. The corresponding value of kr would therefore be 4X/5 which 
probably holds good for any general problem. 

An interesting point which is worth noting is that the difficulties noticed here in 
respect of small h/a and large L/a are not experienced in Williams' classical theory 
solution [5]. The reasons are obvious. First, in the classical theory analysis, h/a does 
not figure as a parameter at all. Secondly, each independent solution in the classical 
theory [5] has only two terms unlike in the solution presented here where each 
independent solution is obtained as an infinite series which gives increasing overflows 
in higher harmonics unless the solution is considered up to a sufficiently large ~. 

It appears that as long as we confine ourselves to conventional numerical 
techniques, there is no simple way of overcoming the difficulty encountered here with 
small plate thicknesses and large plate sizes. However, the present solution can be 
used in a special finite element formulation overcoming the difficulty in respect of 
both the cases. This is discussed at some length in the Section 4. 

4. Adaptation to finite element formulation 

One of the recent advances in the finite element technique is the development of 
special crack tip elements. A comprehensive discussion of recent developments in this 
area can be found in [11]. In one category of such elements, the element encloses part 
of the crack with one of the crack tips and has nodal points only on the exterior 
boundary. There would be no nodal points on the crack boundary as the displacement 
field chosen would satisfy the crack boundary conditions identically. Further, the 
displacement field also satisfies the field equations exactly as it would be based on a 
continuum analysis and it therefore represents the singular stresses with the correct 
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functional form. The undetermined constants in the solution can be easily related to 
the physical degrees of freedom" at the nodal points such as nodal displacements, 
rotations etc. through a matrix relation. The stiffness matrix for the crack tip element 
is obtained through the principle of minimization of total potential energy, the 
procedure being not any more complicated than what it would be for conventional 
finite elements. In the actual analysis of a problem, we would have a number of 
conventional finite elements surrounding the special crack tip element and stiffness 
matrix of the entire structure is obtained by the usual assembly procedure. 

Development of a special crack tip element with the solution presented here is 
possible because what is required for this purpose is a continuum solution satisfying 
the crack boundary conditions identically and this is exactly what is achieved in the 
present analysis. Let us now see how we can overcome here the numerical difficulties 
associated with small plate thicknesses and large plate sizes. 

We have already seen in Section 3 that there is a single parameter which 
governs convergence in a numerical procedure and this is the ratio of the maximum 
radial distance of the outer boundary to the plate thickness. In a special finite element 
formulation, boundary conditions for the continuum solution developed here are 
satisfied not over the actual exterior boundary of the plate but only over the interface 
between the crack tip element and conventional finite elements. As we are at liberty to 
take the crack tip element to be as small as we like, we choose it in such a way that 
the ratio of the maximum radial distance of boundary of the crack tip element to the 
plate thickness is within the convergence limit. 

5. Concluding remarks 

The solution obtained here is essentially a higher order theory counterpart of 
Williams' solution based on the classical plate bending theory [5]. It is easily adaptable 
to conventional numerical techniques but some care is necessary in implementing 
these techniques. The solutions grow exponentially in magnitude away from the crack 
tip and over portions of the boundary farther away from the crack tip, one has to use 
more collocation points in the collocation technique and more number of integrations 
in the successive integration technique in order to achieve comparable precision in the 
satisfaction of boundary conditions over the entire boundary which is a prerequisite for 
the results to be convergent. 

For large plate sizes and small plate thicknesses, difficulties are encountered in 
achieving convergent results with the use of conventional numerical techniques. This 
has nothing to do with the correctness or completeness of the mathematical for- 
mulation which is demonstrated by excellent convergence for intermediate plate sizes 
and thicknesses. The difficulty arises purely from numerical problems associated with 
the mathematical nature of the solution. Instead of wasting one's effort in sorting out 
these problems, it is found more expedient to adapt the continuum solutions 
developed here into a special finite element formulation with a judicious choice of the 
size of the crack tip element. Apart from overcoming the aforementioned difficulty, 
the special finite element formulation has the additional advantage of automation 
characteristic of finite element techniques and it can be easily incorporated into any 
existing finite element software for general structural analysis. 

