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Dynamical System Where Proving Chaos Is 
Equivalent to Proving Fermat's Conjecture 

N. C. A. da Costa,  ~ F. A. Doria,  2 and A. F. Furtado do Amaral  2"3 

RecewedJu~ 14 1992 

We prove that we can explicitly construct the expression for a low-dimensional 
Hamiltonian system where proving the existence of a Smale horseshoe is 
equivalent to proving that Fermat's Conjecture is true. We then show that some 
sets of similar intractable problems are dense (in the usual topology) in the 
space of all dynamical systems over a finite-dimensional real manifold. 

1. I N T R O D U C T I O N  

w e  have recently started an exploration within physics and other 
axiomatized sciences of  metamathematical phenomena such as undecidabil- 
ity and incompleteness (da Costa and Doria, 1991a-e, 1993; da Costa et 

al., 1990, 1992a,b; Stewart, 1991a,b). The original motivation for our 
results was a question raised by Hirsch (1985) on the (apparently) enor- 
mous difficulty of deciding whether dynamical systems which represent 
actual physical systems are chaotic. Hirsch asked for a general criterion to 
settle that question: "A major challenge to mathematicians is to determine 
which dynamical systems are chaotic and which are not. Ideally one should 
be able to tell from the form of the differential equations." 

We proved (da Costa and Doria, 1991c-e) that there is no such 
computable criterion; chaos is algorithmically undecidable in the general 
situation. Actually undecidability appears everywhere in mathematics, and 
is a quite commonplace phenomenon; a recent example concerns the 
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nonrecursivity of certain functions in algebraic geometry (Nabutovsky, 
1989). It was conjectured by Wolfram (1984) that undecidability and 
incompleteness were also to be expected everywhere in physics: "One may 
speculate that undecidability is common in all but the most trivial physical 
theories. Even simply-formulated problems in theoretical physics may be 
found to be provably insoluble." 

We showed that such is the case. Moreover, the chief aspect of our 
results is their wide-ranging applicability, as they provide a blueprint for 
the construction of Grdel-like incompleteness theorems within any mathe- 
matized science that handles its objects through the language of classical 
analysis. We prove (da Costa and Doria, 1991d) that given any nontrivial 
property ~b of a dynamical system within the language of classical elemen- 
tary real analysis, we can explicitly obtain the formal expression for a 
countably infinite family of such systems where ~b is algorithmically unde- 
cidable. Also there is another countably infinite family of systems of which 
it is true (in a "natural" interpretation) that they satisfy ~b, but such that 
this fact cannot be proved from the usual axiomatizations for classical 
analysis. 

We can immediately apply that to classical mechanics. Thus, there are 
infinitely many expressions for infinitely many different classical mechanical 
systems such that one cannot prove (within a "nice" axiomatization for our 
theory) that those systems have a nontrivial property ~b, while it is true that 
they do have that property in all standard models, i.e., those where 
formalized arithmetic is interpreted as the intuitive theory of the natural 
numbers. 

A consequence of our results is the existence of solvable but in- 
tractable problems within the realm of classical mechanics, that is to say, 
problems that can be stated in our formal language with the help of a small 
sequence of symbols, but such that their proofs are inordinately long and 
difficult (da Costa and Doria, 1991d; Ehrenfeucht and Mycielski, 1971; 
G6del, 1986). Fermat's Conjecture that there are no positive integers 
x, y, z, m, where x, y, and z > 1, and m > 2, such that 

X m _~. yrn = Z m 

seems to qualify (within number theory) as one of those problems with a 
simple statement and a very difficult proof. Well, nobody knows whether 
Fermat's Conjecture does, in fact, have a proof (or a counterexample), as 
it may also be undecidable within formalized arithmetic: if Fermat's 
Conjecture is false in the standard model for arithmetic, then its falsity can 
be proved within formalized arithmetic, but if it is true in the standard 
model, then it can either be provable or undecidable. If Fermat's Conjec- 
ture does have a proof, then the consensus is that it will be inordinately 
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long and diffcult, even if we enrich number theory with several new 
concepts from other domains in mathematics. (Enriching a formal theory 
with what amounts to the addition of a consistent set of new axioms may 
shorten in a decisive way infinitely many difficult proofs while leaving 
untouched the difficulty of proving other results (da Costa and Doria, 
1991d).) For a review of the main results about Fermat's Conjecture, 
including the F~ltings proof of Mordell's Conjecture, see Cornell and 
Silvermann (1986), Edwards (1977), and Ribenboim (1989). However, we 
will not need those results here and we quote the references for the sake of 
completeness. 

We take Fermat's Conjecture simply as an example of a specific 
arithmetic problem with a short intuitive and elementary formulation and 
(if it is provable) what appears to be an extremely complicated proof. We 
notice that one of G6del's last published remarks delves on that situation 
(G6del, 1990): "another oddi ty . . . ,  namely the fact that such problems as 
Fermat's which can be written down in ten symbols of elementary arith- 
metic, are still unsolved 300 years after they have been posed." 

