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Abstract. The interplanetary shock wave front shape and intensity are calculated numerically by 
means of the WKB-approach, with nonlinear effects taken into account. The solar flare is modelled 
as an isotropic point explosion at the solar wind base. The heliospheric current sheet (HCS) is 
represented by a radially diverging stream with a higher plasma concentration and a lower wind 
speed. Fast magnetosonic shock wave propagation along the HCS is connected with the effect of 
regular accumulation of the wave energy in the vicinity of the HCS. In this place the wave intensity 
is increased, and the corresponding front fragments go ahead to form a shock-wave forerunner as a 
'pimple'. The 'primple', in turn, is located inside a quite a large, but less-contrast, 'dimple' in the 
wave surface. This 'dimple' approximately coincides with the HCS stream contours. If the flare is 
outside the HCS boundaries, the picture discussed above is conserved, but asymmetry effects arise. 
Thus the interplanetary shock is stronger when the Earth's observer and the flare are on the same side 
of the HCS and is weaker in the opposite case. 

1. Introduction 

The problem of flare-generated shocks propagating through the solar wind has been 
addressed in a large number of papers. In this regard, the most informative approach 
is, of course, the method of three-dimensional MHD modelling of heliospheric 
disturbances (see, for example, Han, Wu, and Dryer, 1988). However, such a 
modelling is not always possible because of its complexity and labour input. In this 
paper the problem of propagation of explosive MHD shocks in an inhomogeneous 
solar wind is solved by a method similar to the method of nonlinear geometric 
acoustics, or the WKB method (which uses approximate solutions of the same 
equations under conditions of a smoothly-inhomogeneous medium) (Bazer and 
Fleischman, 1959; Gubkin, 1961; Korobeinikov, 1967). 

In some other form, the WKB method is successfully exploited in many geo- 
physical applications. Conventionally, the method is divided into two procedures. 
The first procedure does not depend on the second and involves constructing ray 
trajectories, along which wave front elements propagate. The second procedure 
involves calculating parameters of the wave as it propagates along the ray. To 
implement the first procedure has required deriving ray equations in the most gen- 
eral form, and this will be done in Appendix 1. Moreover, the ray equations were 
supplemented with a term that represents the fact of increasing velocity of the wave 
front with an increase in shock intensity. Parameters of the wave in this case are 
calculated on the basis of the known laws of damping of explosive low-intensity 
MHD shock waves. 
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A preliminary discussion of some results obtained by using the technique sug- 
gested here, is contained in papers of Uralova and Uralov (1990) and Eselevich, 
Uralova, and Uralov (1991). This paper considers in greater detail the problem of 
interaction of the flare-produced shock wave with the heliospheric current sheet 
(HCS). The analysis of experimental data does not afford an unambiguous answer 
to the question: What is the form of the interplanetary shock front in the neighbour- 
hood of the HCS? In other words, it is still unclear where the shock moves faster: 
near the HCS or far from it? Thus, Watanabe (1989), by analyzing interplanetary 
scintillation (IPS) data, points to some cases of a strong deceleration of the shock 
propagating near the HCS. An attempt to give a theoretical interpretation to this 
result was made by Burton, Siscoe, and Smith (1992). An opposite conclusion that 
is also based on IPS data, was drawn by Wei and Dryer (1991) by considering a 
larger sample of data. The work by Dryer et al. (1992) who used the method of 
numerical MHD simulation to examine the interaction of an oblique shock with 
the HCS, can be regarded as a theoretical substantiation for the last result. In this 
case, in the vicinity of the HCS there arises a disturbance that travels in the anti- 
sunward direction faster than the shock that has generated it. The physical nature 
of this formation, as emphasized by the authors themselves, needs a more detailed 
analysis. 

2. Basic Equations 

Ray equations for magnetosonic waves of a linear approximation in an arbitrary 
orthogonal coordinate system xi have the form (see Appendix 1): 

hi dxi Oa ki 
--  V~ + k-z;-,oxi + a -~  - Vi + qoi =- qi , (1) 

dt 

hi dki 
dt 

3 ± 1 _ oo 

j~l [(k2) Ohj 3 [Ohi dxj 
a - k i ~  [~xj  at ' +-i L hj "= j=l 

(2) 

d--[ = O t  " ( 3 )  

Here hi stands for the Lame coefficients; Vi is the velocity component V = V (r, t) 
of an undisturbed solar wind; a = a(r,  k, t) is the phase velocity of magnetosonic 
waves; ki represents the components of the wave vector k; k = Ikl. 

The last two terms in (1) represent the group velocity q0 of a fast (a --- a+) 
and slow (a = a_) magnetosound wave in an immovable medium. Equation (2) 
gives a variation in wavelength A = 27r/k and the orientation in space of the vector 
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normal n = k / k  of the small element of the wavefront as it propagates along the 
ray. The relationship (3) describes a variation in signal duration T1 = 27r/co in 
a nonstationary medium. If the medium is stationary, then T1 = constant on the 
entire path of propagation of the linear acoustic wave: co = ak + (k. V)  = constant. 
This case will be used in our subsequent discussion. 

Traditionally, the method of nonlinear geometrical optics presupposes the prop- 
agation of each small element of the shock front along its ray constructed on the 
basis of the linear approximation relationships (1) and (2). In this case the nonlinear 
evolution of the disturbance itself is studied on the basis of laws of damping of soli- 
tary MHD shock waves of low intensity in a smoothly-inhomogeneous medium. 
For an explosive shock, whose compression phase has the form of a rectangular 
triangle, such laws may be taken from a paper of Uralov (1982). In this case the 
relationships of nonlinear geometric acoustics are valid for the jump of the longitu- 
dinal gas velocity component in the discontinuity Ush and the compression phase 
duration TSh = Lsh/qn: 

