Proof Theory for Minimal Quantum Logic: A Remark

Mitio Takano¹

Received July 29, 1994

It is remarked that the inference rule $(' \rightarrow ')$ is superfluous for the sequential system GMQL introduced by H. Nishimura for the minimal quantum logic.

1. INTRODUCTION

The purpose of this note is to show that the inference rule

$$(' \to '): \quad \frac{\Gamma \to \Delta}{\Delta' \to \Gamma'}$$

is superfluous for the sequential system GMQL introduced by Nishimura (1994) for the minimal quantum logic. Namely, our goal is to prove the following theorem.

Theorem. If a sequent is provable in GMQL, then it is provable in GMQL without $(' \rightarrow ')$.

Remember that the antecedent Γ and the succedent Δ of the sequent $\Gamma \rightarrow \Delta$ are finite sets of formulas.

2. AUXILIARY SYSTEM AND LEMMAS

For the proof of the above theorem, we introduce the auxiliary system GMQL[#], which is obtained from GMQL by deleting the inference rule $(' \rightarrow ')$ as well as

$$(' \rightarrow)$$
: $\frac{\Gamma \rightarrow \Delta}{\Delta', \Gamma \rightarrow}$ and $(\rightarrow ')$: $\frac{\Gamma \rightarrow \Delta}{\rightarrow \Delta, \Gamma'}$

¹Department of Mathematics, Faculty of Education, Niigata University, Niigata 950-21, Japan.

649

while by supplying any sequent of the form $\alpha', \alpha \to \text{or} \to \alpha, \alpha'$ as an additional axiom sequent, and the rules $(\wedge' \to)^{\#}$ and $(\to \vee')^{\#}$ which are described below as the additional ones. Namely, the axiom sequents of GMQL[#] are those having the form: $\alpha \to \alpha$; $\alpha', \alpha \to$; or $\to \alpha, \alpha'$; while the inference rules of GMQL[#] are as follows:

$$\begin{array}{lll} (\text{extension}): & \frac{\Gamma \to \Delta}{\Pi, \Gamma \to \Delta, \Sigma} \\ (\land \to): & \frac{\alpha, \Gamma \to \Delta}{\alpha \land \beta, \Gamma \to \Delta}, & \frac{\beta, \Gamma \to \Delta}{\alpha \land \beta, \Gamma \to \Delta} \\ (\to \land): & \frac{\Gamma \to \alpha \quad \Gamma \to \beta}{\Gamma \to \alpha \land \beta}; & (' \to \land): & \frac{\alpha' \to \Delta \quad \beta' \to \Delta}{\rightarrow \Delta, \alpha \land \beta} \\ (\lor \to): & \frac{\alpha \to \Delta \quad \beta \to \Delta}{\alpha \lor \beta \to \Delta}; & (\lor \to \prime): & \frac{\Gamma \to \alpha' \quad \Gamma \to \beta'}{\alpha \lor \beta, \Gamma \to} \\ (\to \lor): & \frac{\Gamma \to \Delta, \alpha}{\Gamma \to \Delta, \alpha \lor \beta}, & \frac{\Gamma \to \Delta, \beta}{\Gamma \to \Delta, \alpha \lor \beta} \\ (" \to): & \frac{\alpha, \Gamma \to \Delta}{\alpha', \Gamma \to \Delta}; & (\to "): & \frac{\Gamma \to \Delta, \alpha}{\Gamma \to \Delta, \alpha''} \\ (\land' \to): & \frac{\alpha' \to \Delta \quad \beta' \to \Delta}{(\alpha \land \beta)' \to \Delta}; & (\land' \to)^{\#}: & \frac{\Gamma \to \alpha \quad \Gamma \to \beta}{(\alpha \land \beta)', \Gamma \to} \\ (\to \land'): & \frac{\Gamma \to \Delta, \alpha'}{(\alpha \land \beta)', \Gamma \to \Delta}, & \frac{\beta', \Gamma \to \Delta, \beta'}{(\alpha \lor \beta)', \Gamma \to \Delta} \\ (\to \lor'): & \frac{\alpha', \Gamma \to \Delta}{(\alpha \lor \beta)', \Gamma \to \Delta}, & \frac{\beta', \Gamma \to \Delta}{(\alpha \lor \beta)', \Gamma \to \Delta} \\ (\to \lor'): & \frac{\Gamma \to \alpha' \quad \Gamma \to \beta'}{\Gamma \to (\alpha \lor \beta)'}; & (\to \lor')^{\#}: & \frac{\alpha \to \Delta \quad \beta \to \Delta}{\to \Delta, (\alpha \lor \beta)'} \end{array}$$

We will prove the following lemmas in the next section.

Lemma 1. (1) If the sequent $\alpha'', \Gamma \to \Delta$ is provable in GMQL[#], then so is $\alpha, \Gamma \to \Delta$.

(2) If the sequent $\Gamma \to \Delta$, α'' is provable in GMQL[#], then so is $\Gamma \to \Delta$, α .

Lemma 2. If the sequent $\Gamma \to \Delta$ is provable in GMQL[#], then so is $\Delta' \to \Gamma'$.