There is one important point to be noted in using the solutions developed here 
which, of course, applies to all known solutions for plates with cracks under bending. 
In the absence of extensional loading, the two crack surfaces touch each other on the 
compression side resulting in a 'mathematical interference' which renders in-plane 
displacements of different layers of the plate as predicted by the present solution 
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impossible. So, the solution developed here is valid only in situations where we also 
have an in-plane extensional load of such a magnitude that the 'mathematical 
interference' problem does not arise. 

Acknowledgement 

The authors are thankful to Dr. B. Dattaguru of the Indian Institute of Science, 
Bangalore for his many helpful suggestions during the course of the numerical part of 
this work, 

Appendix 1 

Sat i s fy ing  crack  boundary  condi t ions  f o r  f rac t ional  

From Eqns. (11) and (16), there follows 

Mro = Mro, (-2)r ~'-2 + Mro,(o)P" + Mro, (2)r ~+2 + . . .  (A 1) 

Qo = Qo,(-i)r "-l + Qo,(1)r ~+' + Qo.(3)r ~+3 + " ' " (A2) 

If the boundary conditions (9) and (10) are to be satisfied all along the crack 
boundary, the coefficient of each power of r should vanish in Eqns, (A1) and (A2) for 
0 = -~r. Applying this condition to (A2) leads to the recurrence relations, 

C u = 4(~ + 1)A~, (A3) 

C j.2(m-./) 
V.+2ff~ 2., - -  0 (A4) 

j=o.,.2 . . . .  I ( m  - i ) q ~ ( #  + 2 j ,  m - j )  

The additional subscript F for fractional tx is dropped in the foregoing equations 
for the sake of brevity. Solving the recurrence relations (A4) successively for 
m = l, 2, 3 . . . .  etc., one can determine C,+:,, for m I> 1 in terms of C.. It is seen from 
(A4) that C.+2m is obtained as a finite series of ( m -  l) terms in terms of C., C.+2, 
C.+4 . . . .  and C.+2m-2, but an inspection shows that summation of this series is 
possible. Using this summation and (A3), the closed form relation (19) is obtained. 

It is seen that the condition M~o,(-:) = 0 for 0 = +-Tr leads to the same relation as 
(A3). From M~o,~o~ = 0 for 0 = -+'rr, we get the relation (20). The equation resulting from 
MrojE,n) = 0, m t> 1 for 0 = --+~r can be written as 

p 1.2(m-j) 
2k 2 ~ ~'~'+2i~ 

i=0,,,2 .... I(m-j)~o(t~ +2j, m - j )  

m+l i-, k2(ra+l-j) 
L'v +2J = 0 

- (/x + 2m + 2)(~ + 2m + 1) j=0,,.2.~] [(m + 1 - ~ o ( ~  + 2j, m + 1 - j) 

It is easy to see that the above equation is automatically satisfied because the two 
summations of the left hand side vanish individually in view of (A4) which is valid for 
all m/> 1. 

Appendix 2 

N u m e r i c a l  procedure  

A straightforward collocation procedure with collocation points at uniform spacing on 
all the three sides PB, B Q  and OQ was tried but was found to lead to absurd results 
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with no trend whatsoever towards convergence. The reason for this becomes evident 
from a close look at the type of solutions we have obtained. An inspection of the 
expansions for Bessel functions of fractional order appearing in the solution for X 
shows that they contain e TM as a factor. So, these functions grow exponentially as one 
moves away from the crack tip. As each side is at a different distance from the crack 
tip, there would be an order of magnitude difference in the relative magnitudes of 
functions over the boundary. So, uniform spacing of collocation points over the entire 
boundary leads to an unbalanced error distribution and there would be no trend 
towards convergence. This explanation was confirmed by a trial on a rectangular plate 
problem where P B  = a and BQ = 2a using equal spacing of collocation points. In this 
example, all the three sides are at the same distance from the crack tip and as 
expected, the convergence is found to be satisfactory. 