USh = UI(1 + rl/T1) -1/2 , 

TSh = TI(1 + "q/T1) 1/2 , 
(4) 

where 

l 

q =/, UldI/qqn, (dl) 2 =  ~ ( h i d x i )  2 , 
1. i 

q =  q2 , q n = ( V ' k ) / k + a ,  (5) 
i 

i < ~ = l + 0 l n a / 0 1 n p <  7 + 1  
2 -  - 2 

Here l is a coordinate counted off along the ray, and l, is the position of the 
initial point, at which initial parameters of the selected part of the shock front are 
determined: Tsh = T, = TI(/ ,) ,  USh = U, = UI(/,).  The quantities U1 and 
T1 represent, respectively, the shock intensity and duration obtained in the linear 
acoustic approximation. In a stationary wind dT1 ~dr = 0, and the quantity U1 is 
defined by the expression (see Appendix 2) 

SqnpU21(1 + #2) q~ = constant, (6) 
a 

where S is the surface area of the wave front's small element propagating inside 
the calculated ray tube and pU2(1 + #2)/2 is the kinetic energy density of a 
magnetosonic disturbance in a stationary medium. 
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Equation (1) neglects the fact that in the approximation of nonlinear geometricai 
acoustics the shock front travels along the normal with a velocity that exceeds the 
phase velocity by t~Ush/2. This follows from conditions on the MHD discontinuity 
to an accuracy of about p'/p. Therefore, a correction of Equation (1) for nonlinearity 
has the form (see also Appendix 3) 

hidzi kOa ( ~ )  ki 
dt - Vi + Oki + a+ -~ . (1') 

Equations (1'), (2), (4), and (6) serve as the basis for calculating the parameters 
Ush and Tsh of the solitary shock wave and the position of its front in a stationary 
(T1 = constant) solar wind. 

3. The Problem Statement and the Scheme for Numerical Calculation 

We are using a spherical-coordinate system, with the Sun lying at its center. In this 
case, in Equations (1') and (2), one should put zl = r, z2 = 0, a:3 = ~o; hi = 1, 
h2 = r, h3 = r sin 0. The equatorial plane is defined by the condition 0 = re/2. 
The model of an undisturbed solar wind is specified analytically and is not intended 
to be rigorous. In this case for the distances r '  = r /R e _> 2, where R e is the solar 
radius, the following statements are employed. The undisturbed wind is strictly 
radial, V~ = 1/'o = 0. The plasma density of a 'mean' wind is (Yakovlev, Yefimov, 
and Rubtsov, 1988) 

= 1.26 x 107/(r')2V~ (cm-3) ,  (7) 
TtZ i 

where V/ = V~/10 km S -1 is the radial component of the wind velocity that is 
specificied separately. The sound velocity is C(r' <_ 18) = 165 km s -1, 

C ( r ' >  18) = 1 6 5 ( 1 8 / / )  2/3 (km s - l ) ,  

which corresponds to lower coronal temperature of 106 K with a temperature at the 
Earth's orbit of 3.6 x 104 K. The radial component of the interplanetary magnetic 
field B~ = (r') -2 G, such that B,,(r t = 215) = 2.16 x 10 -6 G. The azimuthal 
component is defined by the expression 

(r '  - 2) 
B~o = B~oo rt , 

r s i n 0  0.135 sin0 
B oo : - ( G ) ,  (8) 

( r 'V ' )  v r  

where B~o corresponds to the familiar supposition about the colinearity of the 
vectors B and V in a coordinate system corotating with the Sun. The correction 
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factor (r '  - 2 ) / r '  serves to include this condition at a small distance from the solar 
surface. Otherwise, the value of B~ becomes unrealistically large in the region of 
solar wind formation. 

The solar flare is modelled by a point explosion with the coordinates r .  = 
{r. ,  0., ~p. }. The initial quantity in this case is the explosion's energy e, expressed 
in terms of the length parameter 

a = 1( , ,  k , /k , ,  r , ) =  a2,, (9) 

similar to the length parameter in the theory of a strong explosion in the gas. In 
this case the product p,  a2, is proportional to a total (magnetic+gas) pressure in 
the neighbourhood of the explosion. Here a,  = a ( k , / k , ;  r , )  and p, = p(r , )  are 
the velocities of a fast magnetosonic wave and the plasma density at the explosion 
point, respectively. 

The physical meaning of the quantity A lies in the fact that a shock wave, 
while propagating from the point of explosion in a given direction k , / k , ,  becomes 
sufficiently weak only when it reaches some reference surface. The location of this 
surface, with no wind present, roughly accords with the equality rc ~ r ,  + k , A / k , .  
The formation of the explosive disturbance profile is largely completed by this same 
time, and the profile assumes the form of an explosive wave. These circumstances 
determine the applicability of the laws of nonlinear damping (Equation (4)) after 
the wave has passed the reference surface (t > to). To employ these laws, it is 
necessary to specify the shock intensity and duration at time t = t~ when the shock 
intersects this surface (l = l, in the relationship (5)). The known solution of this 
question for a point explosion in the gas without a magnetic field (Kestenboim, 
Roslyakov, and Chudov, 1974), and also considerations based on the dimensional 
theory permit the initial conditions (as a rather good approximation) for Equations 
(4) and (5) to be specified as Tsh( t~ )  = T1 = A / a , ,  Ush( t c )  = U1(l , )  = a , ,  
 l(tc) =0 .  

A calculation of the ray pattern starts at time t = 0 of departure of the rays 
from the explosion point. Therefore, initial values of xi  in Equations (V) and 
(2) correspond to coordinates of the explosion point r , .  In the interval 0 < t < 
t~ (inside the explosion cavity) the value of Ush = a,  in Equation (V). The 
value of tc itself, however, is taken to be equal to A / (a ,  + ~;Ush/2 ) as though 
the explosion occurred in a stationary homogeneous medium. In such a case, 
Equation (11) includes the influence of a statinary solar wind upon the shape and 
location (transport together with the wind) of the explosive cavity. (This influence 
becomes highly important if the hypothetical point of explosion is transferred to 
large distances from the solar surface where the wind becomes supersonic (Uralova 
and Uralov, 1990). 

The choice of the initial direction of departure from the explosion point of any 
one of the rays determines the initial values of ki specified for Equations (1') and (2). 
The latter quantities are readily expressed in terms of the vector k ,  = kre~ ----- eT 
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if a local spherical coordinate system (1, 00, ~0), located at the explosion point, is 
used. In such a case, a flat fan of equidistant (in angle 00) vectors k .  of unit length 
Ik.I = 1 corresponds to an equidistant series, for example, of values of 00 at a 
fixed value of ~0. 

