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Abstract. Impulsively generated waves in solar coronal loops are numerically simulated in the frame- 
work of cold magnetohydrodynamics. Coronal inhomogeneities are approximated by gas density slabs 
embedded in a uniform magnetic field. The simulations show that an initially excited pulse results 
in the propagation of wave packets which correspond to both trapped and leaky waves. Whereas the 
leaky waves propagate outside the slab, the trapped waves occur as a result of a total reflection from 
the slab wails. Time signatures of these waves are made by a detection of the trapped waves at a fixed 
spatial location. For waves excited within the slab, time signatures exhibit periodic, quasi-periodic 
and decay phases. The time signatures for waves excited outside the slab, or for a multi-series of var- 
iously shaped impulses generated at different places and times, can possess extended quasi-periodic 
phases. The case of parallel slabs, when the presence of a second slab influences the character of 
wave propagation in the first slab, exhibits complex time signatures as a result of solitary waves 
interaction. 

1. Introduction 

The localized and complex nature of mass density in the solar corona (e.g., Golub, 
1990; Shibata et al., 1992) and dynamical effects, either observed in form of 
pulsating radio emission, or theoretical requirements of coronal heating has lead to 
extensive investigations of the behaviour of waves in coronal loops (e.g., Roberts, 
Edwin, and Benz, 1984; Aschwanden, 1987; Pasachoff, 1990; Zlobec et al., 1992). 
The behaviour of MHD waves in such structures is not fully explored (see, however, 
Hollweg and Roberts 1984; Berton and Heyvaerts 1987; and Ruderman 1992). 
Among a variety of different structures the case of two parallel loops is of interest 
because the presence of one loop has an influence on wave propagation in the other 
loop. See, for example, Tajima et al. (1987) for periodic oscillations found in two 
coalescing loops driven by current loop coalescence. It is natural, then, to enquire 
into the detailed nature of the waves propagating along two parallel loops. Such an 
enquiry has perhaps an intrinsic importance as the waves are generally believed to 
form the basis (Roberts, Edwin, and Benz, 1984) for a possible explanation of the 
long-standing puzzle of short (~ 1 s) pulsations studied in Type IV coronal radio 
events (e.g., Tapping, 1978; Krtiger, 1979; Trottet etal . ,  1981; Aschwanden, 1987). 
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An understanding of coronal waves is also of central importance for the question 
of coronal heating (e.g., Hollweg, 1990; Goossens, 1991). 

Roberts, Edwin, and Benz (1983, 1984) studied impulsively generated waves 
in coronal loops which were represented by density enhancements. The theory 
developed by Roberts, Edwin, and Benz has been compared with the results of 
numerical experiments in Murawski and Roberts (1993a, b) and Murawski and 
Goossens (1994). Both the linear and nonlinear MHD systems have been solved, 
and are in general agreement with the analytical predictions of linear theory. The 
numerical simulations have been performed for an isolated slab with the waves 
excited on the axis of the slab. 

For the typical coronal conditions the Alfv6n speed VA and the sound speed 
cs are of the order of 103 km s -1 and 200 km s -1, respectively, and so give 
a l o w  plasma/3 p / ( B 2 / 2 # )  = 1 2 2(~_ = g'7cs/V2 1/25). Thus the solar corona is 
magnetically dominated. Consequently, it is of interest to consider a cold (/3 = 0) 
plasma, neglecting the effects of gas pressure. We also neglect gravity. We assume 
that motions are polarized in the xz-plane of a Cartesian coordinate system and 
are independent of y. This simple model of a coronal loop has been described in 
greater detail by Murawski and Roberts (1993a, b). More realistic model including 
curvature and current-carrying coronal loops has been used recently by Cargill, 
Chen, and Garren (1993). 

The purpose of this paper is to investigate numerically impulsively generated 
waves in slab density enhancements representative of coronal conditions, extending 
the analysis of Murawski and Roberts (1993a, b). We are particularly interested in 
the time scales associated with the impulsive waves which arise when generated 
at an off-axis location in the slab. The phenomenon of cross-talk between waves 
excited in two parallel slabs is of special interest (see also Murawski, 1993) and 
we determine the time signatures associated with the waves. 

2. Numerical Results 

In this part of the paper we present results of the numerical simulations for two 
cases: an isolated dense slab, and two parallel slabs. Linear motions of the isolated 
slab are investigated by solving numerically the two dimensional wave equation 
for the magnetic potential (flux function) A(x,  z, t), the perturbed magnetic field 
being B = ( -OA/Oz ,  O, OA/Ox); see also Murawski and Roberts (1993a). The 
linear wave equation is solved by the fast Fourier transform method in space 
and the second-order Runge-Kutta method in time (see Murawski and Roberts 
(1993a) for a description of the numerical algorithm). The case of two parallel 
slabs is investigated nonlinearly, the nonlinear set of equations being solved by an 
application of a flux conserving code (Murawski and Goossens, 1994). 

