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An orthoalgebra, which is a natural generalization of an orthomodular lattice or 
poset, may be viewed as a "logic" or "proposition system" and, under a well- 
defined set of circumstances, its elements may be classified according to the 
Aristotelian modalities: necessary, impossible, possible, and contingent. The 
necessary propositions band together to form a local filter, that is, a set that 
intersects every Boolean subalgebra in a filter. In this paper, we give a coherent 
account of the basic theory of orthoalgebras, define and study filters, local filters, 
and associated structures, and prove a version of the compactness theorem in 
classical algebraic logic. 

1. I N T R O D U C T I O N  

In algebraic logic, proposi t ions  are represented by elements o f  an alge- 
braic structure L. For  classical logic, L is a Boolean algebra;  for intuitionistic 
logic, L is a Heyting algebra;  for qua n t um  logic, L is an o r thomodu la r  
lattice or  a generalization thereof. In the classical and intuitionistic cases, the 
proposi t ions  in L that  are syntactically or  semantically true, probabilistically 
certain, or  logically provable,  fo rm a filter F _  L. In quan tum logic, suitable 
versions o f  filters have a similar role to play. 

I f  the o r thomodu la r  lattice L o f  all projection operators  on a separable 
Hilbert space o f  dimension three or  more  is regarded as a proposi t ion system 
for a quan tum mechanical  entity (Birkhoff  and von N e u m a n n  (1936), then 
each state (o--additive probabiEty  measure) p on L enjoys the well-known 
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Jauch-Pironproperty (Jauch, 1968; Piron, 1964, 1976) 

P, QeL  with U(P)=II (Q)=I=~II (P^Q)=I  

Thus, in the quantum logic affiliated with the Hilbert space of orthodox 
quantum mechanics, the set of all propositions that necessarily (i.e., with 
probability unity) yield the answer "yes" when tested in a given state is an 
order filter that is closed under the operation (P, Q ) ~ P ^  Q of forming 
greatest lower bounds. 

Although the proposition system affiliated with coupled physical entities 
is often presumed to be represented by a tensor product (Foulis, 1989; Jauch, 
1968; Kl~iy et al., 1987), the tensor product of orthomodular lattices is 
not necessarily an orthomodular lattice (or even an orthomodular poset) 
(Kalmbach, 1983, p. 264). The smallest known category of proposition sys- 
tems containing all unital orthomodular lattices and closed under the forma- 
tion of tensor products (Foulis and Randall, 1981; Randall and Foulis, 
1981a), is the category of all unital orthoalgebras. Orthoalgebras are the 
simplest and most natural structures that can carry orthogonally additive 
measures, and thus are basic for the rapidly developing field of noncommut- 
ative measure theory (Alfsen and Shultz, 1976; Cook, 1985; D'Andrea and 
De Lucia, 1991; Gudder, 1988; Riittimann, 1979, 1989; Schindler, 1986). 

These considerations suggest the desirability of studying filters in 
orthoalgebras. In this paper we give a coherent account of the basic theory 
of orthoalgebras, initiate the study of filters in orthoalgebras, and set the 
stage for subsequent papers dealing with orthoalgebras and with attributes 
of physical entities. 

2. O R T H O A L G E B R A S  

In 1666, G. W. Leibniz envisaged a universal scientific language 
(Characteristica Universalis) together with a symbolic calculus (Calculus 
Ratiocinator) for formal logical deduction within this language. In his papers 
on the logical theory of identity, he introduced the notation aGb for the 
"logical sum" of the terms a and b. Nearly two centuries later, G. Boole in 
the Mathematical Analysis of  Logic (1847) and the Laws of  Thought (1854) 
developed a calculus of logic in which the notation a + b was used for what 
we now call the union of the classes a and b--but only for the case in which 
a and b are disjoint classes. Indeed, Boole was concerned with founding a 
mathematical theory of probability and, for a probability P, the condition 
P(a + b) = P(a) + P(b) is required to hold only when a and b are disjoint. 

In defining an orthoalgebra, we follow Boole and restrict the domain 
of definition of sums to certain pairs which eventually are called orthogonal 
pairs. (For a Boolean algebra, these are precisely the disjoint pairs, but this 
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need not be the case for a general orthoalgebra.) However, we use the Leibniz 
notation a@b to avoid confusing the orthogonal sum with the inclusive sum 
(or disjunction) a+b later introduced for Boolean algebras by Jevons, 
Peirce, and Schr6der. Orthoalgebras were originally defined in Randall 
and Foulis (1979, 1981a). In Hardegree and Frazer (1981) and Lock and 
Hardegree (1984a,b) they were called associative orthoalgebras. The sim- 
plified definition that follows is due to Golfin (1987). 

Definition 2.1. An orthoalgebra (OA) is a set L containing two special 
elements 0, 1 and equipped with a partially defined binary operation @ 
subject to the following conditions for all p, q, reL: 

(i) (Commutativity) If  p|  is defined, then q@p is defined and 
p~)q = qO)p. 

(ii) (Associativity) I fq |  is defined andpO(q@r) is defined, then 
p@q is defined, (p@q)@r is defined, and pO)(q~)r)= (p•q)@r. 