A numerical solution of Equations (1'), (2), and (5) is carried out following the 
Runge-Kutta  scheme. The ray tube, inside of which the propagation of a selected 
part of the wave front of area S occurs, consists of three closely-spaced rays. The 
value of S is calculated by the Geron formula (Bronshtein and Semendyaev, 1980). 

Preliminary calculations have also shown a weak difference of the results 
obtained both through an accurate calculation of the quantities t~ and #, according 
to the expressions (5) and (A20) and by using a much simpler replacement ~ = 1 
and # = 0. In what follows we will be using the last variant, which makes the 
calculation easier. 

4. The Heliospheric Current Sheet Influence upon Shock Propagation 

The HCS region is modelled by a low-speed and denser solar wind stream. The 
radial component of a generalized velocity of fast magneto sound (~  Vr + a) in such 
a stream is lower than that outside the stream. This obviously means that the HCS 
region exhibits waveguide properties with respect to fast-type disturbances. We 
have briefly discussed this issue in our earlier paper (Uralova and Uralov, 1990). 
In this case, special attention should be paid to the fact of radial divergence of this 
refraction waveguide, which ultimately leads to the effect of regular accumulation 
of the wave energy in the neighbourhood of the HCS. 

In view of the graphic representation of results of calculations on a small 
computer, we now discuss the simplest variant with the HCS, lying in the equatorial 
plane. The dependence of the solar wind velocity of angular coordinates is 

{ [ T r ( 0 - r r / 2 ) ] }  0 <  0rr- 2 <__A0s, V~=Vo( r )  1 - r / c o s  2L 2AOs  ] ' - -  

vr v0(r) 0 > A0,,  
(10) 

such that 0 / 0 ~  = 0. The function Vo(r )  is the approximation of one of Parker's 
solutions: 

1 - 1 - 3 ( r ' - 2 ) ,  2 _ < r ' < _ 6 ,  

Vo(r ' )  = 13 + 1.125(r' - 6 ) ,  6 _< r '  _< 30 ,  

40 ,  r '  > 30.  

(11) 

The expression (10) represents an axisymmetric, low-speed solar wind stream 
located inside a sector of half-width A0s = 10 °. The equatorial plane 0 = re/2 is 
a symmetry plane, on which the wind velocity reaches its minimum value equal to 
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(1 - rl)Vo(r). According to (7), the plasma density here increases 1/(1 - 7) times. 
The value of ~7 = 0.1 will be used in the calculations to follow. With distance from 
the equatorial plane, the solar wind velocity increases gradually to reach Vo(r) on 
the boundary 0 = 7r/2 4- A0s; subsequently, it remains unchanged. On the HCS 
boundaries the solar wind density and velocity undergo a weak discontinuity. 

The solar flare is modelled by a point explosion of energy e = 5 x 1030 ergs, 
lying at the distance r .  = 2 R® from the solar center, ~ .  = 0 °. We discuss the 
situation of a central 0. = 90 ° and lateral explosion 0, = 70 °. 

4.1. Consider the first situation when the flare is located in the middle of the HCS. 
The geometry of the problem in the (r, 0)-plane is shown in Figure 1. The solar 
wind velocity profile is depicted qualitatively at the right. The HCS boundaries are 
marked by radial heavy lines. For the sake of convenience, only part of the rays 
with the initial angles of departure 0-24 ° southward of the equatorial plane are 
shown. The northern group of rays can be obtained by a mirror reflection of the 
southern group of rays with respect to the plane 0 = 90 °. 

We are interested in the nonlinearity effect on the position and shape of the wave 
front. Therefore, we will not discuss in detail such points as (a) a variation of the 
time profile of  a shock as the carrier ray is reflected from the caustic region, (b) the 
cross-intersection of shocks of the fronts, typical of phenomena with explosive 
energy accumulation, and (c) the cross-intersection of ray tubes when their mutual 
influence is to be taken into account. Of course, all these factors make a correct 
application of the WKB method difficult (see also Appendix 3). Nevertheless, the 
results obtained reflect the trends to be expected in numerical MHD modelling of 
the process of propagation of explosive shock waves along the HCS. In this case 
the WKB technique results in positions of shock fronts at consecutive times t~ - t5 
(solid heavy lines in Figures 1-3). 

The initial, nearly spherical shape of the front of the shock at some distance from 
the explosion undergoes a particularly marked deformation inside the HCS sector. 
Initially, a dimple appears on the wave surface (t = ~1 ). AS the shock propagates, the 
dimple becomes ever deeper and wider and leaves the HCS boundaries. However, 
a pimple (t = t2) develops in the central part of this extensive dimple, with its 
wave structure becoming increasingly more complex (t3, t4, t5). The  formation 
of the pimple is associated wholly with the intensity redistribution of the shock 
along its front. The shock attains the highest intensity in the immediate vicinity 
of the HCS, which - in agreement with Equation (1 ~) - leads to an advance 
of corresponding portions of the shock front. The traditional use of the method 
of nonlinear geometrical acoustics when ray equations (1) and (2) of a linear 
approximation are used, does not reveal such a pimple. Heavy dots in Figures 1- 
3 show the position of the front, corresponding to such a calculation when in 
Equation (1 ~) the term containing Uxh is omitted. It should be noted that the ray 
pattern in this case also changes and does not coincide with the depicted one. The 
HCS waveguide now traps the maximum possible number of rays. With increasing 
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Fig. 1. The problem geometry in the (r, 0)-plane for the case of a central explosion, 0. = 90 °, 
r'. = 2, qo. = 0. To the angle 0 = 90 ° there corresponds an equatorial current sheet. Inside 
the sector 0 = 90 ° 4- I0 ° the solar wind velocity vs.w. is decreased, and its density is increased. 
Shown are the trajectories of the rays that originate from the explosion point e in the southward 
direction. For different times tl, t2, and t3 the position of the shock front from an isotropic explosion 
of c = 5 × 1030 ergs is shown, with the nonlinear factor taken (solid heavy line) and not taken 
into account (heavy dashes) when calculating the ray pattern. The last case actually corresponds to 
the approximation of linear acoustics when e --+ 0. One can see the formation of the shock wave 
forerunner as a pimple (marked by 'p') as well as the formation of a dimple (marked by 'd'). 