As is well known, the fact that an axiomatic system which is consistent 
and sufficiently strong to include arithmetic has theorems with a very 
simple statement and inordinately long proofs is a result by G6del himself 
( 1986; Ehrenfeucht and Mycielski, 1971), which is related to the "speedup" 
theorems in computation theory, since some of those proofs can be 
arbitrarily shortened if we add to the original theory a new set of adequate 
(and consistent) axioms. 

Our result shows that questions as difficult as Fermat's Conjecture 
appear everywhere in the sciences whose basic language is that of classical 
analysis. Checking for a simple property may lead to a problem equivalent 
to Fermat's. As far as we can tell, that seems to be a technically obvious 
but rather unexpected situation which we try to explore in the present note. 

[We have also extended our results to show that there are problems in 
dynamical systems theory which lie beyond the pale of arithmetic--they 
cannot be made equivalent to any arithmetical problem. However, the 
general ground plan of that more general result is similar to the example in 
this paper; for details see da Costa and Doria (1993).] 

Notation and Prefiminary Concepts 

For the conventions and concepts we use here see da Costa and Doria 
(1991b-e). 

We are going to specify some notation: logical connectives: ^ ,  "and"; 
v ,  "or"; --1, "not"; ~ ,  "if . . . .  then . . . " ;  ~-*, "if and only if." N is the 
standard model for arithmetic; ~o0 is the set of natural numbers (or positive 
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integers). Z is the set of integers, Q is the set of rational numbers, and R 
is the set of reals. 

When dealing with mathematical objects within a formalized theory T, 
one never handles those objects "in themselves," as they can only appear 
within T as strings of symbols which we call "expressions" for those 
objects. For example, a circle (with r as its radius) may be given within the 
language ~ r  of T as the formal description of a plane set of points that 
satisfies the usual algebraic relation x 2 + y 2 =  r E. 

Let T be a consistent axiomatic theory that includes formalized 
arithmetic and which is sufficiently strong so that we may develop the 
whole theory of dynamical systems within T (from here on we suppose that 
Z F C _  T; that will be more than enough). Let s r be its formalized 
language; we suppose that the set o f  formal expressions in T, which we 
represent by [oWr-], can be obtained within T. If  ~ is a mathematical object 
dealt with in T, then the expression that represents it is F~TeF~cr-]. 

We define (da Costa and Doria, 1991d): 

Definition 1.1. T is arithmetically consistent if and only if the standard 
model N for arithmetic is a model for the arithmetic sentences of T. 

From here on we suppose that the theories T we deal with are 
arithmetically consistent; to avoid discussions about the specific proof 
strength of T, we also suppose that ZFC _ T. 

We are going to deal here with sentences that are T-demonstrably 
equivalent to arithmetic sentences; for the definition of that concept see da 
Costa and Doria (1991d) and Rogers (1967). 

2. THE MAIN RESULT 

We are going to prove here the following theorem: 

Theorem 2. I. If  T is arithmetically consistent, then we can algorithmi- 
cally construct within the formal language ~r of T the expression for a 
low-dimensional Hamiltonian system .J(r such that the proof that ~,~ has a 
Smale horseshoe is equivalent to the proof of Fermat's Conjecture within 
T. 

Remark 2.2. When we say that we can algorithmically construct an 
expression, we mean that we can explicitly give an algorithm (in the sense 
of recursion theory) that allows us to obtain that expression within [-~r-] 
out of the alphabet of Sat. However, as is quite usual in recursion theory, 
we are going to give a clear albeit intuitive construction for the expression, 
and leave the toil and trouble of obtaining a rigorous algorithm to the 
archetypical "interested reader." 
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The proof  will be given in a series of  lemmata and propositions. Let 
R c e)~ be an n-place relation on the natural numbers, n > 0 an integer. 
Let p ( x l , . . . , x n ,  y l  . . . . .  Ym) be a polynomial in the unknowns 
x ~ , . . . ,  y ~ . . .  over the integers. 

We can define (Davis, 1989): 

D e f i n i t i o n  2 .3 .  R ( x l ,  � 9  x , )  is D i o p h a n t i n e  if and only if there is a 
polynomial 

p ( x l  . . . . .  x , ,  Y l  . . . . .  Ym)  

as the one given above over the integers and 

R ( x l ,  . . . , x , )  ~ 3y l  . . . . .  Ym 6COop(Xa . . . . .  x , ,  Y l  . . . . .  Ym) = O. 

We then have the following well-known result that solved Hilbert's 
10th Problem (Davis, 1982). 

L e m m a  2.4 .  R ( x  1 . . . . .  Xn) is Diophantine if and only if it is recur- 
sively enumerable. 

It is immediate that the set of  solutions of any Diophantine equation 
is recursively enumerable; the hard part is the converse statement. There- 
fore, if Fermat's Conjecture is true, then the set of positive-integer solutions 
of all equations of  the type x n + y n =  z n (but for the trivial cases, and for 
exponents n = 1, 2) is trivially recursively enumerable. If  Fermat's Conjec- 
ture is false, then the F~ltings-Mordell  theorem (Cornell and Silvermann, 
1986) ensures that, given any n > 2, there will only be a finite (and possibly 
zero) number of exceptions to the conjecture for every n. Thus we can 
devise a simple intuitive enumeration procedure to list those exceptions. 
Then, by Church's Thesis, there will be a Turing machine that does that 
enumeration, so that the set of  positive-integer solutions for the Fermat 
equations is a recursively enumerable set. Call that set the Fermat set. 