(iii) (Orthocomplementation) For every p e L  there exists a unique 
qeL such that p@q is defined and p~)q = 1. 

(iv) (Consistency) Ifp@p is defined, then p = 0 .  

If the hypotheses of (ii) are satisfied, we write p@q@r for the element 
(pOq)| in L. 

We note that a Boolean algebra L forms an OA if we agree that p@q 
is defined iffp ^ q = 0, in which case p~)q =p v q. More generally, if R is any 
ring with unity l and L is the set of all idempotents in R, then L becomes 
an orthoalgebra if we define e@f = e + f iff ef=fe = O. 

Definition 2.2. Let L be an OA and let p, qeL. 

(i) We say tha tp  is orthogonal to q and write p•  iffp@q is defined 
in L. 

(ii) If  there exists an element r~L such that p•  and q=p@r, then 
we write p<q. 

(iii) The unique element q such that p•  and pOq = 1 is called the 
orthocomplement o f p  and is written as p'. 

In a Boolean algebra, regarded as an OA, p_Lq holds iffp and q are disjoint 
(i.e., the meet exists and is 0), p < q holds iff p =p  A q, and p' is the unique 
complement ofp.  In the orthoalgebra L of all idempotents in a ring R with 
unity, p•  holds iffpq=qp=O, p<q holds i f fp=pq=qp, a n d p  '=  1 - p .  

Henceforth, we assume that L is an orthoalgebra. 

Lemma 2.3. Letp,  qEL. Then: 

(i) p • 1 7 7  
(ii) p •  
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(iii) p •  
(iv) p"=p. 
(v) 1'=0 and 0 '= !. 
(vi) p•  andp@0=p.  

Proof (i) follows from the commutativity condition and (ii) follows 
from the consistency condition in Definition 2.1. To prove (iii), assume that 
p_L1 and let q--(l@p)'. Then (l@p)@q--1; hence, by the associativity 
condition in Definition 2.1, l@(p@q)--1. Therefore, 1--l@(q@p)= 
(1 @ q) •p; hence, since 1 A_p, (( 1 @ q) Op) @P is defined, and it follows from 
the associativity condition that p@p is defined. Therefore, p--0 by the con- 
sistency condition. (iv) is an obvious consequence of the orthocomplementa- 
tion condition. To prove (v), note that 1'• 1, so 1'-- 0 by part (iii). Therefore, 
0 '=1"=1.  To prove (vi), note that l=l@l'=(p'~p)@O=p'+(p@O); 
hence, pOO=p" =p. I 

Lemma 2.4. Let p, q~L and suppose that p• Then 

p• and pO(p@q)'=q ' 

Proof Let r=  (p@q)'. Then 

1 = (p@q) Or =pG(q@r) = (q@r) Op = q@(r@p) = q@(p@r) 

Hence, p@r=q' .  �9 

Corollary 2.5. Forp,  q~L, pA_q~:~p<q'. 

Proof IfpLq, thenp_<q' by Lemma 2.4 and Part (ii) of Definition 2.2. 
Conversely, suppose that p < q'. Then there exists re L with p• and p@r = 
q'. Thus, l=(pGr)Oq=(r@p)@q=r@(p@q), so p ~ q  is defined, and 
therefore pLq. �9 

Theorem 2.6 (Orthomodular Identity). For p, q6L with p<q, 

q=p@(p@q')' 

Proof Suppose that p<_q=q". Then pLq' by Corollary 2.5; hence, by 
Lemma 2.4, q=q" =pO(p| �9 

Lemma 2.7 (Cancellation Law). Let p, q, rEL with p, qLr. Then: 

(i) p(~r=q@r~p=q.  
(ii) pOr<q@r~p<_q. 

Proof To prove (i), assume that pGr=qOr  and let s=(pGr) '= 
(qOr)'. Then, (pOr)Os=(qOr)Gs= 1, so pG(rOs)=qG(rOs)= 1, from 
which it follows that p=(r@s)'=q. To prove (ii), assume thatpGr<q@r. 
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Then, there exists teL  with (p0)r)_kt and (p@r)@t=q@r. Consequently, 
(p@t)@r=q@r, sop@t=q by part (i). Butp@t=q shows t h a t p < q .  �9 

Theorem 2.8. (L, _<, 0, 1) is a bounded poset. 

Proof Let p, q, reL. That p<p follows from part (vi) of Lemma 2.3. 
To prove that < is antisymmetric, suppose that p <q  and q <p. We have to 
prove that p = q. There exist s, te L such that pd_s, q l t ,  pE)s = q, and q0)t = 
p. Consequently, p@(s@t)=p=p@0, and it follows from Lemma 2.7 that 
sGt=O. Therefore, s=s@O=s@(sOt)=(s@s)@t, so s = 0  and q=pO)s = 
p. The proof that < is transitive is straightforward, as is the proof that 
0 < p < l  for a l l peL .  Ill 

If p, q, reL, we write r =p  v q (respectively, r =p  ^ q) to indicate that r 
is the least upper bound (respectively, greatest lower bound) o f p  and q in 
the poset (L, <). Two elements p, qeL are said to be disjoint i fp  ^ q exists 
and equals 0. 