explosion energy, the waveguide  properties of  the HCS manifest  themselves  ever  

more  weakly.  
The shock wave  forerunner in some range of  distances (times t2 - t4) leads 

those parts o f  the shock front which lie outside the HCS sector. At larger distances 

(t = ts), however ,  this lead becomes  inconspicuous. In the approximation used 
this result depends weakly  on the explosion power  e. This is evident f rom Figure 3, 
in which the dash-dot ted line shows the surface of  the shock front f rom which the 

hypothet ical  explosion of  e = 1032 erg energy (incidentally, not amenable  to the 

analysis by  the W K B  method merely  because the extent o f  the compress ion phase  
of  the explos ive  wave  exceeds,  f rom the very beginning, the transverse size of  
the 0- inhomogenei ty  of  the calculated ray pattern). This figure also shows clearly 
the cumula t ive  HCS effect  when rays originating f rom the explosion point are not 
s imply captured by the HCS waveguide  (Figures 1 and 2) but concentrate in its 
central part  (seel also Figure 5). The ray channel, following a certain narrowing,  
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Fig. 2. Same as in Figure 1, but for the subsequent time t4. The structure of the HCS forerunner 
becomes more complicated and forms a group of oblique shock waves following each other along 
the HCS. The equatorial plane is a symmetry plane. At the top, the calculated intensity and extent of 
the shocks are shown on a relative scale at corresponding (dashed) points of the equatorial plane. 

almost does not undergo any expansion in the 0-direction. Suppose now that instead 
of  the complicated wave structure such as shown the ray method, the shock wave 
forerunner has a simpler form of  a solitary wave. This suggests that the wave surface 
of such a disturbance has a nearly cylindrical divergence (see also Appendix 3). 
The shock wave forerunner in this case is damped more slowly compared to what 
is given by our calculation. Therefore, the real lead of  the other parts of the shock 
front by the shock wave forerunner can be more conspicuous. 

In addition to other evidence (see Appendix 3), there are the procedure and 
results of calculations which indicate that the shock wave forerunner should be 
regarded as a solitary disturbance with a more regular structure than the calcu- 
lated one. Since the appearance of a forerunner is wholly due to the last term 
in Equation (1~), its size in the radial direction, in virtue of the relationships (4) 
and (5), is always smaller than (or, at a large distance from the explosion site, is 
equal to) the extent of  the compression phase of the calculated explosive wave. 
In this case one must use results of  calculations of wave parameters along those 
ray trajectories which form the leading edge of the shock wave forerunner. An 
explanation for this is provided by Figure 2, the upper part of which shows, on 
a relative scale, the calculated intensity Ush and extent Lsh of the shock waves, 
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Fig. 3. Same as in Figures 1 and 2, but at a larger distance from the explosion location. Dash-dots 
indicate the position of the shock front from a hypothetical isotropic explosion c = 1032 ergs; solid 
heavy line - from explosion e = 5 x 1030 ergs, heavy dashes - from c --* 0. The complicated structure 
of the HCS forerunner on this scale is not seen (the region containing it is outlined by dashes). 

lying on the equatorial plane at a given time. So large an extent of  the 'bow'  shock 
indicated only that the spatial resolution of  the shock wave method is insufficient 
for a correct  description of  the forerunner structure. On the other hand, a rather 
obvious conclusion that shocks, following each other, can 'merge'  nonlinearly into 
one, stronger wave, lends support to our inference. With increasing distance from 
the Sun (after passing still another caustic), the calculated structure of the shock- 
wave forerunner  becomes complicated (there appears still another, new reflected 
shock). While 'overtaking'  and merging with the total disturbance, it ' increases'  
the disturbance amplitude to an extent such as corresponding to the supposition 
about the cylindrical divergence of  the front of  the total shock in the neighbourhood 
of  the HCS. Note also that the 'mean'  divergence of  the normal cross-section, S,  
of  any individual ray tube exceeds markedly the cylindrical divergence. 

In order to provide proof, we make a qualitative assessment of the laws of  
damping of  the shock as it propagates along the HCS. At a large distance from the 
Sun when the solar wind velocity V = constant >> a and the condition 7-1 >> T1 is 
satisfied, f rom (4), (5), and (6) we get an asymptotic relationship: 
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g S h  ~,~ U 1 / ~ / ~  ~ r ( 1 - u - 5 ) / 4  , 

T s h  ~ x, T/~I ~ r ( 5 - u - 5 ) / 4  . 
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(12) 

In this case we put a ~ r -6 ,  S ~ r u - l ,  and take into consideration that p V r  2 =- 

constant. The values of u = 3 and u = 2, respectively, correspond to spherical 

and cylindrical divergence of surface S of the shock front. Since a ~ ~ / V  2 + C 2 , 

where VA ~ r -1 and c ~ r -2 /3  in our solar wind model, with c > VA, the 
HCS shock intensity in the case u = 2 decreases with distance approximately as 
USh ~ r -° '42 .  For the parts of the shock front outside the HCS boundaries u = 3 
and Ush  ~ ? . -0 .66 .  In solar wind models when at large distances from the Sun 
VA > c, we get U S h ( I ]  -~  2) ~ r -°'5 and U s h ( l ]  -~ 3) ~ f -0"75. 

Near the explosion site when the shock is very strong and still 'feels' the 
influence of the explosion point, we have e P r  ~ ^U 2 r ~ where P is the ~'~ ~'~ t) S h  ' 
mean pressure in the explosion cavity, and p is the plasma density ahead of the 
shock front. (Physical processes occurring in the explosion plane, are omitted in our 
WKB consideration by introducing the notion of a 'check' surface.) The condition 
p V r  2 = constant gives in this c a s e  U S h  ~,~ ~ r  (2-u)/2.  If the fact of the HCS 
cumulative effect is somehow conserved and for a strong explosive shock wave 
(2 < u < 3), then a hypothetical growth of its intensity is possible where the solar 
wind accelerates (even in the absence of a 'piston'). One must, however, remember 
the demonstrative character of the scenario just described. 