From Lemma 2.4, it follows that the Fermat set is Diophantine, and 
as a consequence there is a polynomial over the integers that represents it 
in the sense of Definition 2.3. Notice that such a polynomial will have no 
solution at all over O~o if Fermat 's Conjecture is true. 

We are now going to construct explicitly one such polynomial. In 
order to do so we will not require the full strength of  the Matijasevi6- 
Davis-Robinson theorem (Lemma 2.4); we only need the Diophantine 
characterization for the exponential relation v = u k, where v, u, and k are 
natural numbers: 

P r o p o s i t i o n  2.5 .  v = u k if and only if there are natural numbers 
xl . . . .  , X2o such that p ( u ,  k ,  v, x l  . . . . .  X2o) = 0, where the polynomial p 
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over the integers is given below: 

p ( u ,  k ,  v, x l  . . . . .  X2o) 

= Ix 2 - (x 2 - 1)x] - 112 + [x4 z - (x~ - 1)x~ - 112 

+ [x6 a - (x 2 - 1)x~ - 1] 2 + (x5 - x9x3) 2 + [x7 - (1 + 4XloX3)] z 

"~ [X 7 - -  (X 2 "t- X l lX4) ]  2 "t- [X 6 - -  (X 1 + XI2X4] 2 

+ [x8 - k + 4(x13 - 1)x3] 2 + [x3 - (k + x14) + 112 

+ {[Xl - x3(x2  - u) - v] 2 - (x15 - 1)Z(2x2 u - u z - 1)2} 2 

+ [v + x16 - ( 2 x 2 u  - u 2 - 1)] 2 

+ [x17 - (u + x18)12 + [x~7 - (k + x19)12 
+ [ x ~ -  ( x 2 7 -  1)(x17-  1)Zx20- 112 

P r o o f .  See Davis  (1982). Another  Diophant ine  representation o f  the 
exponential function can be found in Matijasevi6 and Robinson  (1975). []  

We now write down the Diophant ine  equat ion that  represents Fermat ' s  
Conjecture: 

P r o p o s i t i o n  2.6.  Given an arithmetically consistent theory T, Fermat ' s  
Conjecture is equivalent (within T) to the formal  sentence below: 

Yx, y, z, m ~o9 o 7 ~u, v, w, r 1 , . . . ,  s I , . . . ,  t ~ , . . ,  eO)o 

{x, y, z > 1 ^ m > 2 ^ [pZ(x, m, u, rl . . . . .  r20) 

+ p 2 ( y ,  m ,  v, sl . . . . .  S2o) 

+ p 2 ( z , m ,  w, q , . . . ,  t2o) + (u + v -  w) 2 =01} 

or, equivalently, 

Vi, j ,  k ,  n ~O9o - 1 3 x ,  y ,  z ,  m ,  u, v, w ,  rl . . . . .  sl . . . . .  t~ , . . . ~o% 

{[pZ(x, m ,  u, r l ,  . . . , r2o) + p 2 ( y ,  m ,  v, s 1 . . . . .  Szo) 

+ p 2 ( z ,  m ,  w,  t~ . . . . .  t2o) + (u  + v - w)  2 

+ ( i + 2 - x ) 2 + ( j + 2 - y ) 2 + ( k  + 2 - z ) 2 + ( n  + 3 - m ) Z = 0 ] }  

where p is given in Proposi t ion 2.5. 

P r o o f .  Notice that  (x + 2) m+3 + ( y  + 2) m+3 = (z + 2) " + 3  is equiva- 
lent to 

~I,I, 13~ W ~ O , ) o  U -~- X m  A I3 --~. y m  A W n-  Z m  A U -~- I3 ~ W 

^ x = i + 2 ^ y = j + 2 ^ z = k + 2 ^ m  = n + 3  
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We then obtain the Diophantine equation that represents the above 
sentence, and add the quantifiers (Davis, 1982); the conditions on x, y, z, m 
avoid both the trivial solutions and the Pythagorean equation. �9 

R i c h a r d s o n ' s  F u n c t o r  

Again we suppose that everything happens within our axiomatized 
theory T. Let ~ be the algebra of  polynomials on a finite number of 
variables over the integers Z; let g be the algebra of real-valued elementary 
functions in a finite number of variables over the rationals Q, while ~- is 
the algebra of  real-valued elementary functions in one variable, again over 
the rationals Q; we finally add to both ~ and ~ an expression (a symbol) 
for the number re, and close everything under that new constant. Given a 
p o l y n o m i a l  p ( x  1 . . . . .  xm,  Yl . . . .  ,Yn), let T m ( X l , . . .  , Xm) be the function 
that effectively codes rn-tuples of  natural numbers (Xl, �9 � 9  xm ) by a single 
natural number (Rogers, 1967, p. 63). Let r = zm((" " ' )) .  We abbreviate 

p(x l  . . . .  , Xm, Yl . . . .  , Yn) = P r ( Y l  . . . .  , Yn)" 
Then let us inductively construct out of  a polynomial q m ( X l ,  . . . ,  Xn) a 

real-defined and real-valued function tqm given through the following steps. 
Ini t ial  Step.  Suppose that we are given the expressions qm as below: 
s If  q m ( X l , . . . ,  Xn)  = C, where c is a constant, then we put lqm = 

Icl+ 2. 
�9 I f  q m ( X l  . . . . .  Xn) = Xi, then tqm = x~ + 2. 

