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We consider a family of coupled (Ito type) KdV equations in 1 + 1 dimensions 
and use Hlavat2~'s technique to obtain a class of explicit wave-type solutions. 

In a paper  by Hlavat2~ (1985), a systematic approach for finding a class 
of  wave-type solutions of  the KdV-type equations has been reported. The 
objective of  the present note is to extend this procedure to coupled systems 
to derive a similar set of  solutions. As is well known, coupled nonlinear 
equations in which a KdV structure is embedded occur naturally in shallow 
water wave problems (Whitham, 1974). Further, such equations also possess 
infinitely many symmetries and conservation laws (Hirota and Satsuma, 
1981; Ito, 1982; Antonowicz and Fordy, 1987). 

Let us consider the family of  coupled KdV equations 

f + aggx + ~3fix + Yfxxx = 0 ( la)  

g , + ~ ( f g ) x  = 0  ( lb)  

where a, fl, 3', and t~ are arbitrary parameters and subscripts denote partial 
derivatives. In the following we shall show that the solutions of  ( la) ,  ( lb)  
can be dealt with exactly by adopting the technique of Hlavat2~ (1985). It 
is worth remarking that for a = - 2 , / 3  = - 6 ,  3' = - 1 ,  and 6 = - 2 ,  the set (1) 
represents Ito 's  equation, which has infinitely many conserved quantities 
(Ito, 1982). It may be noticed that this choice of  parameters  is not unique 
(see, e.g., Antonowicz and Fordy, 1987). 

We have shown elsewhere (Guha-Roy et al., 1986) that if one of the 
solutions of  ( la) ,  ( lb)  is of  the traveling wave type, then the other must 
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also exhibit the same form. Suppose that the variables f(x,  t) and g(x, t) 
depend on the same traveling wave variable s in the following manner: 

s = x -  ct, f ( x ,  t) =f ( s ) ,  g(x ,  t) = g(s) (2) 

where c (>0) is the wave velocity. 
Introducing (2) into ( la) ,  ( lb)  and then integrating once, we have 

- c f  + ) ozg2 + l f l f  2+ Yf~s ~ kl (3a) 

- cg + 8fg = k: (3b) 

where k~ and k2 are integration constants. 
Inserting (3b) into (3a), we obtain 

1 a k  2 t_! f lf2+ 3'f~s = k, (4) 
- c f +  2 ( S f - c )  2 2 

Integrating (4) yields 

l c f  2 1 c~k~ 1_1 3 1 
_ -  f l f  +.~ 3"f2 = k , f  + k3 (5) 

2 2 a ( a f - c )  6 

where k3 is another integration constant. 
For convenience, we set q,= ( S f - c )  to rewrite (5) as 

I~/I//2 = ~4~/14 "At- C3 ~/3 "t- C2 ~/2 ..1_ E1 ~/+ CO (6) 

where the parameters C are given by 

/3 
3V8 

C3 = -  1 -  c 
Y 

2( ec2  C2 = - -  C2"-~- kl~ -- 
3' 28 / 

1( _ev  
C1=-- c3 + 2klt3c + 2k3t3 2 

3" 3 3 /  

ak2~ 
Co-  

3" 

The form of equation (6) suggests that if we define (Takahashi and Satsuma, 
1988; Guha-Roy, 1989) an independent variable r such that 

r = ~ 7 5  ds (7) 
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then a potential function ~o(4') may be introduced as 

4 
4'I = E ~r4' ~ = - ~ ( 4 ' )  (8) 

r=0 

It may checked that the solutions of equation (8) are expressible in terms 
of the elliptic functions (see, for instance, Wadati, 1975). However, more 
interesting results of (8) can be obtained if one follows the procedure 
described by Hlavat2~ (1985). 

To this end, let us consider a class of  potentials of the following type: 

--@ (4 ')  ~ ~4( 4' -]-/~ 1)2( 4'2 -I-/~24' "~ "~3) (9)  

where A~, A2, and /~3 a re  constants dependent on the parameters ~'r and 
~'4 # 0. This means that by introducing 

1 
4' = ~ - A ,  (10) 

we can recast equation (8) as 

0., = (toO2+ 10 + k )  1/2 

in which 

(11) 

such that 

o -2 = m(o-  2 --A), A = (/2--4 kin)  (13) 

We are now in a position to consider the following possibilities for the 
solutions of (11), depending on the signs of m and A: 

For m > 0 a n d ~ > 0 ,  

tr(r; m, A) =/zx/S cosh(~/m r) (14a) 

For m > 0  and A<0,  

o-(~-; m, A) =/z(--A) u2 sinh(v/-m r) (14b) 

1 = ~4(A2-- 2A1) 

k=~4 

It is obvious that the solutions of (11) are crucially dependent upon the 
parameters m, 1, and k. Let us choose (Hlavat~, 1985) 

1 
0(r; k, I, m r 0) = 7  {o-(r; m , A ) - l }  (12) 

zm 
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For m > 0  and A = 0 ,  

cr(~'; m, A) = Iz exp(• ~') (14c) 

And for m < 0 a n d A > 0 ,  

tr(~'; m, A) --/zx/A s in[( -m)l /2T]  (14d) 

Here /z = + 1. 
Substitutions of  (14a)-(14d) into (12) then give different forms of 0. 

It may be noted that one can also obtain other suitable forms of 0 by writing 

1 
e ( r ;  k, l # O, m = O) = l  (liT2-- k) (15) 

0(~-; k ~ 0 ,  l, m = 0 ) =  v/-kr (16) 

Finally, the corresponding solutions for qJ may be determined by 
plugging the above expressions for 0 into (10). 
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