Successful use of collocation for the square plate problem is possible provided a 
correct choice of the relative proportions of the number of collocation points along 
the three sides is arrived at. From the very nature of solutions obtained, the present 
problem, unlike most other problems, is unusually sensitive to the selection of relative 
spacings and even a small deviation from the optimal selection affects convergence 
substantially. As a logical conclusion, the spacing of collocation points over any side, 
situated farther away from the crack tip than another, should be relatively closer. The 
actual relative spacings over the three sides has to be arrived at by trial and error. The 
trial and error procedure for arriving at this optimal selection is as follows: 

We start with an initial guess of the relative proportions of number of points over 
each side taking into account the distances of the three sides from the crack tip. The 
collocation procedure is then enforced. Here, the number of collocation points is not 
increased but computation is carried out only for the initially chosen number of points 
and an output of error in achieving the boundary conditions is obtained. This error 
output clearly indicates where the spacing should be decreased. The procedure is 
repeated till the errors are approximately of the same order over the entire boundary. 
Computations are then continued by increasing the number of points over all the sides 
keeping the relative proportions of the number of points over different sides constant. 
This process is generally found to lead to convergence. 

While the above procedure for using the collocation technique is quite feasible, it 
is found that convergence is not as good as it is desirable and it is difficult to achieve 
accuracy in convergence up to anything better than two significant digits. In fact, 
results in the present work were obtained by the successive integration method which 
is more efficient. Studies by Mangalagiri et al. [8] who tried collocation as well as 
successive integration techniques for crack problems reveal that the successive 
integration technique can be used with remarkable success and far better convergence 
than the collocation technique. Efficacy of the successive integration technique in 
comparision with collocation technique in several other boundary value problems is 
demonstrated by Hussainy [9]. In this technique, we enforce the conditions 

fo fo . . .  E(ds) m = 0 , m = l , 2 , 3 , .  .n (A5) 

where the boundary condition to be satisfied is E = 0, s is the distance of a point 
measured along the boundary from a reference point and S is the total length of the 
boundary. By a simple logic, it is possible to show that the above set of conditions is 
equivalent to satisfying the condition E = 0 exactly at n points over the boundary. So, 
essentially, we are collocating but we are not specifying the location of collocation 
points thereby removing a constraint inherent in the usual collocation procedure. 
Also, Eqn. (A5) written for m = 1 amounts to balancing of areas under the error 

Int. Journ. of Fracture, 17 (1981) 537-552 



On the b e n d i n g  s t re s s  d i s t r i b u t i o n  551 

curve. These two factors lead to better convergence in the results. Steffenson [10] 
showed that the multiple integral in (A5) can be reduced to a single integral and we 
arrive at the simpler set of conditions, 

r s ds  = o, m = 1, 2, 3 . . . . .  n (A6) E s  m-I 
~o 

A notable feature of the set of conditions (A6) is that the solution matrix in each 
approximation is a part of the bigger solution matrix in the next approximation. This, 
apart from the two reasons already mentioned, also contributes to better convergence. 
In fact, with the use of successive integration method for the present problem, the 
convergence was so remarkable that in a few cases, there was agreement upto five 
significant digits in the first fifteen arbitrary constants between successive ap- 
proximations. 