Induct ion Step.  We suppose that qm is given as indicated. We then 
obtain as follows the corresponding lqm : 

�9 I f  qm = sm_  tin, then zq,, = Ism + ztm. 
�9 If  qm =Smtm,  then Zqm = tSml tm.  

We then write k i ( m ,  x l ,  . . �9  x , )  = zOipm(Xl . . . . .  Xn), where ~3 i = O /Oxi. 

Then: 

Defini t ion 2. 7. The map p: ~ ~ g, given by 

p ( x l  . . . .  , Xm,  Y l  . . . . .  Y n )  

pp(x l  . . . . .  xm, Yl . . . . .  y , )  = (n + 1)4p2(x l , . . . ,  Xm, Yl . . . . .  Y , )  

+ ~ ( sin2 n x i ) k 4 ( x l  . . . . .  Xm, Yl . . . . .  Y , )  
i = 1  

is Richardson ' s  f i r s t  map.  

Corol lary 2.8. Given a polynomial expression [-p,, 7e[-&er7, there is an 
algorithm that allows us to obtain an expression [ p p , , 7 E [ ~ r 7  for the 
image of Pm under Richardson's first map. 
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Proof. Immediate,  f rom the definition o f  p. �9 

We can assert: 

Proposition 2.9 (Richardson ' s  First Lemma).  Within the theory T 
there are natural  numbers  xl ,  �9 �9 �9 xn such that  pm(Xl . . . .  , xn) = 0 if and 
only if there are real numbers  xl . . . . .  x ,  such that  p p m ( X ~ , . . . ,  x , )  = 0 
if and only if there are real numbers  Xl . . . . .  x ,  such that  
p p m ( X l , . . . , x , )  < 1. 

Proof. See Richardson  (1968). �9 

N o w  let 

q(x, y, z, m, u, v, w, rl, . . . , r2o , S 1 . . . .  , s20, tl . . . .  , t2o) 

[or, respectively, q' ( i ,L  k, n, x . . . .  )] denote each one o f  the polynomial  
expressions in the assertion within Proposi t ion 2.6. We are going to rename 
the variables in that  polynomial  as follows: 

{u, v, w, rl . . . . .  sl . . . . .  tl . . . .  } ~ {ul . . . . .  u, } 

where t = 63 or t = 67, depending on our  choice o f  either q or  q ' ,  so that  
the polynomial  that  represents Fermat ' s  Conjecture becomes either 

o r  

q(x, y, z, m, U 1 . . . .  , U63 ) 

q'( i , j ,  k, n, U 1 . . . . .  U67 ) 

Let p denote Richardson 's  first map  as above. As always, we suppose 
that  T is arithmetically consistent, and at least as strong as ZFC.  Then: 

Proposition 2.10. Within our  T, Fermat ' s  Conjecture is equivalent to 
each of  the formal sentences below: 

1. 

Vx, y, z, m~COo ~ 3 u l , . . . ,  u63ER 

[ x , y , z  > l A m  > 2 

A pq(x, y, Z, m, U 1 . . . . .  U63 ) = 0 ]  

. 

V x ,  y ,  Z,  m ~ c o  o - - 1 3 U l ,  . . . , u 6 3 ~ R  

[ x , y , z  > 1 A m > 2  

A pq(x, y, z, m, U 1 . . . . .  U63 ) < 1] 
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Vx, y, z, m ~ o  0 --n q u a , . . . ,  u67~R 

p q ' ( x ,  y ,  z, m,  ul ,  �9 �9 �9 , u67) = 0] 

Vx,  y ,  z, m6O9o -q3Ul ,  �9 �9 �9  u67~R 

p q ' ( x ,  y ,  z, m,  ul . . . . .  u67 ) --- 1] 

Proof .  From Proposition 2.9. [] 

R e m a r k  2. I 1. We now define 

h(x)  = x sin x 

g(x)  = x sin x 3 

Given a set of  real variables x~ . . . . .  xn, we define the following maps: 

X 1 = h ( x )  

x2 = h o g(x)  

x3 = h  o g  o g ( x )  

�9 . �9 

x n _ l  = h  o g  o" �9 �9 og (x )  

(where g is composed n - 2  times), and 

Xn = g ~ 1 7 6  og(X) 

where here g is composed n times�9 

Given a polynomial pm(X~ . . . . .  X , )  ~ ,  we define: 

Defini t ion 2.1Z The maps p ' :  ~ ~ and p": ~ ~ r ,  given by (1) 

pm(X l  . . . .  , Xn) 

p ' [ p m ( X l  . . . . .  Xn)](X) 

= PPm (h(x),  h o g(x)  . . . . .  g o g . . . . .  g(x))  

where p is Richardson's first map; and (2) 

p m ( X l , . . . , X n )  

P " [ p m ( X l , . . . ,  x,)](x) 

= p '[pm(X,  . . . . .  Xn)](X) -- 1/2 

are Richardson ' s  second m a p  of the first (p ')  and second (p") kinds. 

