Proof Theory for Minimal Quantum Logic: A Remark

Mitio Takano¹

Received July 29, 1994

It is remarked that the inference rule (\rightarrow) is superfluous for the sequential system GMQL introduced by H. Nishimura for the minimal quantum logic.

1. INTRODUCTION

The purpose of this note is to show that the inference rule

$$
(' \to') \colon \frac{\Gamma \to \Delta}{\Delta' \to \Gamma'}
$$

is superfluous for the sequential system GMQL introduced by Nishimura (1994) for the minimal quantum logic. Namely, our goal is to prove the following theorem.

Theorem. If a sequent is provable in GMQL, then it is provable in GMOL without ($' \rightarrow$ ').

Remember that the antecedent Γ and the succedent Δ of the sequent $\Gamma \rightarrow \Delta$ are finite sets of formulas.

2. AUXILIARY SYSTEM AND LEMMAS

For the proof of the above theorem, we introduce the auxiliary system $GMOL^*$, which is obtained from $GMOL$ by deleting the inference rule $(' \rightarrow')$ as well as

$$
(' \rightarrow): \frac{\Gamma \rightarrow \Delta}{\Delta', \Gamma \rightarrow} \quad \text{and} \quad (\rightarrow'): \frac{\Gamma \rightarrow \Delta}{\rightarrow \Delta, \Gamma'}
$$

¹ Department of Mathematics, Faculty of Education, Niigata University, Niigata 950-21, Japan.

649

while by supplying any sequent of the form α' , $\alpha \rightarrow$ or $\rightarrow \alpha$, α' as an additional axiom sequent, and the rules $(\wedge' \rightarrow)^*$ and $(\rightarrow \vee')^*$ which are described below as the additional ones. Namely, the axiom sequents of GMQL[#] are those having the form: $\alpha \to \alpha$; α' , $\alpha \to$; or $\to \alpha$, α' ; while the inference rules of GMQL[#] are as follows:

(extension):

\n
$$
\frac{\Gamma \to \Delta}{\Pi, \Gamma \to \Delta, \Sigma}
$$
\n($\wedge \rightarrow$):

\n
$$
\frac{\alpha, \Gamma \to \Delta}{\alpha \wedge \beta, \Gamma \to \Delta}, \frac{\beta, \Gamma \to \Delta}{\alpha \wedge \beta, \Gamma \to \Delta}
$$
\n($\rightarrow \wedge$):

\n
$$
\frac{\Gamma \to \alpha \Gamma \to \beta}{\Gamma \to \alpha \wedge \beta}; \quad (\rightarrow \wedge)
$$
\n($\vee \rightarrow$):

\n
$$
\frac{\alpha \to \Delta}{\alpha \vee \beta \to \Delta}; \quad (\vee \to \wedge)
$$
\n($\vee \to \vee$):

\n
$$
\frac{\Gamma \to \Delta, \alpha}{\alpha \vee \beta \to \Delta}; \quad (\vee \to \wedge)
$$
\n($\vee \to \vee$):

\n
$$
\frac{\Gamma \to \Delta, \alpha}{\Gamma \to \Delta, \alpha \vee \beta}, \frac{\Gamma \to \Delta, \beta}{\Gamma \to \Delta, \alpha \vee \beta}
$$
\n($\neg \to$):

\n
$$
\frac{\alpha, \Gamma \to \Delta}{\alpha', \Gamma \to \Delta}; \quad (\to \wedge)
$$
\n($\neg \to$):

\n
$$
\frac{\alpha, \Gamma \to \Delta}{\alpha, \alpha \wedge \beta}, \frac{\beta \wedge \Delta}{\beta \wedge \beta}, \frac{\beta \wedge
$$

We will prove the following lemmas in the next section.

Lemma 1. (1) If the sequent α'' , $\Gamma \rightarrow \Delta$ is provable in GMQL[#], then so is α , $\Gamma \rightarrow \Delta$.

(2) If the sequent $\Gamma \to \Delta$, α'' is provable in GMQL[#], then so is $\Gamma \to$ Δ , α .

Lemma 2. If the sequent $\Gamma \rightarrow \Delta$ is provable in GMQL[#], then so is $\Delta' \rightarrow \Gamma'.$

Lemma 3. (1) If the sequent $\Gamma \rightarrow \Delta$ is provable in GMQL[#], then so is Δ' , $\Gamma \rightarrow$.

(2) If the sequent $\Gamma \to \Delta$ is provable in GMOL[#], then so is $\to \Delta$, Γ' .

Proof of Theorem. Suppose that the sequent S is provable in GMOL. By Lemmas 2 and 3, S is provable in $GMQL[*]$. Since additional axiom sequents of GMOL[#] are obtainable from axiom sequents of GMOL by $(' \rightarrow)$ or (\rightarrow '), and since the additional inference rule ($\land' \rightarrow$)[#] [($\rightarrow \lor'$)[#]] is justified by $(\rightarrow \wedge)$ and $(' \rightarrow)$ $[(\vee \rightarrow)$ and (\rightarrow')], S is provable in GMOL without $(' \rightarrow')$.