Illustrations of our numerical results are given for an Alfv6n speed VA inside 
the slab of 103 km s -1 and a slab width o f2a  = 1500 km s -1. 
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Fig. 1. The magnetic potential A(x = O, z, t) as a function of time and the distance from the 
source of the initial profile excited at x = z = 0. The initial profile has indices m = n = 2 (see 
Equation (2.1)). The time is in units of the Alfv6n transit time, alVA, and distance is in units of the 
slab half-width a. Notice a transition at z ___ 15a and t ~_ 25a/VA, where the largest amplitude hump 
flattens out to be replaced by a valley. 

2.1. THE ISOLATED SLAB 

We consider the behaviour  of  impulsively generated linear waves, taking an initial 
pulse of  the form 

0, (2.1) 

Here A0 is the amplitude of  the initial magnetic potential A which is centred around 
the point (xo, zo). We consider various choices for the source location (xo, z0) and 
also for the indices m and n. The magnetic slab has an equilibrium gas density 
given by (see also Murawski  and Roberts, 1993a) 

( ).,<o 
p 0 ( x )  = 

P e + ( P O - - p e ) S  echN i x [ - - a  , Ix] > a, 
a 

(2.2) 

the power  N being chosen to obtain a gas density in the form of  a top-hat profile 
but with its edges smoothed. We take N = 14 throughout to obtain an almost 
rectangular shape. 
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Consider first the case of an initially symmetric disturbance located at the 
centre of the density inhomogeneity, so that x0 --= z0 ---- 0. We take a density ratio 
of PO/Pe = 5 ,  and an initial pulse with m = n = 2. The initial pulse disperses in 
the xz-plane with clearly distinguishable trapped perturbations propagating along 
the slab. Murawski and Roberts (1993a) discuss this process in detail. Figure 1 
shows such perturbations along the slab axis (x --= 0) as a function of the time 
t and the coordinate z. As expected, two wave fronts are created by the initial 
pulse and propagate in opposite directions. Time signatures corresponding to the 
behaviour of the potential A(x, z, t) are calculated on the slab axis (x -= 0) at 
a distance z = z* from the source at z = 0. A clear transition in the form of 
the time signatures occurs at the point z* ~- 15a, where a hump considerably 
flattens to be replaced by a valley. This occurs at a time t ~-- 25a/VA. The time 
signature made at a specific z* may be constructed from Figure 1. It is similar 
to that shown in Figure 3 of Murawski and Roberts (1993a), which presents the 
behaviour of the potential A calculated at the point x = 0, z = z* = 8a. The three 
phases determined analytically by Roberts, Edwin, and Benz (1983, 1984) can be 
distinguished. The quasi-periodic phase begins abruptly with a large hump and a 
valley following it and small amplitude disturbances within it. Such a sudden onset 
of the quasi-periodic phase is somewhat reminiscent of the pulsation event reported 
in radio emission by McLean et al. (1971) and McLean and Sheridan (1973). 

A less abrupt transition from the periodic phase (visible as weak oscillations for 
times t < l la /VA in Figure 2(b)) to the quasi-periodic phase (after t > l la/VA) 
occurs in the case of a steeper initial profile. For example, Figure 2 shows the time 
signatures for steeper pulses, taking m = n = 4 in Figure 2(a) and m = n = 6 
in Figure 2(b). The initial pulses are excited at the slab centre, so x0 = z0 --= 0. 
The periodic phase, represented in Figure 3 of Murawski and Roberts (1993a) by a 
straight horizontal line, is here more pronounced with small amplitude oscillations 
within it. The periodic phase occurs for t <_ 8a/VA. Steeper initial pulses also 
lead to more structured quasi-periodic phases, with shorter lasting largest humps 
and an increase in the number of oscillations. Four main oscillations appear in 
Figure 2(a), and five oscillations are in Figure 2(b). As a consequence, time scales 
associated with a single pulse are smaller for steeper initial profiles. For example, 
in Figure 2(b) they are about 2 s, half those in Figure 2(a). For the case of steep 
profiles, the quasi-periodic phases lasts longer; for example, in Figure 2(b), where 
m = n = 6, the quasi-periodic phase lasts about 7- d ~'~ 30a/VA(~20 s) and it is 
more distinctive than is the case of Figure 2(a). 