2195 
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Corollary 2.13. Given a polynomial expression [-pm7e[-Aer7, there 
is an algorithm that allows us to obtain expressions [-p'p,~Te[-A~ and 
[-P"Pm 7e[-LPr7 for the images of  Pm under Richardson's second map. 

Proof. Immediate,  f rom the definition of  p '  and p". �9 

p" is due to Wang (1974), as well as the corresponding portion in the 
next result: 

Proposition 2.14. Within T: 
1. There are natural numbers xl . . . . .  xn such that 

pm(Xl , . . . ,Xn)  =0 

if and only if there is a real number  x such that 

p'pm(x) < 1 

2. There are natural numbers x ~ , . . . ,  x,  such that 

p,,(x~ . . . .  , x , )  = 0 

if and only if there is a real number x such that 

p " p, ,(x)  = 0 

Proof. See Richardson (1968) and Wang (1974). �9 

We then apply Richardson's second map of  the first and second kinds 
to the polynomials that represent Fermat 's  Conjecture in Proposition 2.6, 
so that we obtain (in an obvious notation) 

(p'  q)(x, y, z, m, u) 

and 

(p"q)(x, y, z, m, u) 

We can therefore assert: 

Proposition 2.15. Given our arithmetically consistent theory T, then 
Fermat 's  Conjecture is equivalent (within T) to each of  the formal state- 
ments below: 

1. 

Vx, y, z, meco o --n 3u eR[x, y, z > 1 ^ m > 2 ^ (p'q)(x, y, z, m, u) < 1] 

2. 

Vx, y, z, me~Oo 7 ~u eR[x, y, z > 1 A m > 2 ^ (p"q)(x, y, z, m, u) = 0] 
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. 

P r o o f  

Vx, y, z, meO9o -n3ueR[(p"  q')(x,  y, z, m, u) <- 1] 

Vx, y, z, m ~r o ~ 3u ~R[(p"q")(x, y, z, m, u) = 0] 

From Proposition 2.14. [] 

2197 

A Two-State Function That "Solves" Fermat's Conjecture 

In the next step we are going to obtain a two-state function 
/7(x, y, z, m) that will be expressed with the help of elementary functions 
plus a few commonplace operations in elementary real analysis such that, 
for x, y, z, m ~O9o, x, y, z > 1 and m > 2, then: 

1. ~(x, y, z, m) = 1 if and only if the 4-tuple x, y, z, m is a counter- 
example for Fermat 's Conjecture. 

2. /~(x, y, z, m) = 0 if and only if the 4-tuple x, y, z, m does not contra- 
dict Fermat 's Conjecture. 

We need: 

Definition 2.16. (1) 

n (x ,  y, z, m, u) = I(p' q')(x, y, z, m, u) -- 11 - [(p' q')(x,  y, z, m, u) -- 1] 

and (2) 

C(x,  y, z, m, u) = [B(x, y, z, m, u)] z 

As a result, we have the following: 

Proposition 2.17. Given our arithmetically consistent theory T, then: 
1. Fermat 's Conjecture is equivalent within T to the formal sentence 

below: 

Vx, y, z, m, u[x, y, z, m ~ o  o ^ u ~ R  ~ C(x,  y, z, m, u) = 0] 

2. The negation of Fermat's Conjecture is equivalent within T to the 
formal sentence below: 

3x, y, z, m, u[x, y, z, meCOo ^ u e R  A C(x, y, z, m, u) > 0] 

Proo f  From Definition 2.16 and from Proposition 2.14. [] 

We have: 

Proposition 2.18. Given our arithmetically consistent theory T, we can 
explicitly and algorithmically construct within [-s the formal expression 
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for a function fl(x, y, z, m) with values in the set {0, 1} such that: 

1. Vx, y, z, m ee)oB(X, y, z, m) = 0 if and only if Fermat's Conjecture is 
true. 

2. 3x, y, z, m e~Oofl(x, y, z, m) = 1 if and only if x, y, z, m is a coun- 
terexample for Fermat's Conjecture. 

Moreover, fl(x, y, z, m) can be constructed entirely within the language of  
elementary real analysis. 

Proof. We write the expression 

f_ -~ C(x, y, z, m, u)e -u2 
K ( x , y , z , m ) =  co l + C ( x , y , z , m , u )  dU 

and then put 

~(x, y, z, m) = a(K(x, y, z, m)) 

a is the sign function; o - ( i x )  = ___ 1 and a(0) = 0. �9 

We can go beyond that and obtain a constant function 0 such that 
0 = 0 if and only if Fermat's Conjecture is true, and 0 = 1 if and only if 
Fermt's Conjecture is false, within an arithmetically consistent theory T; 
we will only need a slight extension of  the algebra of functions (and of  the 
corresponding set of expressions) we are dealing with: 

Proposition 2.19. Given our arithmetically consistent theory T, we can 
explicitly and algorithmically construct within [ -~r7  the formal expression 
for a constant function 0 which is either equal to 0 or 1 such that: 

1. 0 = 0 if and only if Fermat's Conjecture is true. 
2. 0 = 1 if and only if Fermat's Conjecture is false. 