Lemma 3. (1) If the sequent $\Gamma \to \Delta$ is provable in GMQL[#], then so is $\Delta', \Gamma \to$.

(2) If the sequent $\Gamma \to \Delta$ is provable in GMQL[#], then so is $\to \Delta$, Γ' .

Proof of Theorem. Suppose that the sequent S is provable in GMQL. By Lemmas 2 and 3, S is provable in GMQL[#]. Since additional axiom sequents of GMQL[#] are obtainable from axiom sequents of GMQL by $(' \rightarrow)$ or $(\rightarrow ')$, and since the additional inference rule $(\wedge' \rightarrow)^{\#} [(\rightarrow \vee')^{\#}]$ is justified by $(\rightarrow \wedge)$ and $(' \rightarrow) [(\vee \rightarrow)$ and $(\rightarrow ')]$, S is provable in GMQL without $(' \rightarrow ')$.

3. PROOF OF LEMMAS

Proof of Lemma 1. We will prove this by induction on the length of the given proof. We will mention only (1), and denote by S the sequent α'' , $\Gamma \rightarrow \Delta$.

Case 1. The case where S is an axiom sequent: We divide this case into three subcases according to the form of S.

Subcase 1.1. The subcase where S is $\alpha'' \to \alpha''$: The sequent $\alpha \to \alpha''$ is obtainable from the axiom sequent $\alpha \to \alpha$ by $(\to '')$, and so is provable.

Subcase 1.2. The subcase where S is $\alpha'', \alpha' \rightarrow$: The sequent $\alpha, \alpha' \rightarrow$ is an axiom, and so is provable.

Subcase 1.3. The subcase where S is $\alpha'', \alpha''' \rightarrow$: The sequent $\alpha, \alpha''' \rightarrow$ is obtainable from the axiom sequent $\alpha, \alpha' \rightarrow$ by $(" \rightarrow)$, and so is provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where I is (extension): The inference I has one of the following two forms:

$$\frac{\Gamma_1 \to \Delta_1}{\alpha'', \Gamma_2, \Gamma_1 \to \Delta_1, \Delta_2}; \qquad \frac{\alpha'', \Gamma_1 \to \Delta_1}{\alpha'', \Gamma_2, \Gamma_1 \to \Delta_1, \Delta_2}$$

In the former case, by applying (extension) to $\Gamma_1 \rightarrow \Delta_1$, the sequent α , Γ_2 , $\Gamma_1 \rightarrow \Delta_1$, Δ_2 is provable; while in the latter case, by the induction hypothesis, α , $\Gamma_1 \rightarrow \Delta_1$ is provable, and so is α , Γ_2 , $\Gamma_1 \rightarrow \Delta_1$, Δ_2 by (extension).

Case 3. The case where *I* is $(" \rightarrow)$: We divide this case into two subcases according as the principal formula of *I* is α " or not.

Subcase 3.1. The subcase where the principal formula of I is α'' : The inference I has one of the following two forms:

$$\frac{\alpha, \Gamma \to \Delta}{\alpha'', \Gamma \to \Delta}; \qquad \frac{\alpha'', \alpha, \Gamma \to \Delta}{\alpha'', \Gamma \to \Delta}$$

In the former case, α , $\Gamma \rightarrow \Delta$ is provable clearly; while in the latter case, it is provable, too, by the induction hypothesis.

Subcase 3.2. The subcase where the principal formula of I is not α'' : The inference I has the form

$$\frac{\alpha'', \beta, \Gamma_1 \to \Delta}{\alpha'', \beta'', \Gamma_1 \to \Delta}$$

The sequent α , β , $\Gamma_1 \rightarrow \Delta$ is provable by the induction hypothesis, and so is α , β'' , $\Gamma_1 \rightarrow \Delta$ by $('' \rightarrow)$.

Case 4. The case where I is not (extension) nor $(" \rightarrow)$: Similar to Subcase 3.2.

Proof of Lemma 2. The proof is by induction of the length of the given proof. We will denote by S the sequent $\Gamma \rightarrow \Delta$.

Case 1. The case where S is an axiom sequent: The sequent S has one of the following three forms: $\alpha \rightarrow \alpha$; α' , $\alpha \rightarrow$; and $\rightarrow \alpha$, α' . The sequents $\alpha' \rightarrow \alpha'$; $\rightarrow \alpha'$, α'' ; and α'' , $\alpha'' \rightarrow$ are axioms, and so are provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where *I* is either (extension), $(\land \rightarrow)$, $(\rightarrow \land)$, $(\lor \rightarrow)$, $(\rightarrow \lor)$, $(\rightarrow \lor)$, $(" \rightarrow)$, or $(\rightarrow ")$: All the cases can be dealt with similarly, so we deal only with the case where *I* is $(\rightarrow \land)$. The inference *I* has the form

$$\frac{\Gamma \to \alpha \quad \Gamma \to \beta}{\Gamma \to \alpha \land \beta}$$

By the induction hypothesis, $\alpha' \to \Gamma'$ and $\beta' \to \Gamma'$ are provable, and so is $(\alpha \land \beta)' \to \Gamma'$ by $(\wedge' \to)$.