Theorem 2.9. The map p~-~p' is an orthocomplementation on the 
bounded poset L; that is, for p, qeL: 

(i) p =p". 
(ii) p<_q~q' <p'. 
(iii) p ^ p ' = 0 .  
(iv) p v p ' = l .  

Proof We already have (i). To prove (ii), suppose that p < q. Then, by 
corollary 2.5, p• so q'3_p, from which q'<_p' follows by Corollary 2.5 
again. To prove (iii), suppose that q<_p,p'. We have to prove that q=0.  
Since q<p', we havep=p"<q ', and so q<_q'; that is, q_l_q by Corollary 2.5. 
Therefore, q=0.  To prove (iv), suppose that p,p'<_q. We have to prove 
that q=  1. But, q'<p',p; hence q '=0  by part (iii) above, and it follows 
that q=  1. �9 

Theorem 2.10. If p, qeL with pd_q, then p@q is a minimal upper bound 
for p and q in the poset L. 

Proof That p, q<pOq is clear. Suppose that p, q<r<pE)q. We have 
to prove that r=p| Since p, q<_r, there exist s, teL with r=p~)s=qOt. 
Since r<_p•q, there exists uEL with r~u=p~)q. Now, p@sO)u=r~)u = 
p@q = u@r = uO tOq. From pO3s@u =pGq = u@ t@q and cancellation, we 
find that sO)u=q and p=u~)t, and therefore that u<p, q. Since pd_q, it 
follows from Corollary 2.5 that q<_p'; hence, that u<p,p'. Consequently, 
u=  0 by part (iii) of Theorem 2.9. �9 
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Corollary 2.11. If  p, qeL with pZq, and i fp  v q exists in L, then 

pt~q =p v q 

By definition, an orthomodularposet (OMP) is a bounded orthocomple- 
mented poset (P, <, ', 0, 1) such that, for p, qEP with p<<_q', p vq  exists in 
P, and P satisfies the orthomodular identity: 

p, qeP with p < q = ~ q = p v ( p v q ' ) '  

(see, e.g., Foulis, 1962). Evidently, any OMP may be regarded as an OA by 
defining p ~ q  =p v q precisely in the case p < q'. 

Theorem 2.12. For an OA L, the following conditions are mutually 
equivalent: 

(i) (L, <, ', 0, 1) is an OMP. 
(ii) For p, q, reL, the conditions p l q ,  p• and q• imply that 

(p~)q) l r. 
(iii) For p, qeL, p•  ~ p  v q exists. 

Proof. We prove that (i) =~ (ii) =~ (iii) =~ (i). 
(i) =r Suppose that L is an OMP and that the hypotheses of  (ii) 

hold. By Corollary 2.1 l, pO)q =p v q < r', so (p~)q)lr .  
(ii) ~ (iii) : Assume (ii) and suppose that p l q  and that r ~ L with p, q_< r. 

To show that p~)q is effective as p v q, it suffices to show that pOq <-r. But, 
p, q d_r' ; hence, (pO)q) • by (ii), and therefore p~)q < r. 

(iii) =~ (i): This follows from Theorem 2.6. �9 

Example 2.13. The simplest OA that is not an OMP is given by 

L={0 ,  1, a ,b ,c ,d ,e , f ,a ' ,b ' , c ' ,d ' , e ' , f ' }  

where, apart from the obvious relations, we let 

at~b = d~)e = c' 

b~)c=e~)f=a' 

cOd=fOa = e' 

c@e=d', a@c=b ', eO)a=f ' 

We note that a@c=b' and a, c<e', but b'<e' fails, so a@c is not the least 
upper bound of a and c. This example is due to R. Wright. 

An orthomodular lattice (OML) is defined to be an OMP L in which 
every pair of elements p, q has a least upper bound p v q. It then follows that 
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every pair of  elements p, q has a greatest lower bound given by p ^ q = 
(p 'v  q')', so that L is a lattice. The theory of orthomodular lattices is 
developed in some detail in Beran (1984) and Kalmbach (1983). 

Example 2.14. The simplest OMP that is not an OML is given by 

L={0 ,  l ,a ,b ,c ,d ,e , f ,g ,h ,a ' ,b ' ,c ' ,d ' ,e ' , f ' ,g ' ,h ' }  

where, apart from the obvious relations, we let 

aGc=b ', c~e=d' ,  e~)g=f ', aOg=h ' 

a ~ b =d ~ e=c ' ,  b ~ c = g ~ h = a '  

c ~ d = f O g = e  ', ef f) f=a~h=g' 

We note that a' ^ e' fails to exist in L. This example is due to Janowitz (1963) 
and is often referred to as J18. 

It can be shown that a Boolean algebra is the same thing as an OML 
in which disjoint pairs of elements are orthogonal. 

3. SUBORTHOALGEBRAS AND COMPATIBILITY 

Definition 3.1. Let L be an OA. A subset LI of L is called a suborthoalge- 
bra of L if 0, 1 ~ L1, L~ is closed under the orthocomplementation map p ~-,p', 
and, whenever p, q~L~ with p_l_q, it follows that p@q~L~. 