Moreover, 0 can be constructed entirely within the language of elementary 
real analysis. 

Proof Notice that, when extended to the reals in 114, fl(X, y, z, m) >- O. 
We therefore write 

L = ~ ]?(x, y, z, m) exp[ - - ( X  2 "t- yZ + z2 71- m2)] dx dy dz dm 

A , 1 + [l(x, y, z, m) 

Then 0 =a(L) .  �9 

Remark 2.20. Notice that there are "innocent-looking" expressions in 
every day mathematical practice for both Ixi and a(x), namely we can write 
Ixl = + x / ~  -5 and a(x) can be algebraically obtained out of the absolute 
value function. 
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We also wish to point out that our previous results (da Costa and 
Doria, 1991c,d) imply the following: let ~ '  denote the algebra f f  to which 
we have added the absolute value operation Ix[ and closed everything under 
it. Therefore, if T is arithmetically consistent, then (i) there is no algorithm 
to decide, for each member fm(X) of a countable family of expressions that 
represent elements of i f '  whether one has fro(X) ~ 0 somewhere or, for all 
reals, f ,  = 0. Moreover, (ii) there is an expression for a functionf(x) in i f '  
such that it is true that, for all reals, f ( x )  = 0 in a convenient "natural" 
model M that makes T an arithmetically consistent theory, but such that 
one cannot prove that fact from the axioms of T. [See on those results da 
Costa and Doria, 1991c,d]. 

Therefore we have in T: 
1. Given a family gk(x, y, z, m, u) of expressions for functions in an 

adequate extension of ~-', parametrized by the natural numbers x, y, z, m, 
there is no algorithm to decide, for each k, whether one has gk --ft. 

It suffices to take 

gk(x, y, z, m, u) = fl(x, y, z, m) + fk(u) 

with fk(u) as above. 
2. There is an expression for a function g, again in an adequate 

extension of ~ ' ,  such that it is true in M that g = fl; however, that fact 
cannot be proved from the axioms of T. 

Put 

g(x, y, z, m, u) = fl(x, y, z, m) -by(x) 

where f ( x )  =-0 in M, but such that one cannot prove this fact in T. The 
same is obviously true of the constant function 0 in Proposition 2.19. 

We conjecture that in order to obtain an expression for fl(x, y, z, m) 
and for 0 out of elementary functions we will necessarily require an 
integration and something that might stand for a; our conjecture about the 
integration operation is supported by a remark of M. S. Burgin (n.d.) on 
the computational power of the Riemann integration (which applies to the 
present case since we are dealing with continuous functions). 

Also, simpler expressions for those objects will be obtained if we start 
from the exponential Diophantine version of Fermat's Conjecture; the 
whole construction is slightly more general (da Costa and Doria, 1991d; 
Richardson, 1968). 

We can now conclude the proof of Theorem 2.1. Let h be the 
Hamiltonian for a free particle and let k be the Hamiltonian for the 
Holmes and Marsden (1982) example of a low-dimensional system with a 
horseshoe. Consider the countably iv.finite family g of expressions for 
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Hamiltonian systems given by 

h(x,y . . . .  ) = I~(X, y, Z, m)h + ( 1 - [3(x, y, z, m))k 

If we manage to show within T that such a family always coincides 
with k, we conclude that fl = 0; therefore, we prove Fermat's Conjecture. 
Conversely, if we prove that Fermat's Conjecture holds within T, then we 
collapse the preceding family over k. We have proved: 

Corollary 2.21. If  our T is arithmetically consistent, then we can 
explicitly and algorithmically construct within [s a countably infinite 
family of expressions for Hamiltonian systems o~f such that all of them will 
provably have a Smale horseshoe if and only if Fermat's Conjecture can be 
proved within T. 

The same construction, now with the help of the function 0 in 
Proposition 2.19, allows us to state: 

Corollary 2.22. If T is arithmetically consistent, then we can explicitly 
and algorithmically construct within [ '~r-] the expression for a Hamilto- 
nian h' such that h'  will provably have a Smale horseshoe if and only if 
Fermat's Conjecture can be proved in T. 

Proof  Put h' = Oh + (1 - O)k. �9 

Remark 2.23. The present example tries to suggest why it is so difficult 
to prove even the simplest property for innocent-looking systems, such as 
the Lorenz system (Afraimovich et al., 1983). The fact that we can concoct 
a not-so-involved construction that leads to a dynamical system several of 
whose properties depend on the proof of Fermat's Conjecture suggests that 
very hard proofs are to be expected everywhere in the theory of dynamical 
systems. 

Therefore we turn to the problem of the distribution of those "simple" 
questions with intractable proofs in the corresponding functional spaces. 