Despite the foregoing discussion, we will, nevertheless, discuss briefly some 
details of the calculated structure of the shock wave forerunner and possible 
sequences. As is apparent from Figures 1 and 2, a permanent element of its structure 
is provided by skew shock waves converging to the equatorial plane (the effect dis- 
appears with distance from the Sun). This is an indication of the existence (during 
some time) of plasma flows that have a small velocity 0-component directed toward 
the HCS. In the situation of the real HCS, this factor is able to initiate the magnetic 
reconnection process, accompanying the shock wave. The very fact of the release 
of the energy stored in the neighbourhood of the neutral current sheet can only 
increase the shock's kinetic energy. It is also possible that the type II radio source 
is the consequence of a 'forced' flare process that propagates in the wake of the 
shock wave. Perhaps, the formation (in some cases) of closed magnetic structures 
(coronal mass ejections) that move along the HCS, is also associated with this. 

4.2. The situation with a side explosion is shown in Figures 4 and 5. The calculated 
ray pattern clearly demonstrates the fact of wave energy redistribution among inho- 
mogeneous solar wind streams. Disturbances of the fast magnetosonic type leave 
the region of the 'high-speed' stream to the 'low-speed' stream region (contribut- 
ing, possibly, to the equalization of their velocities). As the shock wave propagates, 
the number of rays that have penetrated the waveguide, increases, which was not 
observed in the case of a central explosion. One may say that there exists a part of 
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Fig. 4. The problem geometry in the (r, 0)-plane for the case of a side explosion e = 5 x 1030 ergs 
with the coordinates of the explosion point 0. = 70 °, ft. = 2, ~o. = 0. The solar wind model 
remains the same. Shown are the trajectories of the rays that have in the plane (r, So) the same angle 
of departure ~o = 0 ° from the explosion point. One can clearly see the 'capture' of a group of rays 
by the HCS-waveguide. Symbols are the same as for Figures 1-3. 

the route, in which the energy of the HCS forerunner increases. However, the total 
number of rays which are finally captured by the HCS waveguide decreases with 
increasing latitude of the flare explosion. 

In the case of a side explosion, asymmetry effects appear. Thus, the shock 
strength is higher when the observer and the flare lie on the same side of the HCS 
(in the northern sector of Figures 4 and 5). A marked attenuation of the shock in 
the opposite case is due to the existence (in the southern sector of Figures 4 and 5) 
of an extensive refraction shadow from the HCS waveguide. Outside the refraction 
shadow region (the southernmost rays in Figures 4 and 5) the shock is only slightly 
weaker than the one which would be in the absence of the HCS. (This latter is, in 
part, associated with the fact that in our calculations we used a HCS model with a 
weakly-expressed 0-inhomogeneity: 77 = 0.1 in the expression (10)). 

A well-defined 'break' of the large-scale structure of the shock front in Figure 5 
is associated with the refraction shadow. Its presence indicates that in a real situation 
there is a weak 'drift' of the HCS in the southward direction (for the flare that 
occurred in the northern hemisphere). 

The formation process of a shock wave forerunner (as a pimple), as was possible 
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Fig. 5. Same as in Figure 4, but at larger distance from the explosion site. One can clearly see the 
cumulative effect of a radially-diverging refraction HCS waveguide. The shock is stronger whenever 
the observer and the flare are on the same side of the HCS and is weaker otherwise. 

to study in our numerical simulation, perhaps sheds some light on the nature 
of the fast disturbance detected by Dryer et al. (1992) in a numerical MHD 
simulation of the shock-HCS interaction process. It should be conjectured that an 
experimental confirmation of the above distortion of the form of the shock front in 
the neighbourhood of the HCS is most probable for interplanetary shock waves of 
moderate intensity (see Appendix 3). In turn, a weakly-expressed HCS does also 
not give rise to new effects; when ~7 --+ 0 in (10), there is a 'smoothing-out' of the 
'dimple-pimple' inhomogeneity of the shock front until its total disappearance. 

4.3. So far we have discussed the features of a weak interplanetary shock wave 
in coordinates (r, 0). As far as the wave surface behaviour in the (r, ~o)-plane is 
concerned, however, we will limit ourselves only to one remark. As the shock 
propagates, the shock front slowly turns westward. In this case the westward 
deviation of the central ray that has left the explosion point in the radial direction 
at the Earth's orbit is A~o = 11 ° for our model. This effect is caused by the 
asymmetry of the group Fridrichs polar curve for a fast magnetosonic wave when 
the propagation across the magnetic field is faster than along the field. The turning 
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of the shock front is observable when the shock wave becomes sufficiently weak. 
The sign of the turning in this case is opposite to the sign of the interplanetary 
magnetic field spiral. 

Appendix 1. The Ray Equations 

Constructing the ray pattern is the first stage of the entire computational scheme. 
Since at each point of the medium there are two distinct directions, one along the 
solar wind velocity V,  and the other along the magnetic field vector B, the medium 
is twice anisotropic. The medium is also inhomogeneous because all its parameters 
V,  B, density p, and gas pressure p vary from point to point. Not the least of the 
factors is the question of choosing the coordinate system. The point here is that if 
there are ray equations in Cartesian coordinates, then even in the simplest cases 
(V = B = 0) converting to curvilinear coordinates involves unwieldy calculations 
(Kravtsov and Orlov, 1980). It should also be noted that the frequently-used vector 
representation of canonical equations is valid only in Cartesian coordinates. In any 
other coordinates, only Hamiltonian equations of characteristics hold, which are 
invariant with respect to choosing a particular coordinate system. 

Papers on this issue (Weinberg, 1962; Blokhintsev, 1981; Berstein, 1971) con- 
tain either simplifying assumptions (for example, V = 0, or B = 0, or p = 0) 
or involve determining only the weak discontinuity surface (Bazer and Fleishman, 
1959), thereby neglecting an important parameter, such as the wavelength. More- 
over, the form of representation of the terminal expressions often is simply not 
convenient. Taking all of these factors into account dictated the need to derive ray 
equations for magnetosonic waves in the most general form. 