Clearly, a suborthoalgebra Lj of an OA L is an OA in its own right. 
As such, if L~ is a Boolean algebra, we call it a Boolean subalgebra of L. In 
Example 2.13, {0, 1, a~ b, c, a', b', c'}, {0, 1, c, d, e, c', d', e'}, and {0, 1, e, 
f, a, e ' , f ' ,  a'} are Boolean subalgebras of L. 

Lemma 3.2. Let p, q, r~L with p_kq and (p•q)A_r. Then each of the 
following is a Boolean subalgebra of L: 

(i) {0, 1, p, p'}. 
(ii) {0, 1, p, q, p@q, p', q', (p@q)'}. 
(iii) {0, 1, p, q, r, POq, pOr, q@r, p ~ q ~ r ,  p', q', r', (POq)',  (p~r ) ' ,  

(q~r) ' ,  (p~q@r)'}. 

Proof. The proof is a straightforward computation. [] 

As a consequence of Lemma 3.2, every orthoalgebra L can be regarded 
as a union of Boolean algebras, each of which is a subalgebra of L; that is, 
the unique @ in these Boolean algebras matches the ~ of L. In this sense, 
an orthoalgebra is "locally Boolean." [Actually, any orthocomplemented 
poset is a union of four-element Boolean algebras, so it is really Part (ii) of 
Lemma 3.2 that distinguishes orthoalgebras.] 
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Definition 3.3. Let C~_L. 

(i) Elements of C are said to be jointly compatible (and C is called a 
compatible subset of L) iff there is a Boolean subalgebra LI of L 
with C~_L,. 

(ii) Elements of C are said to be jointly orthogonal (and C is called an 
orthogonal subset of L) iff the elements of C are jointly compatible 
and pairwise orthogonal. 

As a consequence of Lemma 3.2, the empty set and any singleton subset 
of L are compatible (and orthogonal by default). Also, ifp• then {p, q} is  
a compatible (hence, orthogonal) set. We note that {p, q, r} is an orthogonal 
subset of L i f fp•  and (p@q)lr.  In Example 2.13, {a, c, e} is a pairwise 
orthogonal set that is not an orthogonal set. It can be shown that L is an 
OMP iff every finite pairwise orthogonal subset of L is an orthogonal set. 
Even if L is an OMP, there may be subsets of L in which the elements are 
pairwise compatible, but not jointly compatible (Ramsay, 1966). However, 
pairwise compatible subsets of an OML are compatible subsets. 

We say that the elements a and b~L are compatible iff {a, b} is a 
compatible set. The following result is a corollary of Part (iii) of Lemma 
3.2. 

Lemma 3.4. The elements a, b~L are compatible iff there exist jointly 
orthogonal elements al, b,, d~L such that a=  aj @d and b =b, @d. 

If L is a Boolean algebra, then any two elements of L are compatible. 
The following example shows that the converse is false. 

Example 3.5. Let 

L={O, 1, a , b , c , d , e , f , g , a ' , b ' , c ' , d ' , e ' , f ' , g ' }  

Organize L into an OA by imposing the following relations: 

a@b=f@g=d@e=c',  

a@c=e@g=dOf=b ', 

c@e=b@f=a@g=d ', 

b@c=d@g=e@f=a' 

c@d=b@g=a@f=e ' 

a@e=c@g=b@d=f '  

a •c=c@f=e•b=g ' 

Then L is an OA in which every pair of elements is compatible, but L is not 
an OMP because, for instance, {a, c, e} ~_L is pairwise orthogonal, but not 
orthogonal. We note that the subsets of {a, b, c, d, e,f, g} that form jointly 
orthogonal triples correspond to the lines in the seven-point Fano projective 
plane. 
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4. DIFFERENCES A N D  S U M S  IN AN O R T H O A L G E B R A  

We omit  the proofs  of  the theorems in this section, since they follow in 
a s t ra ight forward  way f rom the results a l ready obtained.  

Definition 4.1. I f  p, qeL with p<q,  define q - p =  (p@q')'. 

Lemma 4.2. L e t p ,  qeL. Then:  

(i) p < q ~ q = p t D ( q - p )  ( o r t homodu la r  identity). 
(ii) p •  
(iii) p < q =>p = q - ( q - p ) .  
(iv) If p<q,  then p=qce, q - p = O .  
(v) p ' = l - p .  
(vi) p = p - O .  

Lemrna 4.3. L e t p ,  q, reL  w i t h p < q < r .  Then:  

(i) (r-q)@(q-p)=r-p. 
(i i)  ( r - p )  - ( q - p )  = ( r -  ( q - p ) )  - p  = r -  q. 
(i i i)  (p@(r-q))-p=r-q. 
(iv) r-(p@(r-q))=q-p. 
(v) p<_pO(r-q)<r. 

I f  p ,  qe  L, we write p < q to mean  that  p < q and p -~ q. 

Definition 4.4. A finite set Dc__L is called a difference set if either D is 
empty  or there exists a strictly increasing sequence 

in L such that  

Po <Pl  <P2 <" " " <Pn- 1 <P, 

D = {Pk - -Pk- ,  I k = 1, 2 . . . . .  n} 

We denote  by # D  the n u m b e r  of  elements in D. 