Actually we have proved more than what was stated in Theorem 2.1. 
Let ~b be a predicate defined for a domain that includes o~' (and the 
corresponding expressions) plus the function (and the expression) for 
O(x, y, z, m) given above. Suppose moreover, that there are ~, ~ in T, ~ # (, 
such that T F ~b(~) and T k -7 ~b((). Then: 

Theorem 2.4. Within our T there is an object r/~ T such that T k ~b(t/) 
if and only if T k "Fermat 's Conjecture." 

Proof  Write t / =  (1 - 0)~ + 0~. �9 

Therefore, given any nontrivial predicate defined for an adequate 
extension of the algebra ~ '  as above, we can explicitly and algorithmically 
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obtain an object that will satisfy that predicate if and only if we can prove 
Fermat 's Conjecture from our axiom system. 

Remark 2.25. With the help of constructions developed in da Costa 
and Doria (1991d, e) (here quoted in Remark 2.20) we can show that 
(within a theory such as our T) there is no algorithm to decide whether a 
given problem in the theory of  dynamical systems is T-equivalent to a 
solvable problem in the theory of Diophantine equations. Therefore, if we 
ask a question about a rather simple dynamical system, we have no 
algorithm to decide whether that question will turn out to be equivalent 
within T to an easy, hard, or impossible-to-check Diophantine problem. 

Remark 2.26. Moreover, suppose that we have managed to reduce a 
Hamiltonian to an expression of  the form h = qh'+ 2h". Can we check 
whether, say, ~/ is the Richardson transform of a Diophantine polyno- 
m i a l - s o  that we can at least know when we are dealing with a number- 
theoretic problem under the guise of  a problem in geometry? The results 
quoted in Remark 2.20 show that there will be infinitely many such ~/which 
are transforms of  Diophantine polynomials, but such that we will never be 
able to prove that fact within T, since we have admitted that T is 
arithmetically consistent. 

So, number-theoretic problems will appear within geometry, but in the 
general case we will never be able to prove that a problem we are dealing 
with is difficult because it is a number-theoretic problem embedded into a 
geometric question. 

3. DENSITY THEOREMS 

Again we suppose that T is arithmetically consistent, and that we can 
state facts about a topological space X (specified below) in ~e r. 

We suppose that X is a function space which is a complete metric 
space and that a certain subset of the polynomials in a countable set of  
unknowns x, y, z , . . .  over the rationals Q is dense in X. We then say that 
X is a Polish space. Let ~b be a predicate in the language &~ r which is 
defined for X. 

Definition 3.1. r is open in X if and only if A,  = {xeX:  r c X is 
open in X. 

r is open and dense in X if and only if Ar = {xeX: r c X is open 
and dense in X. 

Also, given an open and dense A~, let xn, n e~o 0, be a countable family 
of  polynomials over the rationals Q for whch we can prove (within T) that 
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the family-HIk][~is dense in A~. Clearly, T F (k(x,), for each n. Let y ~X be 
such that T F ~ b ( y ) .  

Remark 3.2. From here on we suppose that we have added to the 
language Ze r the countably infinite set of  expressions {[-xn -]} that represent 
the x~. Notice that we do not require that there is some procedure either 
to construct algorithmically the family x,, or to decide algorithmically 
whether, for a given y, there is an n such that y = xn, or even to check, 
from a larger dense set {zn }, whether one has, for an arbitrary n, ~b(z~). We 
only require that there are symbols within &a T that allow us to represent the 
elements of  the set {x, }, so that we can explicitly build an expression such 
as [-Oy + ( 1 - O)xn -] which is used below. 

Let us be given: 

Definition 3.3. Y =  {z~: z~ = Oy + (1 - O)Xn} (0 as in Proposition 2.19). 

We assert: 

Proposition 3.4. Within our T, let A~ be open and dense. Then: 

1. If T F "Fermat 's  Conjecture," then T F "Y  c X is dense in X." 
2. If T F " ~ ( F e r m a t ' s  Conjecture)," then T F "Y c X is a singleton." 

Proof. Suppose that there is a formal proof  of  Fermat's Conjecture 
within the theory T. We write ~ for that proof  so that ~ proves (within T) 
"Fermat 's  Conjecture." Then (from Proposition 2.19) we can construct 
within T a formal proof  4, ~ for 0 = 0 by adding an adequate set ~ of  
sentences in La r to the formal proof  r of Fermat's Conjecture, and from 
that second proof  we obtain a proof  4, ~, 0 = 0 for zn = xn, for each n, so 
that by construction we conclude that {zn } c A~ is dense in Y. 

The second statement has a similar proof. �9 

Remark 3.5. Informally speaking, Y is the set of those objects in X 
that provably have property ~b if and only if we can prove Fermat's 
Conjecture in T. 

Let us now specify our X and write X = Cr(m, RS), where 0 < r < + oo, 
1 < s < + ~ ,  and M is a real, compact, finite-dimensional Hausdorff 
differentiable manifold. Suppose that we have defined an atlas for M; 
therefore M becomes a specification of k domains in R m together with the 
corresponding transition functions, where m = dim(M). 