The starting system is the system of equations of an ideal single-fluid magnetic 
gas dynamics written as 

Op 
0---~- + p div V + V .  grad p = 0 ,  

0 v  
0~- + [ r ° t V x V ] +  gradV 2 = -  g r a d p +  [ r o t B x B ] + g ,  

OS 
0--t- + ( V .  grad S) = 0 ,  (A1) 

OB 
= rot[V x B] , 

Ot 

div B = 0 ,  

p(p, s )   P°e×p[(S - = P  p~ 
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Here V and B are the plasma velocity and the magnetic field in a fixed coordinate 
system, respectively;/9 and p are the gas density and pressure, respectively; S is 
the entropy of unit mass; "~ = cp/cv = ~ is the adiabatic exponent and cv (%) is 
the heat capacity of unit mass at constant volume (pressure). On redenoting by the 
quantities p, p, S, V, mad B the undisturbed solar wind parameters and by p', p', 
S', V ~, and B ~ their small disturbances, the initial system can be linearized in the 
usual way (so that p --~ p + J ,  etc.). However, in view of the WKB approximation 
used, we are seeking a solution in the form 

(p', p', S', V',  V') = ((p~, p~, S~, V~, V~) exp(i~).  (A2) 

The function ~ that is called the eikonal, is a large value and varies by 27r at the 
distance of the wavelength )~. Disturbance amplitudes (zero indices) are slowly 
varying functions of coordinates and, perhaps, of time. On substituting (A2) into 
(A1) with the use of vector analysis functions, we get 

i Q J  o + ip(V~o • grad ¢) = d l ,  

p' ~ i / 
iQV~o + i p g r a d  ffa + (B.  B~)grad ~b - 4-~pBo(B. grad@ = d 2 ,  

• / 

zQS6 = d3 , 

• I ~QB o - iV;(grad~b. B) + iB(grad~b. V~) = d4, (A3) 

/(grad~p. B~) = ds ,  

' ' 

Po = Po + 
S p 

Q =_ &b/Ot + (V .  grad ~b). 

All terms on the left-hand sides of the equations contain an eikonal. The quanti- 
ties di, in turn, consist of terms that do not contain an eikonal and hence are small. 
In this case: 

d, - Op~ot (V~gradp) - (V .  gradp~) - pdivV~ - p~divV 

d2 - Ot + [V~ × rot V] + [V × rot V~] - grad (V.  V~) -  

~gradp~ /9' + ~-~gradp + 4@p[rotB x B;]+ 

l /91 
+ [rot B o x B] - ~ [ r o t  B x B] ,  (A4) 

,+Tr W 
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d3 - OS~°Ot ( V .  grad S~) - (V~-gradS)  

d 4 -  0 B ~  
Ot 

- -  4- rot [V; × B] 4- rot [V x n~l , 

d5 = - d i v B ~  = 0 .  

That all quantities di go to zero, corresponds to the formation of (A3) of a system 
of zeroth approximation equations. Equations of this approximation give a linear 
relationship of the quantities in the short wave of a small amplitude, and also 
they form the basis for deriving ray equations. Waves of this approximation are 
iso-entropic ones S' = 0 and satisfy the condition (grad ~ • B~) = 0. In this case 
from (A3) one immediately gets (& = 0) 

p~ = c2p(V~ • grad ~p)/Q. (A5) 

In the case of magnetosonic waves p~ ~ 0. Then, by mutiplying the second equation 
in (A3) scaled by grad ~, using (A5) we find 

z (grad ~)2 [ .  ( B .  B~ ] 

Q '+  L j = °  - c2pPO p (A6) 

In the approximation used, the expression between square brackets is Jo a2 = 
pt Oa 2/c 2 because for simple magnetosonic waves there exists an accurate expression 
(Kulikovsky and Lyubimov, 1962) 

) 
Here a = a(+, _) are the phase velocities of propagation of (fast, slow) magne- 
tosonic waves of a small amplitude in a homogeneous immovable medium. B~- is 
the tangential component of the total magnetic field, and p is the gas pressure in 
the wave. Hence, dB 2 = 2B~-B' = 2(B • B')  because dBn = 0. In turn, dp ~ p' 
and dp ~ J .  Now, instead of (A6), we get 

Q2 _ a2(grad~)2 = 0 ,  

o r  

(Q - a Igrad ~bl) (Q 4- a Igrad~bl) = 0 .  (A7) 

These expressions have an obvious meaning. The WKB approximation assumes 
a wave nondistinguishable from a plane wave in a small range of space and time, 
such that ~ = - w t  + (k • r), where • is the circular frequency, and k is a wave 
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vector. From this we have O¢/Ot = - w  and grad ¢ = k. When each of the 
brackets in Equation (A7) goes to zero, this is represented by the dispersion of 
magnetosonic waves that propagate in a positive or opposite direction. For the sake 
of simplicity, we will limit ourselves to a wave running in the positive direction: 
this corresponds to the second bracket in (A7) going to zero. Thus, we write the 
eikonal equation for magnetosonic waves: 

o¢ 
ot + ( v .  grad~b) + algrad¢] = F = 0.  (Ag) 

The phase velocity of magnetosonic waves is given by a familiar expression 
(Kulikovsky and Lyubimov, 1962): 

a + _  = ½{g/c 2 + V 2 + 2c(VAk) /k  4- ~ c  2 + V 2 - 2 c ( V A k ) / k }  , 

where 

V A : B/v /4vrp ,  k = Ikl.  

Assuming in (A5) (V~ • g rade)  = 0, we save out transverse Alfv4n waves, 
for which (kB~) = (kV~) = ( B .  B~) = (BV~) = 0, unlike longitudinal 
magnetosonic waves. The eikonal equation for Alfvtn waves in this case readily 
follows from (A3): 

o¢ 
or + ( v .  grade) + (VA" grade) = O. (A9) 

We now derive the ray equations of magnetosonic waves in an arbitrary orthog- 
onal curvilinear coordinate system. The eikonal equation for this case must be 
rewritten as 

3 

F ( P,  r, Pt, t) = E - - ~ i  + Pt + a h/2j = 0 ,  
i - 3  i=1 

(A10) 

V = V ( r , t ) ;  a = a ( r , P , t ) ;  P = { P 1 ,  P2, P3}; r = { x l ,  x2, x3}.  