As a result of extensive trials on the present problem which is quite sensitive to 
details of the numerical procedure, it was found that a few precautions are necessary 
in implementing even the successive integration technique. The authors could not find 
a reference to this in the literature and as these are perhaps of a general nature, it 
would be appropriate to make a brief mention of these here. Taking a particular 
portion of the boundary where the boundary conditions are on the same quantities, 
say the edge PB, there are two alternatives open to us: (i) we can consider the entire 
length PB and enforce the set of conditions (A6) for n = ij where i and j are integers 
or (ii) we can divide PB into i segments and enforce the conditions (A6) for n -- j  for 
each segment. It is found that more satisfactory results are obtained in the latter case 
and the optimum length of a segment is of the order of the semi-crack length a. 
Probably in a general case, the optimum segment length could be a characteristic 
length of the source producing stress concentration. Another observation which was 
made from the trials was that the error was relatively more around the corners B and 
Q. This can be expected because the radial co-ordinate r increases as we approach the 
corners and the magnitude of functions increases exponentially a s  e TM. This difficulty 
can be overcome by keeping the number of integrations variable over each segment 
and increasing the number of integrations in the next trial over those segments where 
the error in boundary conditions is relatively more. 

The actual number of segments over each of the sides PB, B Q  and OQ and the 
proportional number of integrations to be used over each segment are arrived at by a 
trial and error procedure as described earlier with reference to the collocation 
technique. In successive approximations, the relative ratios of number of integrations 
over different segments should be held approximately constant. 

In enforcing the conditions (A6) over any segment, the integration is carried out 
numerically by the Gaussian Quadrature method. Here again, there is an optimum 
order of Gaussian Quadrature which gives the best results. Increasing the order does 
not improve the results as one might expect but, on the other hand, worsens in most 
cases. 

In considering the solution for X from Eqn. (16) for any particular value of/~, the 
series is terminated at a value of n given by 

/~ + 2n ~< ~max + 2 (A7) 

where tXmax is the maximum value of t~ considered in the total solution. Effectively, 
we are satisfying the boundary conditions (8)-(10) along the crack upto such powers 
of r for which contributions from W as chosen in Eqn. (11) arise. Taking the complete 
infinite series (16) amounts to satisfying the crack boundary conditions exactly and 
this is not warranted as we would not be satisfying the exterior boundary conditions 
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to the same precision. When an improvement in satisfying the exterior boundary 
conditions is attempted by taking more terms in the solution, improvement in the 
crack boundary conditions is automatically achieved as /~max is increased in (A7). 
Apart from thus achieving comparable precisions in the crack and exterior boundary 
conditions, truncation of the infinite series (16) also leads to considerable saving in 
computational time. 

Computations were carried out for the example considered for L/a -- 1.5, 2, 3 and 
4 and for h/a = 0.5 to 4 at intervals of 0.5. A maximum of 120 arbitrary constants was 
necessary for this combination of parameters. The numerical solution was quite time 
consuming and the maximum time taken for one set of parameters was approximately 
seven minutes on a IBM 370/155 computer. This can be expected as the procedure 
involves computations of Bessel functions and their derivatives at various points on 
the boundary and summations of series resulting from Eqn. (16). 
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RE, SUMI~ 

On d6veloppe une solution g6n6rale ~ la distribution sym6trique de contraintes de flexion A I'extr6mit6 d'une 
entaille dans une plaque soumise/t une d6formation de cisaillement, en tenant compte de la th6orie de Reissner. 
La solution est obtenue sous forme de coordonn6es polaires h l'extr6mit6 de la fissure et comporte I'ensemble 
des solutions satisfaisant ~ toutes les conditions de fronti&es le long de la fissure. La solution comporte des 
constantes multiplieatives arbitraires et, dans des probl6mes sp6cifiques, ces constantes peuvent 6tre 
d6termin6es ~ partir des conditions de confinement ext6rieur ~ I'aide de techniques num6riques bien connues 
teUes que la collocation ou I'int6gration successive. Les r6sultats d'une solution num6rique darts le cas d'une 
plaque carr6e comportant une fissure centrale soumise/t flexion uniaxiale sont pr6sent6s en m6me temps qu'une 
discussion critique de la sensibilit6 de la solution num6rique associ6e au caract6re exponentiel des termes de 
Bessel dans cette solution analytique d'une ordre sup6rieur. 
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