Quite different time signatures characterize waves which are generated by an 
impulse located outside the slab. We consider the case of a pulse with m = n = 2 
initially launched at x = x0, z = z0 = 0. The slab has a density ratio of Po/Pe = 5. 
The time-dependence of the potential A exhibits an extended quasi-periodic phase, 
the duration of which increases with increasing x0. See Figure 3. Moreover, the 
quasi-periodic phase becomes more structured with increasing x0: for x0 = a/2 
(Figure 3(a)) it is similar to the quasi-periodic phase of the x0 = 0 case (cf. 
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Fig. 2. The t ime signature o f A ( x  = 0, z = 8a) for waves impulsively generated (at x = z = 0) in 
a slab with po/p~ = 5, taking (a) m = n = 4, and (b) m = n = 6. Notice the shorter t ime scales 
and longer- last ing quasi-periodic phase associated with the steeper initial profiles. 

Figure 3 of Murawski and Roberts 1993a); for x0 = 3a the duration time of the 
quasi-periodic phase is about 15 Alfv6n transit times (Figure 3(b)), corresponding 
to 11-s oscillations. However, the duration time of a single pulse is much shorter 
and is of  order 2 time units (1.5-s oscillations). 

2.2. Two  PARALLEL SLABS 

We turn now to the behaviour of fast waves in two parallel coronal slabs, considering 
their nonlinear form. The slabs are located at x = +2a.  These waves are described 
by the nonlinear cold plasma equations of ideal MHD (see Equations (2.2)-(2.5) 
of Murawski and Roberts, 1993b). Specifically, we take 
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PO, ]x 4- 231 < a, 

no(x) = P e + ( P o - P e )  sechl4 ( I x + 2 a l - a )  ' l x a  +2al > a' (2.3) 

Pe-t-(P0--Pe) sechl4 ([x--2ala - - a ) '  i x_2 l  > a. 

At t = 0 we implement the conditions which represent density, flow and 
magnetic field: 

p(. ,  z, ~ = O) = po(z) + ppC(x, z), 

V~(x, z, t = o) = v~pC(x,  ~), 

Vz(x, ~, t = o) = VzpC(x, ~), 

B~(z, z, t = O) = - 2 B p C ( z , z )  tanh ( z ~ ,  

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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Fig. 3. The time signature of disturbances with m = n = 2 that are impulsively generated at an 
off-axis position: (a) x0 = a/2, (b) x0 = 3a. The density ratio Po/p~ = 5 and zo = 0. A more 
complicated and longer lasting quasi-periodic phase characterizes the time signatures in the case 
of (b). 

Bz(x,z,t=O)= Bo+ 2BpC(x,z) tanh (X ~ 2a) (2.8) 

where C(x, z) = sech2((x - 2a)/a) sech2(z/a) .  Wave profiles which correspond 
to these perturbations are shown in Figure 4. 

As in the case of  an isolated slab, the time evolution of  the perpendicular velocity 
V~ occurs on the scale of a few Alfv6n transit times, a/VA. The initially symmetric 
profile (2.5) evolves to become asymmetric as the wave feels the gradient in Alfv6n 
speed, low inside the slabs and larger outside them. These gradients permit total 
reflection and the occurrence of  trapped waves, which propagate initially along the 
tight-hand slab. As a consequence of the nonlinearity, the hump which propagates 
in the negative z-direction is larger than the hump propagating in the z-direction. 
Because of the gradient in Alfv6n speed, these humps propagate slower than the 
outwardly propagating ripples. The tipples leak energy from the right-hand slab, 
leading to oscillations in the left-hand slab. Some of  the oscillations entering the 
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left slab are totally reflected from the walls of the slab, and such reflection creates 
a hump in the left slab. In the early stages of its time evolution the hump moving 
in the left-hand slab has a small amplitude (Figure 4(a)) and lags behind the hump 
moving in the right-hand slab. But with the lapse of time the distance between the 
two humps decreases and the amplitude of the hump in the left-hand slab grows 
as the humps interact attractively through their outskirts. This interaction results in 
energy transfer from the right-hand hump. See Figure 4(b). 

Just as with an isolated slab, the trapped waves exhibit time signatures which 
may be detected by examining the perpendicular velocity Vx at a fixed spatial 
location. But what effect does a second slab have on those signatures? Figure 5 
shows the signals of Vx in two slabs, detected at z -- +8a.  The time signatures are 
more complicated than in the case of an isolated slab. It is of interest to compare 
the parallel slabs results, depicted here in Figure 5(a), with Figure 3 of Murawski 
and Roberts (1993b). The signal in the left-hand slab is represented by a dotted 
curve, that in the fight-hand slab by a solid curve. As a result of wave trapping and 
an interaction between the two humps, the oscillations in the left slab are smaller in 



TIME SIGNATURES OF IMPULSIVELY GENERATED WAVES IN A CORONAL PLASMA 313 

4- 

I 

<5' ,- 

Fig. 4a. 