Here we have introduced the designations 

o ~ = a  ' o~ = p , ,  
Oxi Ot 

taking into consideration that 

3 1 0~) 

grad ~b = ~ h---ii Ox----7 ei ' 
i= l  
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where 

hi = v ~ z i = h i ( x l ,  x2, x3) 

are the Lam6 coefficients of the curvilinear coordinate system {Xl, x 2 ,  X3}. ei 
stands for local base vectors. 

The solution of Equation (A10) is the function ¢(r, t). In turn, (A10) reduces 
to the following system of ordinary differential (characteristic) equations (Korn 
and Korn, 1968): 

dxi _ OF d¢ ~ p~ OF 
dT OPi' d-~-= )-~. " iOPi'  
dPi OF OF 
dT Oxi Pi O¢ ' 

(All)  

where T is a certain parameter. Assuming formally Pt = P4, t = x 4  from (A10) 
and (A11) we find 

dt OF 
- - = 1 ,  = 0 ,  (112) 
dT 0~ 

dxi _ Vi + igrad¢[ 0a~//+ Pi 
dT hi a igra d ¢1 h2 ' 

(A13) 

_ = ,Fdx  
0T ~ ~dT + P t ,  

i=1 

(A14) 

dPi 
dT 

Pj 0Vj 
j=l hj Oxi 

Oa 
+[grad ¢10xi 

~ 10hj  (VjPj)+ 
20xi .= hj 

a p20hj  _ 

Igrad¢l h) 
OF 

Pi 0~ ' (AI5) 

dPt ~[grad~[}  . (A16) 
d ~ - -  { ( ~ - t  grad~) + 

The first equation means T = t. Substituting (A13) into (A14) with the use 
of (A10) yields d~/dt = 0. This means that the equations 'watch' the constant 
phase velocity surface. Since these are differential equations, trajectories and the 
orientation in space of only a small part of this surface are traceable. In the remaining 
equations, instead of the variables Pi and Pt, we use the variables k and co. Putting, 
as usual, 
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3 
Pt = -co ,  k = grad~b = ~ Pi (A17) 

i = l  ~ / e i  

we find Pi = Pi(ki; Xl, x2, x3) = hiki. 
We need to express the derivatives dPi/dt and Oa/OPi in terms of dki/dt and 

Oa/Oki. By expressing the total differential dPi = d(hiki) in terms of dxj, dki, 
we obtain 

3 0 h i  dxj dkz 0 1 0 dPi 
= Z + hi a t  - dt Oxj dt ' OPi hi Oki j = l  

(A18) 

Substituting (A18) into (A13), (A15),  (A16) gives the desired ray equations (1), 
(2), (3) in an arbitrary orthogonal coordinate system (Section 2). 

As has been pointed out, Equations (1) and (2) allow for a vector representation 
in Cartesian (and only in Cartesian) hi = 1 coordinates. The inverse transition to 
curvilinear coordinates using vector analysis formulae is not correct, however. 

Appendix 2. The Law of Variation of the Linear Wave Amplitude 

Such a law can in principle be obtained from the system of first-approximation equa- 
tions. These equations follow from (A3) if solutions of the zeroth-approximation 
are substituted into the expression di (A4). However, owing to the obvious unwieldy 
character of the general derivation, we will take a different line. 

We avail ourselves of the known fact that in the first approximation the energy 
flux in the ray tube is conserved. In an immovable medium (or, equivalently, in 
a frame of reference that moves together with the wind) the mean density Ae0 
of excess energy in the wave is composed of the potential and kinetic energy. 
In a linear magnetosound wave (in the case of an Alfvdn wave, even without a 
limitation on its amplitude) the values of Ae0 are of second order of magnitude 
equal to the double density of mean kinetic energy, Ae0 = p(u 2 + v2), where 
u and v are, respectively, the normal (along wave vector) and tangential plasma 
velocity components in the wave. The wave energy flux in the ray tube with a 
normal cross-section S in this case is simply F0 = SAeoqo, where q0 is the group 
velocity of the wave in an immovable medium. If, however, the medium travels in 
the direction of propagation of the wave, then the velocity of wave energy transfer 
with respect to the immovable observer will aPoo increase:/71 = SAeq. In turn, 
Aeo = AE/Ao, where AE? is the total wave energy contained in a volume of unit 
cross-section, whose length equals the wavelength A0 = aT1. The transition from 
one system of reference to another must not change the value of AE.  However, 
the wavelength, A, in this case varies because its duration T1 = 2rr/w defined by 
Equation (3), remains the same with such a procedure. Therefore, A = q~T1 and, 
accordingly, the real value of mean wave energy density will be 

= p ( u  2 + v 2) = zxE/;  = eXEoA0/,X. 
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Conservation of the wave energy flux in the ray tube is now written 

F1 ~- Sqp(u 2 + v 2) qn • constant. (A19) 
a 

It should be noted that a more rigorous derivation of such a WKB relationship is 
contained in a recent paper by Barnes (1992). 

From the relationships of magnetosonic waves of small amplitudes (Kulikovsky 
and Lyubimov, 1962) it also follows that 

( c2) 
V2 /12 1 - c o t g  2/3 u ~ - -  = - ~  , (A20) 

where/3 is the acute angle between the vectors B and k: 

(B. n) 
cotg/3 -- -- / 

x/B 2 - (B • n)  2 
¥ 

A special case is the case of/3 = 0 and a+ = VA when the linear approximation is 
insufficient: #2 ~ 2(V 2 _ c2)/uVA. 

In our numerical calculations, we are using the quantity S, the area of the part 
of the wave front in the ray tube which in the general case is by no means equal to 
the area of its normal cross-section. These quantities are related by the relationship 
S = Sq/q~. In view of the above-said, as well as using the fact that the form of a 
disturbance in the linear WKB-approximation does not change, we rewrite (A19) 
as (6) in Section 2. 