3. PROOF OF LEMMAS

Proof of Lemma 1. We will prove this by induction on the length of the given proof. We will mention only (1), and denote by S the sequent α'' , Γ $\rightarrow \Delta$.

Case 1. The case where S is an axiom sequent: We divide this case into three subcases according to the form of S.

Subcase 1.1. The subcase where *S* is $\alpha'' \to \alpha''$: The sequent $\alpha \to \alpha''$ is obtainable from the axiom sequent $\alpha \rightarrow \alpha$ by (\rightarrow "), and so is provable.

Subcase 1.2. The subcase where S is α'' , $\alpha' \rightarrow$: The sequent α , $\alpha' \rightarrow$ is an axiom, and so is provable.

Subcase 1.3. The subcase where *S* is α'' , $\alpha''' \rightarrow$: The sequent α , $\alpha''' \rightarrow$ is obtainable from the axiom sequent α , $\alpha' \rightarrow$ by (" \rightarrow), and so is provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where *I* is (extension): The inference *I* has one of the following two forms:

$$
\frac{\Gamma_1 \to \Delta_1}{\alpha'', \Gamma_2, \Gamma_1 \to \Delta_1, \Delta_2}; \qquad \frac{\alpha'', \Gamma_1 \to \Delta_1}{\alpha'', \Gamma_2, \Gamma_1 \to \Delta_1, \Delta_2}
$$

In the former case, by applying (extension) to $\Gamma_1 \rightarrow \Delta_1$, the sequent α , Γ_2 , $\Gamma_1 \rightarrow \Delta_1$, Δ_2 is provable; while in the latter case, by the induction hypothesis, α , $\Gamma_1 \rightarrow \Delta_1$ is provable, and so is α , Γ_2 , $\Gamma_1 \rightarrow \Delta_1$, Δ_2 by (extension).

Case 3. The case where *I* is ($" \rightarrow$): We divide this case into two subcases according as the principal formula of I is α'' or not.

Subcase 3.1. The subcase where the principal formula of *I* is α ["]: The inference I has one of the following two forms:

$$
\frac{\alpha, \Gamma \to \Delta}{\alpha'', \Gamma \to \Delta}; \qquad \frac{\alpha'', \alpha, \Gamma \to \Delta}{\alpha'', \Gamma \to \Delta}
$$

In the former case, α , $\Gamma \rightarrow \Delta$ is provable clearly; while in the latter case, it is provable, too, by the induction hypothesis.

Subcase 3.2. The subcase where the principal formula of *I* is not α ": The inference I has the form

$$
\frac{\alpha'', \beta, \Gamma_1 \to \Delta}{\alpha'', \beta'', \Gamma_1 \to \Delta}
$$

The sequent α , β , $\Gamma_1 \rightarrow \Delta$ is provable by the induction hypothesis, and so is α , β'' , $\Gamma_1 \rightarrow \Delta$ by (" \rightarrow).

Case 4. The case where *I* is not (extension) nor $(\alpha \rightarrow)$: Similar to Subcase 3.2 .

Proof of Lemma 2. The proof is by induction of the length of the given proof. We will denote by S the sequent $\Gamma \rightarrow \Delta$.

Case 1. The case where S is an axiom sequent: The sequent S has one of the following three forms: $\alpha \rightarrow \alpha$; α' , $\alpha \rightarrow$; and $\rightarrow \alpha$, α' . The sequents $\alpha' \to \alpha'; \to \alpha'$, α'' ; and α'' , $\alpha' \to$ are axioms, and so are provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where *I* is either (extension), $(\wedge \rightarrow)$, $(\rightarrow \wedge)$, $(\vee \rightarrow)$, $(\rightarrow \vee)$, $({}^{\prime\prime} \rightarrow)$, or $(\rightarrow$ "): All the cases can be dealt with similarly, so we deal only with the case where I is $(\rightarrow \wedge)$. The inference I has the form

$$
\frac{\Gamma \to \alpha \quad \Gamma \to \beta}{\Gamma \to \alpha \land \beta}
$$

By the induction hypothesis, $\alpha' \rightarrow \Gamma'$ and $\beta' \rightarrow \Gamma'$ are provable, and so is $(\alpha \wedge \beta)' \rightarrow \Gamma'$ by $(\wedge' \rightarrow)$.

Case 3. The case where *I* is either $(\wedge' \rightarrow)^{\#}$ or $(\rightarrow \vee')^{\#}$: Similar to Case 2, by applying (\rightarrow'') or $(''\rightarrow)$ in addition.