Lemma 4.5. Let 

po<p~ < p 2  < .  . �9 <p~ and qo<q~ < q = < .  �9 �9 <q,, 

be two strictly increasing sequences in L that  give rise to the same difference 
set 

D = {Pk--Pk-, ]k = 1, 2 . . . . .  n} = {qj-qj_, [ j=  1, 2 . . . . .  m} 
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Then n = m = • D  and p ,  -P0  = q,, - q0. 

Definition 4.6. Let D be the difference set corresponding to the strictly 
increasing sequence po<pj<pz<.. .  <p, in L. We define (~D=p,-po,  
noting that C ) D  is well-defined by Lemma 4.5. I f  D is the empty difference 
set, we define C ) D  = 0. 

Theorem 4. 7. I f  D~_L, then D is a difference set iff D is a finite ortho- 
gonal set of  nonzero elements. Furthermore, if D is a difference set and B is 
any Boolean subalgebra of  L with D ~ B, then (~)D is effective as the least 
upper bound of  D as calculated in B. 

I f  C~L is a finite orthogonal set, then D =  C\{0)  is a difference set, 
and we define (~)C= (~)D. (We use the notation A\B for the set of  elements 
in A that are not in B.) Evidently, if B is a Boolean subalgebra of  L and C 
is a finite orthogonal set with Co_B, then C ) C  is the least upper bound of  
C as calculated in B. I f  p, qsL with plq ,  then C = {p, q} is an orthogonal 
set and (~C=p@q. Also, if  reL with (p@q)_kr, then C = {p, q, r} is an 
orthogonal set and (~)C=p@q@r. More generally, if C =  {c~, e2, �9 �9 �9 e,} 
is an orthogonal set, we use the notation c~ @e2@ �9 �9 �9 @e, f o r  (~)C. 

Lemma 4.8. I f  C is a finite orthogonal set and C=A u B with A n B =  
~ ,  then ( ~ C =  (~)A@(~)B. 

Definition 4.9. By a finite partition of unity in L, we mean a difference 
set E~L  such that (T)E= 1. 

Thus, a finite partition of unity is a finite set E =  {p, q . . . . .  r} of  jointly 
orthogonal nonzero elements of  L such that p@qr �9 �9 �9 @r = 1. Note that, 
if D = {p, q . . . . .  r} is a finite orthogonal set of  nonzero elements of  L and 
d=p@qr �9 �9 �9 @r # 1, then E =  D u {d'} is a finite partition of  unity. 

5. H E U R I S T I C S  FOR O R T H O A L G E B R A S  

In what follows, we assume that the elements of  the orthoalgebra L 
represent true/false propositions regarding a given physical system, a speci- 
fied entity, or, indeed, any situation concerning which well-defined, testable, 
two-valued propositions may be formulated (Birkhoff and von Neumann, 
1936; Randall and Foulis, 1981b). Propositions belonging to a Boolean 
subalgebra B of  L are supposed to be simultaneously testable in the sense 
that it is possible, at least in principle, to ascertain all of  their truth values 
by conducting a single test, performing a single experiment, or making a 
single observation. Thus, to say that a collection C of propositions in L 
forms a compatible set is to say that these propositions admit a simultaneous 
test. We refer to such a test as a test for C. 
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If  D is an orthogonal subset of L, it is understood that a test for D will 
assign the value " t rue"  to at most one of  the propositions in D. If  D is finite, 
then (~)D is to be regarded as the logical disjunction of the propositions in 
D in the sense that, as a consequence of a test of D, (~)D is assigned the 
value " t rue"  iff one of the propositions in D is assigned the value "true,"  
and that, otherwise, (~)D is assigned the value "false." Of course, the propo- 
sition 1 e L  is assigned the value " t rue" by any test; hence, if E is a finite 
partition of  unity, each test of  E will result in the assignment of  the value 
" t rue"  to one and only one proposition in E. 

Suppose that p, qeL with p < q. Then, {p, q} is a compatible set and, if 
B is any Boolean subalgebra of L with {p, q} _ B, we have p' v q = 1 in 
the Boolean algebra B. Therefore, we may interpret p<q to mean that, as 
propositions, p implies q in the sense that, whenever p and q are tested 
simultaneously and p turns out to be "true,"  then q will also be "true."  

Incompatible propositions p, q e L may or may not have a greatest lower 
bound p ^ q in L. I f p  A q exists, it is simply the "greatest" proposition in L 
that implies both p and q. To interpret p ^ q as a logical conjunction of the 
incompatible propositions p and q is misleading and confusing--if  p and q 
do not admit a simultaneous test, the classical notion of logical conjunction 
is devoid of  meaning. Similar remarks apply to the least upper bound p v q 
of  incompatible propositions. 

6. FILTERS AND LOCAL FILTERS 

Insofar as possible, we use standard order-theoretic terminology in con- 
nection with the partially ordered set (L, <). For  instance, a nonempty 
subset U of  L is called an order filter if, for all p, qe L with p < q, p e U implies 
qeU. I f  U is an order filter, then, since Ur it follows that l e U ;  also, 
U=L if and only if 0e  U. If  Uis an order filter in L and 0r we say that 
U is a proper order filter. A subset D of  L is said to befiltered (or downward 
directed) if, for all p, qeD, there exists reD with r<p ,  q. 