A p p e n d i x  3. Genera l izat ion  to the Case  of  Strong Shock  Waves  

Let f = f (r, t) be the equation of a shock front surface. To the differential equation 
of the surface there corresponds the equality d f  = 0, from which for the group 
displacement velocity of a small element of the shock front we get 

dr Of~Or) 
d¢: (Of/Or) 

-- q = q0 + V .  (A21) 

The vector (Of~Or) coincides in direction with the wave normal vector n ( =  k/k) .  
In the case of linear magnetosonic and Alfv6n waves, Equation (A21) immediately 
gives equations that coincide with the corresponding eikonal equations (A8) and 
(A9), with the only difference that instead of the eikonal ~ we now have the 
function f .  The formal replacement Of~Or = k/k ,  Of~Or = -a~; makes the 
following procedure for deriving ray equations identical. 
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A.3.1. W E A K  SHOCK CASE 

In this case q = V + q0 + n(nUsh/2). The corresponding eikonal equation in 
this case coincides with Equation (8) when the phase velocity a is substituted by 
a ~ = a + hUsh~2. Therefore, in Equations (1), (2), and (3) it is also necessary to 
make the same replacement. In the new 'ray' equations there now appear additional 
terms (O/Oki, O/Oxi)nUsh which are very difficult to calculate. Expressions such 
as O(nUsn)/Ok~ may be omitted, in view of their small magnitude. Then, instead 
of (1) we get (1 ~) which we did u s e . . . : :  .... 

The first and third terms on the right-hand side of Equation (2) are the main 
factor that determine the effect of ray refraction in our model. In the linear approx- 
imation the term of the form O(V + a)/O0 is responsible for the manifestation of 
waveguide properties of the HCS region, which ultimately leads to an enhancement 
(on average) of the shock in the immediate neighbourhood of the HCS. In this case, 
however, the role of the 'nonlinear' refraction that acts in the backward direction 
increases. This effect is caused by the appearance in (2) of an additional term 
~O(rcUsh)/O0. While the usual (linear) refraction imparts focusing properties to 
the heliospheric waveguide, the 'nonlinear' refraction contributes to an expansion 
of the calculated wave pattem in the 0-direction, with the expansin increasing with 
increasing nonlinearity. A hypothetical limit is the acquisition by the front of a 
quasi-stationary form when O(V + a + nUsh/2)/O0 ~ O. It is clear that as long 
as the nonlinearity is small, the factor of linear refraction is dominant, and we are 
justified in using Equation (2) in our calculations. 

It should be noted that the nonlinear refraction effect reflects a tendency of the 
shock intensity to equalize along its front (as well as a tendency of wave surface 
unevennesses to smooth) as in the case of diffraction effects. Taking these latter 
into account is also beyond the scope of the WKB method. 

A.3.2. STRONG SHOCK CASE 

The shock is assumed to be so strong that the magnetic field influence is neglected. 
In this case q = V + D, where D = nD~ + "rD~- is the group velocity of a strong- 
gas dynamic shock wave in an immovable medium. D~ = [(7 + 1)P/2p] 1/2, where 
P (>> Be/87r) is the gas pressure behind the front, and p is the density ahead of the 
front. A corresponding 'eikonal' equation coincides with (A8), provided there is 
the replacement a ---+ Dn. The same replacement should be done in ray equations 
(1)-(3). It should be kept in mind, however, that in this case the notion of the 
wavelength A = 21r/k and its duration 27r/c~ has a formal meaning. Equation (2) 
should be regarded in this case as the equation of wave normals. 

The subsequent solution of the problem of determining the surface of the front 
depends on the method of specifying the quantity D~. In this connection, we 
wish to note a recent paper by Burton, Siscoe, and Smith (1992), who discuss 
the propagation of a strong shock wave in a symmetric wind. In this case the 
equatorial current sheet is modelled on the (r, 0)-plane by a sector, inside which 
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(10 - 7r/21 < A0)  the radial wind velocity V = V(r)  is decreased, and the density 
p = p(r) is increased as compared with those outside the sector ([0 - 7r/2[ > 
A0). A feature of the model is the strong discontinuity of values of V and p on 
lines 0 = 7r/2 + A0. The form of the wave surface is sought after linearizing 
Equation (A21) by the method of harmonic analysis, using a weakly converging 
series. However, under the chosen initial and boundary conditions (the original 
surface of the front is a sphere, whose center coincides with the solar center; the 
homogeneity condition O(p, V, Dn)/O0 = 0 inside and outside the HCS sector 
bounded by the discontinuities) the problem is solved rapidly and accurately by 
the 'ray' method. In this case, Equations (1) and (2) yield: 

dr /d f  = V(r)  + Dn(r)  , 

dO/dt = d ~ / d t  = O , n = e r .  
(A22) 

It is easy to see that the trajectory of a small element of the shock front is a straight 
radial line. Assuming further, following the authors, D n / V  = R = constant, we 
find that the form of the front of a strong shock in the (r, 0)-plane exactly repeats 
the corresponding profile V~ (0) in Figure 1 of the cited paper, which qualitatively 
coincides with the approximate solution obtained by the authors. The depth of the 
rectangular 'dimple' on the wave surface increases in accordance with the first 
Equation (A22). Our remark on this rather obvious result is as follows. 

The technique used to determine the form of the front of a strong shock wave is 
applicable (as our used WKB method) only in the case of a weakly-inhomogeneous 
medium (because both methods reduce to seeking an accurate solution of the same 
Equation (A21). Therefore, the strong discontinuity of solar wind parameters on 
the lines 0 = 7r/2 + A0 does not suggests the reality of the solution obtained, 
although it permits us to speak of a tendency for the wave energy to accumulate 
without limit in the neighbourhood of the HCS (at least, during some time). This 
means a strong pressure redistribution along the shock front, namely its growth in 
the HCS region. In addition to increasing the shock velocity in the neighbourhood 
of the HCS, this will also lead to a strong expansion of the sheet itself, with its 
subsequent slow compression. The increase in shock velocity, caused by a growth 
in its intensity in the immediate neighbourhood of the HCS (which is equivalent 
to the above-mentioned pressure redistribution behind the shock front) has been 
demonstrated just by our example of a smoothly-inhomogeneous model of the 
HCS. 
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