We wish to obtain explicitly the expressions for a countably infinite 
dense subset in our function space C'(M, Rs). We will then patch up over 
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M ordered sets of s polynomials each. In order to obtain those objects in 
Cr(M, RS), we define for each domain k an ordered set of s polynomials in 
m variables (Pl, P2 . . . . .  p~ ) with coefficients in Q. Since the number of 
transition functions is finite, we can explicitly and algorithmically charac- 
terize one such object by a finite string of symbols. Therefore we can obtain 
a procedure to enumerate all elements of  that dense subset in Cr(M, RO; 
we call that set of  expressions ~ e r ;  it is a decidable set within the set 
of all formulas in our formal language. Given each rational diameter q eQ 
together with our enumeration of the expressions for :r we can also 
explicitly and algorithmically define an enumeration for a basis of the C r 
topology of our space of  sections over M which is centered around the 
elements of JY'. Finally, given an ordered set of  polynomials p = 
(p~ . . . .  , p~ ), there is a decision procedure (Tarski, 1948) that allows us to 
answer the question, "is p within an open ball of diameter q centered at the 
polynomial s~JY?" 

If  we are given an open set C E Cg(M, R9 such that, let us say, the 
boundaries of its closure are polynomially defined, or such that one can 
algorithmically decide ~b at least for polynomials, again there is an al- 
gorithm that allows us to enumerate explicitly a dense subset of C. Suppose 
that ~b is open over C. Then we can state: 

Corollary 3.6. Given the preceding conditions, we can explicitly con- 
struct the expressions for the elements of a dense countable family 
{zn } c C~(M, R ~) such that for each n, T ~- ~b(zn) if T t- "Fermat 's  Conjec- 
ture." 

Remark 3. 7. We have in mind as examples of ~b assertions such as "zn 
is Morse-Smale" or similar stuff. Over some trivial low-dimensional M 
(and if there is a proof of Fermat's Conjecture) there is a dense set of  
Morse-Smale vectorfields that can be explicitly and constructively ex- 
pressed with the help of  elementary functions plus some operations in real 
analysis, but such that the proof that they really are Morse-Smale fields is 
as hard as the proof of Fermat's Conjecture. 

Moreover, as a consequence of a previous result (da Costa and Doria, 
1991d) there will be families of dynamical systems Xn parametrized by 
n ~m o such that we can always check a given property ~b for every element 
in the family, that is, T ~- ~b(X,), but such that, for infinitely many values of  
n, the complexity of the proof [see da Costa and Doria (1991d) on that 
concept] will be larger than any recursive function of the length (in 
characters) of  the statement [-r That is to say, the proof of  the 
property t} for Xk may have nothing to do with the proof of  the same 
property for Xk +1; the first one may be easy, while the next one may be 
exceedingly hard. 
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Finally, the same arguments that we have used here allow us to show 
that, if the property ~b is open, then the set of systems 2" such that it is true 
that ~b(X) (in a model where T is arithmetically consistent), but such that 
T ~ q5(2"), is dense in the set A where ~b is open. 

4. CONCLUSIONS 

We had a few goals in mind when we started to write the present 
paper. First of all, we wanted to show that most concepts and ideas that 
arise in mathematical logic have something like an "everyday meaning" for 
the working mathematician and mathematical physicist. Nonrecursivity is 
already accepted as a natural, even if weird, situation in today's mathemat- 
ical practice (Nabutovsky, 1989); the related phenomenon of the nonexis- 
tence of algorithms in order to solve specific mathematical problems is 
again well known and much explored (Davis, 1989). Forcing techniques 
have allowed the proof of many specific independence results in set theory, 
set-theoretic topology, analysis, and even in algebra (Juhfisz, 1989); they 
are examples of the G6del incompleteness phenomenon within "standard" 
mathematics. 

Grdel incompleteness was first discovered within formalized arith- 
metic, and formal arithmetic turned out to be essentially the theory of 
Diophantine equations. When we embed the theory of Diophantine equa- 
tions within, say, analysis, we import the whole conceptual structure of 
mathematical logic into the language of analysis. We can therefore obtain 
sentences within an extended axiomatic framework T (such as Zermelo- 
Fraenkel set theory) that are T-equivalent to arithmetical sentences. As a 
result, the translation of logical questions into commonplace mathematical 
problems becomes an essentially mechanical procedure. Diophantine ques- 
tions are "hard"; they deal with discrete, denumerable objects related 
through algebraic equations. Differential geometric questions handle con- 
tinuous, nondenumerable objects with the help of differential equations. 
Yet we have shown that some intractable problems in geometry are difficult 
because they are equivalent to Diophantine problems. Actually we went 
beyond that; we have shown that, given any Diophantine problem, we can 
obtain a whole family of equivalent problems within geometry. Therefore 
we will find within dynamical systems theory infinitely many problems 
which are equivalent not only to Fermat's Conjecture, but also to Gold- 
bach's Conjecture or to Riemann's Hypothesis. 

Fermat's Conjecture is thus a symbol. We have shown that it does not 
stand isolated within the theory of Diophantine equations; equivalently 
difficult questions with a naive presentation may pop up anywhere within 
mathematics and even within any applied mathematical domain, 
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