The following simple result turns out to be the key to the fact that the 
Stone space of  a Boolean algebra is a Hausdorff topological space. 

Lemma 6.1. Let D, U, V_  L, suppose that D is filtered, and let U and 
V be order filters. Then 

D ~  U u  Vc~D~ U or D~_ V 

Proof Suppose that Dg; U and D E  V. Then there exist dj, d2eD such 
that dlr  U and d2r V. Because D is filtered, there exists deD with d<dl, d2. 
Since U and V are order filters, we cannot have de  U (else dle U) and 
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we cannot have de  V (else d2e V). Therefore, D ~  U u  V. This proves that 
D_~ U u V implies D~_ U or D ~  V, and the converse implication is 
obvious. �9 

A nonempty subset F of L is called a filter in L if it is a filtered order 
filter. If  qeL, then 

qT:={peLlq<-p} 

is the smallest filter containing q. A filter of the form q~ is called a principal 
filter and q is called its generator. If L is an OML, then F is a filter in L if 
and only if it is an order filter closed under the operation (p, q) ~-~p A q. 

Definition 6.2. F~_ L is a localfilter iff, for every Boolean subalgebra B 
of L, F n B is a filter in B. 

If  the elements of  L are regarded as propositions, we may view the 
elements of  a local filter F as those propositions that are necessarily true 
under a certain set of  circumstances. In the next lemma, the proof  of which 
is straightforward, we give an alternative characterization of  local filters. 

Lemma 6.3. F~_ L is a local filter iff it is nonempty and has the following 
property for every jointly orthogonal triple p, q, re L: 

p@r, q ~ r e F c ~ r e F  

In an OML, the map q~-+p A (q vp ' )  is called the Sasakiprojection of q 
onto p (Foulis, 1962; Sasaki, 1954). As a consequence of Lemma 6.3, it is 
easy to see that, for an OML, the local filters are precisely the order filters 
that are closed under Sasaki projections in the sense of  the following: 

Corollary 6.4. If L is an OML and Fc_L is an order filter, then F i s  a 
local filter iffp, qeF=c,p A (qvp')eF. 

In a Boolean algebra, filters and local filters coincide. In an OMP, every 
filter is a local filter; in fact, L is an OMP iff every principal filter in L is a 
local filter: Even in the OML of projection operators on a Hilbert space, 
there are local filters that are not filters; in fact, an atomic OML is a Boolean 
algebra if and only if all of  its local filters are filters. 

In an OA that satisfies the descending chain condition (i.e., every strictly 
descending chain is finite), an order filter F is determined by the set M of 
minimal elements in F; indeed, F =  U {pi" [peM}. The next lemma shows 
that a minimal element of a local filter F is disjoint from the orthocomple- 
ment of  every other element of  F. 

Lemma 6.5 (M. K. Bennett). Let F be a local filter in L and let q be a 
minimal element of  F. Then, for every peF, p'A q exists in L and p 'A q =  0. 
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Proof. Assume the hypotheses and suppose that t eL  with t_<p', q. We 
have to prove that t=0 .  Since t<_q, there exists seL  with t l s  and t@s=q. 
Since t<_p', we havep_< f,  from which it follows that t'eF. Now, t, s, q' is 
a jointly orthogonal triple, t~)s=qeF, and q'O)s=t'eF; hence, seF by 
Lemma 6.3. But s<_q and q is a minimal element of F, so s=q. Therefore, 
t ~ q = q ,  so t=0 .  II 

Corollary 6.6. Let Fbe  a local filter in L and letp, q be minimal elements 
o fF .  Then p ' ^ q = 0  a n d p ' v q =  1. 

As a consequence of Corollary 6.6, minimal elements of a local filter 
are perspective (i.e., they share a common complement ). 

Whereas logicians often prefer to deal with filters (which can be pre- 
sumed to represent the modality of necessity or truth), algebraists generally 
prefer to think in terms of ideals (which often figure prominently in represen- 
tation theory). A subset I of L is called an ideal if {p'lpeI} is a filter, and 
it is called a local ideal if {p'lpel} is a local filter. 

7. SUPPORTS 

Definition 7.1. A subset S of L is called a support iff 06S and, for every 
orthogonal pair p, qeL, 

p@qeS*r {p, q} n S:/: J~ 

We note that the empty set ~ is a support. A nonempty support is 
called a proper support. Evidently, every proper support is an order filter; 
hence, a support S is proper iff 1 eS. 