Fig. 4. The spatial variation of the perpendicular velocity V~ for impulsively generated waves which 
are initially (at t = 0) propagating in the fight-hand coronal slab. The initial conditions are given by 
Equations (2.4)-(2.8) with pp = 0.1 p0, V~p = Vzp = 0.05 VA, Bp = 0.05 B0. The profiles are for 
times (a) t = 6 a/VA, (b) t = 11 a/VA. 

amplitude than those in the right slab. As a consequence of the asymmetry in the z- 
direction, time signatures depend upon the location of  the detector. The signature at 
z = 8a is shown in Figure 5(b). This signal is characterized by complex oscillations 
which are, however, of small amplitude and thus, from an observational point of  
view, are probably less important than those seen at z = - 8 a  (Figure 5(a)). The 
signal is interrupted when wave breaking occurs, evident in the mass density p at 
a time t -~ 25 a/VA. 

The perpendicular Vx profile can be compared with the corresponding spatial 
variation of  Vx, and reveals greater asymmetry in the wave propagation in the case 
of  two parallel slabs than in the case of an isolated slab (compare Figures 5(a) 
and 5(b)) here with Figures 2(b) and 2(c)) of Murawski and Roberts (1993b) and 
Figure 1 of Murawski and Goossens (1994)). 
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3. Discussion 

We have investigated numerically impulsively generated fast waves in smoothed 
top-hat slabs under coronal conditions. In the simplest case of a single wave 
source placed on the axis of an isolated slab, such waves possess a distinctive time 
signature which consists of three phases, a periodic phase followed by a quasi- 
periodic phase and finally by a decay phase (Roberts, Edwin, and Benz, 1983, 
1984). The numerical results presented here show that such time signatures can 
be more complex for waves excited outside an isolated slab or for the case of a 
multi-series of impulses generated at different places and times. Waves excited 
outside the slab lead to extended quasi-periodic phases, as wave trapping occurs 
for a series of 'modulations' with a circular-like pattern. These modulations move 
towards the slab, where some of them are reflected and transmitted at the right-hand 
wall of the slab. Transmitted modulations may then be totally reflected from the 
left-hand wall and in consequence become trapped by the slab, and so give rise to 
oscillations in the time signatures. This process is repeated for the next modulation 
which subsequently approaches the slab. Thus, time signatures are built up by a 
sequence of oscillations, all originating from the initial pulse. 

The character of the time signatures depends on the slab strength (i.e., density 
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Fig. 5. Time signatures of V~ associated with the impulsively generated waves of Figure 4. The 
solid line corresponds to the velocity V~ in the right-hand slab, and the broken line is for the left-hand 
slab. V~ is measured at the symmetric locations (a) z = - 8 a  and (b) z = 8a. 
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contrast) and its detailed shape. For stronger slabs the duration time of the quasi- 
rain is smaller periodic phase is longer because the minimum of the group velocity % 

(Roberts, Edwin, and Benz, 1984). A smooth transition from periodic to quasi- 
periodic waves is observed for the case of increasingly smoother slabs, as the 
dispersion does not change sign (i.e., 02c~/Ok 2 = cgOcg/Ow ¢ 0). The time 
signatures also depend on the distance from the source point (see Figure 1). 

It is interesting to note that steeper initial profiles lead to longer lasting quasi- 
periodic phases. In the case of a wide pulse, a main contribution to the time 
signature is provided by the hump and valley that follows it. Oscillations following 
the hump and valley are considerably lower in amplitude. Therefore, we see that 
the large amplitude phase is short-lived. By contrast, a steep initial profile evolves 
into a wavy pattern in which a leading hump and a valley are comparable in 
their amplitudes to the oscillations that follow them, and consequently the larger 
amplitude phase is extended in time. 

The presence of a second slab has direct consequences on the propagation 
of impulsively generated waves. As a result of energy leakage from one slab, 
oscillations can enter the second slab. These oscillations are totally reflected in the 
second slab and wave trapping occurs. The trapped waves in the slab can interact 
with themselves and consequently the time signatures of such waves are more 
complicated than in the case of an isolated slab. The numerical results show that 
these time signatures can also be different if detected at different z-sides of the 
initial disturbance. 

The interaction between trapped humps in two parallel slabs is reminiscent of an 
elastic interaction between cylindrical solitary waves of the Zakharov-Kuznetsov 
equation which describes ion-acoustic waves propagation in a magnetic environ- 
ment (see, for example, Iwasaki, Toh and Kawahara (1990) and Murawski and 
Edwin (1992)). It is also interesting to note that these humps are very robust both 
with respect to numerical noise and to the perturbations which are exerted by leaky 
waves. This behaviour and the elastic interaction between humps leads us to a sup- 
position that the trapped waves are in fact soliton-like structures. This supposition 
is supported by the existence of solitons in optical fibers (e.g., Hasegawa, 1989) 
and the analogy between such fibres and coronal wave guides. 
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