Case 3. The case where *I* is either $(\wedge' \rightarrow)^{\#}$ or $(\rightarrow \vee')^{\#}$: Similar to Case 2, by applying $(\rightarrow ")$ or $(" \rightarrow)$ in addition.

Case 4. The case where *I* is either $(' \rightarrow \land)$ or $(\lor \rightarrow ')$: Suppose that *I* is $(' \rightarrow \land)$ and has the form

$$\frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{\to \Delta_1, \ \alpha \land \beta}$$

By the induction hypothesis and Lemma 1, $\Delta'_1 \to \alpha$ and $\Delta'_1 \to \beta$ are provable, and so is $(\alpha \land \beta)'$, $\Delta'_1 \to by (\wedge' \to)^{\#}$.

Case 5. The case where *I* is either $(\wedge' \rightarrow)$, $(\rightarrow \wedge')$, $(\vee' \rightarrow)$, or $(\rightarrow \vee')$: Similar to Case 4, by applying $(\rightarrow ")$ or $(" \rightarrow)$ in addition.

Proof of Lemma 3. The proof is by induction on the length of the given proof, too. We will mention only (1), and denote by S the sequent $\Gamma \to \Delta$.

Proof Theory for Minimal Quantum Logic: A Remark

Case 1. The case where S is an axiom sequent: The sequent S has one of the following three forms: $\alpha \to \alpha$; α' , $\alpha \to$; and $\to \alpha$, α' . The sequents α' , $\alpha \to$ and α'' , $\alpha' \to$ are axioms, and so are provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where *I* is either (extension), $(\land \rightarrow)$, $(\rightarrow \lor)$, $(" \rightarrow)$, $(\rightarrow ")$, or $(\lor' \rightarrow)$: All the cases can be dealt with similarly, so we suppose that *I* is $(\rightarrow \lor)$ and has the form

$$\frac{\Gamma \to \Delta_1, \alpha}{\Gamma \to \Delta_1, \alpha \lor \beta}$$

By the induction hypothesis, α' , Δ'_1 , $\Gamma \rightarrow$ is provable, and so is $(\alpha \lor \beta)'$, Δ'_1 , $\Gamma \rightarrow$ by $(\lor' \rightarrow)$.

Case 3. The case where I is $(\rightarrow \wedge')$: Suppose that I has the form

$$\frac{\Gamma \to \Delta_1, \, \alpha'}{\Gamma \to \Delta_1, \, (\alpha \land \beta)'}$$

By the induction hypothesis and Lemma 1, α , Δ'_1 , $\Gamma \rightarrow$ is provable, and so is $(\alpha \land \beta)''$, Δ'_1 , $\Gamma \rightarrow$ by $(\land \rightarrow)$ and $('' \rightarrow)$.

Case 4. The case where I is $(\rightarrow \land)$: Suppose that I has the form

$$\frac{\Gamma \to \alpha \quad \Gamma \to \beta}{\Gamma \to \alpha \land \beta}$$

By applying $(\wedge' \rightarrow)^{\#}$ to $\Gamma \rightarrow \alpha$ and $\Gamma \rightarrow \beta$, the sequent $(\alpha \wedge \beta)', \Gamma \rightarrow$ is provable.

Case 5. The case where I is $(\rightarrow \lor')$: Similar to Case 4, by applying $(" \rightarrow)$ in addition.

Case 6. The case where *I* is either $(' \rightarrow \land)$ or $(\land' \rightarrow)$: The inference *I* has one of the following two forms:

$$\frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{\to \Delta_1, \ \alpha \land \beta}; \qquad \frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{(\alpha \land \beta)' \to \Delta_1}$$

In either case, by applying Lemmas 2 and 1 to $\alpha' \to \Delta_1$ and $\beta' \to \Delta_1$, the sequents $\Delta'_1 \to \alpha$ and $\Delta'_1 \to \beta$ are provable, and so is $(\alpha \land \beta)', \Delta'_1 \to by (\wedge' \to)^{\#}$.

Case 7. The case where I is $(\lor \rightarrow)$: Suppose that I has the form

$$\frac{\alpha \to \Delta \quad \beta \to \Delta}{\alpha \lor \beta \to \Delta}$$

By applying Lemma 2 to $\alpha \to \Delta$ and $\beta \to \Delta$, the sequents $\Delta' \to \alpha'$ and $\Delta' \to \beta'$ are provable, and so is $\Delta', \alpha \lor \beta \to by (\lor \to ')$.

Case 8. The case where I is $(\rightarrow \vee')^{\#}$: Similar to Case 7, by applying $(" \rightarrow)$ in addition.

Case 9. The case where *I* is either $(\lor \rightarrow \lor)$ or $(\land' \rightarrow)^{\#}$: Clear, since the succedent of *S* is empty.

REFERENCE

Nishimura, H. (1994). International Journal of Theoretical Physics, 33, 103-113, 1443-1459.