Theorem 7.2. Suppose that Oq~S~_L. Then the following conditions are 
mutually equivalent: 

(i) S is a support. 
(ii) For every difference set D, @ D  e S o  D n S # ~5. 
(iii) For every pair E, E* of finite partitions of unity in L, 

S n (E\E*)  # (3 ~ S c~ (E*\E)  # (,~ 

(iv) For every pair E, E* of finite partitions of unity in L ,  

S n E ~ _ E * ~ S c ~ E * ~ _ E  (exchange condition) 

Proof ( i )~ ( i i )  by Definition 7.1 and mathematical induction. To 
prove that (ii) =~ (iii), assume (ii) and suppose that E, E* are finite partitions 
of unity with S n (E\E*)  # (25. Let d=  @ ( E  n E*), e = (~)(E\E*), and e* = 
(~)(E*\E). By (ii) we have eeS. Now e@d = ( ~ E  = 1 = (~)E* =e*@d, and 
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it follows that e* =eeS. Therefore, by (ii), S n  (E*\E) # ~ .  An elementary 
set-theoretic argument shows that (iii)r (iv). To finish the proof, we show 
that (iii)=~ (i). Assume (iii) and suppose that p, qeL with plq .  We have to 
prove that p~)qeSc:,{p, q} n S. Obviously, we can assume that p, q#0 .  
I f p @ q # l ,  let E =  {p@q, (p~q) '} ,  E * =  {p, q, (p~q) '}  ; otherwise, let E =  
{p@q}={1},E*={p,q} in (iii). �9 

As a consequence of the exchange condition in Part (iv) of Theorem 
7.2, a proper support S must have a nonempty intersection with every finite 
partition of unity in L. In particular, i fpeL and S is a proper support, then 
at least one of the two elements p, p' must belong to S. 

Definition 7.3. If  S is a support in L, we define 

Fs = {p~LIp'r 

Theorem 7.4. If  S is a support in L, then Fs is a local filter in L and 
the map S ~ F s  provides a one-to-one correspondence between supports in 
L and local filters in L. 

Proof We begin by noting that, if S = ~ ,  then Fs = L is a local filter in 
L. Suppose, then, that S is a proper support and let p, q, r be jointly 
orthogonal elements in L. We claim that Fs is an order filter. Indeed, suppose 
a, beL with aeFs and a<b. Then b'<_a' and a'r hence, since Sis an order 
filter, b'(ES, and it follows that beFs. This shows that reFs~p~r ,  q@reFs. 
Conversely, suppose that p@r, q@reFs. Let d=  (p@q~r)', so that p, q, r, 
d are jointly orthogonal and pOqGrOd = 1. Now, q@d=(p~r)'~S and 
p~d=(q~r) ' r  from which it follows that p, q, dr hence, that r '=  
pO)q@dr Therefore, r~Fs. 

To show that S~--~Fs is a one-to-one correspondence between supports 
and local filters, it suffices to show that every local filter F can be written as 
Fs for some support S. By an argument similar to that given above, if F is 
a local filter, then S:= {PeLlp'r is shown to be a support, and it is clear 
that F = F s .  �9 

If  the support S corresponds to the local filter F =  Fs, and if F is viewed 
as representing the modality of necessity, then (owing to the fact that a 
proposition peL  belongs to S iff its negation p' does not belong to F)  we 
may view S as representing the modality of possibility. Thus, if p, q is an 
orthogonal pair of propositions in L, the fact that p ~ q e S iff {p, q} n S # ~Z~ 
may be interpreted to mean that the disjunction p@q is possible if and only 
if at least one of the propositions p, q is possible. Also, the fact that S is an 
order filter may be viewed as the condition that if p is possible and p_< q, 
then q is possible. Part (iii) of the following lemma, the simple proof of  
which is omitted, may be interpreted as the obvious requirement that a 
necessary proposition is possible. 
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Lemma 7.5. Let S, T ~ L  be supports. Then: 

(i) S ~ T ~ F r ~ F s .  
(ii) S is p r o p e r ~ F s  is proper. 
(iii) S i s  proper~Fs~_S. 

If  S is a support in L, then Is:=L\S = {p~Llp'~Fs } is a local ideal in 
L, and S ~ I s  provides a one-to-one correspondence between all supports in 
L and all local ideals in L. The quadruple 

S, Fs, Is, S \Fs  

may be viewed as a classification of the propositions in L according to the 
classical modalities possible, necessary, impossible, and contingent, respec- 
tively. This interpretation and its connection with Kripke models of sets of 
formulas in modal logics is explored in Svetlichny (1986, 1990). 

In what follows, we concentrate our attention on supports. This confers 
a certain mathematical simplicity on our deliberations, and the pertinent 
facts concerning local filters and local ideals are easily derivable from the 
corresponding facts about supports. 

8. THE SUPPORT LATTICE AND THE CANONICAL MAP 

Definition 8.1. We denote by A v=  ~ ( L )  the set of all supports in L, 
partially ordered by set-theoretic inclusion. 

Note that ~ and L\{0} are elements of ~ and that ~___S~_L\{0} 
holds for all S E ~ ,  so that ~ is a bounded poset. Evidently, the set-theoretic 
union of supports is again a support, so ~ actually forms a complete lattice 
under ~ .  We refer to ,9~ as the support lattice of the orthoalgebra L. 
Although, in general, the set-theoretic intersection of supports need not be 
a support, it is clear from Definition 7.1 that the intersection of an inclusion 
chain of supports is again a support. Furthermore, since a support S is 
proper iff 1ES, it is evident that the intersection of an inclusion chain of 
proper supports is again a proper Support, Therefore, by Zorn's lemma, 
every proper support contains a minimal proper support. This proves the 
following: 

Theorem 8.2. ~ is a complete atomic lattice. 