Case 4. The case where *I* is either ($' \rightarrow \land$) or ($\lor \rightarrow$ '): Suppose that *I* is (' $\rightarrow \land$) and has the form

$$
\frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{\to \Delta_1, \alpha \land \beta}
$$

By the induction hypothesis and Lemma 1, $\Delta'_1 \rightarrow \alpha$ and $\Delta'_1 \rightarrow \beta$ are provable, and so is $(\alpha \wedge \beta)'. \Delta'_{1} \rightarrow by (\wedge' \rightarrow)^{#}.$

Case 5. The case where *I* is either $(\wedge' \rightarrow)$, $(\rightarrow \wedge')$, $(\vee' \rightarrow)$, or $(\rightarrow \vee')$: Similar to Case 4, by applying (\rightarrow'') or $(' \rightarrow')$ in addition. \blacksquare

Proof of Lemma 3. The proof is by induction on the length of the given proof, too. We will mention only (1), and denote by S the sequent $\Gamma \rightarrow \Delta$.

Proof Theory for Minimal Quantum Logic: A Remark 653

Case 1. The case where S is an axiom sequent: The sequent S has one of the following three forms: $\alpha \to \alpha$; α' , $\alpha \to$; and $\to \alpha$, α' . The sequents α' , $\alpha \rightarrow$ and α'' , $\alpha' \rightarrow$ are axioms, and so are provable.

In the rest of this proof, we let I be the last inference of the given proof of S.

Case 2. The case where *I* is either (extension), $(\land \rightarrow)$, $(\rightarrow \lor)$, $({\uparrow} \rightarrow)$, $(\rightarrow$ "), or $(\vee' \rightarrow)$: All the cases can be dealt with similarly, so we suppose that I is $(\rightarrow \vee)$ and has the form

$$
\frac{\Gamma \to \Delta_1, \alpha}{\Gamma \to \Delta_1, \alpha \vee \beta}
$$

By the induction hypothesis, α' , Δ' , $\Gamma \rightarrow$ is provable, and so is $(\alpha \vee \beta)'$, $\Delta_1', \Gamma \rightarrow by \ (\vee' \rightarrow).$

Case 3. The case where *I* is $(\rightarrow \wedge')$: Suppose that *I* has the form

$$
\frac{\Gamma \to \Delta_1, \alpha'}{\Gamma \to \Delta_1, (\alpha \wedge \beta)'}
$$

By the induction hypothesis and Lemma 1, α , Δ'_1 , $\Gamma \rightarrow$ is provable, and so is $(\alpha \wedge \beta)'', \Delta'_1, \Gamma \rightarrow by (\wedge \rightarrow)$ and $('' \rightarrow)$.

Case 4. The case where *I* is $(\rightarrow \wedge)$: Suppose that *I* has the form

$$
\frac{\Gamma \to \alpha \quad \Gamma \to \beta}{\Gamma \to \alpha \land \beta}
$$

By applying $(\wedge' \rightarrow)^*$ to $\Gamma \rightarrow \alpha$ and $\Gamma \rightarrow \beta$, the sequent $(\alpha \wedge \beta)'$, $\Gamma \rightarrow$ is provable.

Case 5. The case where *I* is $(\rightarrow \vee')$: Similar to Case 4, by applying $('' \rightarrow)$ in addition.

Case 6. The case where *I* is either ($' \rightarrow \land$) or ($\land' \rightarrow$): The inference *I* has one of the following two forms:

$$
\frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{\to \Delta_1, \alpha \land \beta}; \qquad \frac{\alpha' \to \Delta_1 \quad \beta' \to \Delta_1}{(\alpha \land \beta)' \to \Delta_1}
$$

In either case, by applying Lemmas 2 and 1 to $\alpha' \rightarrow \Delta_1$ and $\beta' \rightarrow \Delta_1$, the sequents $\Delta'_1 \rightarrow \alpha$ and $\Delta'_1 \rightarrow \beta$ are provable, and so is $(\alpha \wedge \beta)'$, $\Delta'_1 \rightarrow$ by $(\wedge^{\prime} \rightarrow)^{\#}$.

Case 7. The case where *I* is $(\vee \rightarrow)$: Suppose that *I* has the form

$$
\frac{\alpha \to \Delta \quad \beta \to \Delta}{\alpha \lor \beta \to \Delta}
$$

By applying Lemma 2 to $\alpha \to \Delta$ and $\beta \to \Delta$, the sequents $\Delta' \to \alpha'$ and $\Delta' \rightarrow \beta'$ are provable, and so is Δ' , $\alpha \vee \beta \rightarrow$ by ($\vee \rightarrow$ ').

Case 8. The case where *I* is $(\rightarrow \vee')^*$: Similar to Case 7, by applying $($ " $\rightarrow)$ in addition.

Case 9. The case where *I* is either $(\vee \rightarrow')$ or $(\wedge' \rightarrow)$ ^{*}: Clear, since the succedent of S is empty. \blacksquare

REFERENCE

Nishimura, H. (1994). *International Journal of Theoretical Physics,* 33, 103-113, 1443-1459.