Even if L is finite, ,~ need not be an atomistic lattice; that is, there may 
be proper supports that cannot be written as a union of minimal proper 
supports. For instance, the support S = L\{0, d,f ,  h} in the OMP of example 
2.14 cannot be written as a union of minimal supports. If L is a Boolean 
algebra, then the support lattice A v of L is an atomistic dual Brouwerian 
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lattice, i.e., an atomistic dual Heyting algebra that is complete as a lattice. 

Definition 8.3. I f p e L ,  we define [p]~Se by 

[P] = U {Sesolp~Fs} 

and we refer to the map [. ] : L ~ 5O as the canonical map. A support of the 
form [p] is called a principal support. 

We may interpret [p] as the largest support that confers the modality 
of necessity on the proposition p. We omit the straightforward proof of the 
following lemma. 

Lemma 8.4. Letp,  qeL and S~SO. Then: 

(i) [0] = JZI. 
(ii) [11 = L\{0}. 
(iii) p < q =~ [p] ~ [q]. 
(iv) p E r s i S t _  [p]. 
(v) p' (~[p]. 
(vi) [p] ^ [p'] = ~ .  
(vii) S = A  {[p]Ip~L, S_[p]}.  

By Lemma 8.4, [. ] : L ~ 5 ~ provides an order-preserving map from the 
poser L onto the meet-dense subset of 5O consisting of the principal supports. 
In example 3.5, [. ] : L ~ 50 maps every atom in the poset L onto the element 
~E5O; hence, no element of 5O confers the modality of necessity on any 
atom in L. The following definition is intended to rule out this somewhat 
undesirable situation. 

Definition 8.5. L is modal if [p] -r ~ holds for every peL with p ~0. 

If L is a modal orthoalgebra and p ~ L with p 4: 0, 1, there are sufficiently 
many supports in 5O to confer upon p each of the four classical modalities-- 
necessity, possibility, impossibility, and contingency. It is easy to see that L 
is modal iffpe[p] holds for all O~peL. We definep • = {qeLIqlp) for each 
peL. The proof of the next lemma is straightforward. 

Lemma 8.6. (i) L is an OMP iff L\p• holds for every peL .  
(ii) If L is an OMP, then L is modal and [ p ] = L \ p  I holds for 

every p ~ L. 

Every OML is modal, as is every OMP. Also, every OA that admits 
"sufficiently many" probability measures is modal. 
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9. A C O M P A C T N E S S  T H E O R E M  

The compactness theorem for classical algebraic logic takes the follow- 
ing form for an orthoalgebra L: 

Theorem 9.1. Let X _  L have the property that X n S r  ~ holds for 
every proper support S e 5  '~. Then there exists a finite subset Xo of  X with 
the same property. 

Proof Let E denote the set of all minimal proper supports in L. By 
theorem 8.2, it will suffice to prove that there exists a finite subset X0 of X 
such that X0 n S ~  holds for all SeE.  Thus, let 

T= {eeL IVJ finite ~_X, :]SEE with ee  S and S c~ J =  ~ }  

To begin with, we are going to prove that T e 5  a. Suppose e, f e L  with eeT 
and e < f ,  and let J be a finite subset of X. Then there exists SeE  with eeS 
and S m J = ~ .  Hence, since S is an order filter, feS ,  and it follows that 
feT .  This proves that, if p, qeL with p_Lq, then {p, q} n Tv~=~p@qeT.  

Conversely, let p, qeL with p• and suppose that pO)qeT, but that 
{p, q} c~ T = ~ .  Then there exist finite sets Jp, Jq~_X such that, for all SeE,  

peS=~SnJpvL~ and qeS=~,SnJqr  

Let J=JpuJq. Since p@qeT, there exists S eE  such that p@qeS and 
S n J =  ~ .  But, then, one of  the conditions peS  or qeS must hold, so either 
S c~ Jp ~ ~ or S c~ Jq ~ ~ ,  contradicting S n J = ~ .  This proves that T is a 
support. 

Suppose that T is a proper support. Then, by Theorem 8.2, there exists 
S0eE such that So~_T. By hypothesis, there exists e e X n  So~T. Let J0 = 
{e}. Since J0 is a finite subset of X, there exists SeE  with eeS and S n  J0 = 
~ .  Thus, we arrive at the contradiction eeS and eekS, from which we may 
conclude that T=  ~ .  Therefore, 1 ~ T, and it follows that there exists a finite 
set Xo~X such that, for all SeE,  l e S ~ X 0  n S4=~.  However, since each 
S e E  is an order filter, the condition 1ES is automatic, and our proof  is 
complete. �9 

In terms of  the idea that each support S e 6  a determines corresponding 
modalities for all of  the propositions p e  L, Theorem 9.1 may be paraphrased 
as follows: If X_~ L has the property that for each proper support S e ~ ,  at 
least one proposition pEX is possible, then there is a finite subset of X with 
the same property. 
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