Brans-Dicke Models with Time-Dependent Cosmological Term

Marcelo Samuel Berman^{1,2} and M. M. Som³

Received March 9, 1990

More general solutions than those presented by Bertolami are deduced in the Brans-Dicke cosmology, endowed with a time-dependent cosmological term, for a Robertson-Walker metric and a perfect fluid obeying the perfect gas law of state.

Bertolami (1986) introduced in Brans-Dicke cosmology a time-dependent cosmological term, having in mind that it should explain why the present value of Λ is 10⁵⁰ times smaller than in the Glashow-Salam-Weinberg model (Abers and Lee, 1973) and 10^{107} times smaller than in a GUT theory (Langacker, 1981). He solved it for the Robertson-Walker metric, in the $p = 0$ and $p = \rho/3$ cases, where p is pressure and ρ is density. He found the following solution:

$$
\Lambda = Et^{-2} \tag{1}
$$

$$
R(t) = At \tag{2}
$$

where R is the scale factor, t stands for time, and E and A are constants. For $p = 0$, he also found

$$
\phi(t) = \mathbf{S}t^{-1} \tag{3}
$$

where ϕ stands for the scalar field, S is a constant, and the gravitational constant G is given by

$$
G=a\phi^{-1}
$$

¹Department of Astronomy, University of Florida, Gainesville, Florida 32611.

1411

²permanent address: Department of Exact Sciences, Faculdade de Filosofia, Ciencias e Letras da FURJ, 89200 Joinville, SC, Brazil.

³Insituto de Fisica da Universidad Federal do Rio de Janeiro, Ilha do Fundão, CP08528, CEP21945, Rio de Janeiro, RJ, Brazil.

where

$$
a=\frac{4+2w}{3+2w}>0
$$

w is the Brans-Dicke coupling constant, and the positive sign of a is necessary in order that a given mass bend light in the correct direction.

For $p = \rho/3$, Bertolami found

 \mathbf{r}

$$
\phi(t) = \mathbb{C}'t^{-2}, \qquad \mathbb{C}' = \text{const} \tag{4}
$$

In what follows, we shall obtain more general results, solving Bertolami's equations for a perfect gas law of the type

$$
p = \alpha \rho \tag{5}
$$

where α is a constant. Our solutions satisfy relation (1) for Λ , which we take for granted at the beginning. We shall try, for tentative solutions, the constant-deceleration parameter laws studied by Berman (1983) and Berman and Gomide (1988), whose formulas are

$$
H = \frac{\dot{R}}{R} = \frac{1}{mt} \tag{6}
$$

$$
H = DR^{-m} \tag{7}
$$

$$
R(t) = (mDt)^{1/m} \tag{8}
$$

where H is Hubble's parameter; D and m are nonnull constants, and we have

$$
m = q + 1 \tag{9}
$$

where $q = -\ddot{R}R/\dot{R}^2$ = deceleration parameter. Here, dots stand for one time derivative each. Bertolami's (1986) equations are

$$
\frac{\ddot{\phi}}{\phi} + 3 \frac{\dot{R}}{R} \frac{\dot{\phi}}{\phi} + \frac{2\Lambda}{3+2w} - \frac{2\phi}{3+2w} \cdot \frac{\partial\Lambda}{\partial\phi} = \frac{8\pi a}{\rho(3+2w)} (\rho - 3p) \tag{10}
$$

$$
\frac{\dot{R}^2}{R^2} + \frac{k}{R^2} = \frac{8\pi a\rho}{3\phi} - \frac{\dot{\phi}\dot{R}}{\phi R} + \frac{w\dot{\phi}^2}{6\phi^2} + \Lambda \tag{11}
$$

$$
\dot{\rho} = -3\frac{\dot{R}}{R}(\rho + p) \tag{12}
$$

$$
\frac{-8\pi a}{\phi^2} \dot{\phi} \rho + \left(w \frac{\dot{\phi}}{\phi} - 3 \frac{\dot{R}}{R} \right) \frac{\ddot{\phi} \phi - \dot{\phi}^2}{\phi^2} - \frac{3}{R^2} (\dot{R}R - \dot{R}^2) \frac{\dot{\phi}}{\phi}
$$

$$
= \frac{\partial \Lambda}{\partial \phi} \dot{\phi} - 3 \frac{\dot{R}}{R} \left(\frac{8\pi a \rho}{\phi} + \frac{w \dot{\phi}^2}{2\phi^2} - 3 \frac{\dot{R} \dot{\phi}}{R \phi} - \Lambda \right)
$$
(13)

Brans--Dicke Models 1413

We shall try solutions for ϕ of the type

$$
\phi = \mathbf{S}t^A \tag{14}
$$

where A and S are constants. From (12) and (5) , we obtain

$$
\rho = \mathbb{C} t^{-(3/m)(1+\alpha)}, \qquad \mathbb{C} \text{ a constant}
$$

Imposing

$$
A = 2 - \frac{3(1+\alpha)}{m} \tag{15}
$$

we obtain, from (10), (11), and (13), the following conditions for $k = (0, \pm 1)$:

$$
1 + kD^{-2} = \frac{8\pi aC}{3S} - A + \frac{w}{6}A^{2} + E \qquad (16)
$$

$$
A(A-1) + \frac{3}{m}A + \frac{2E}{3+2w} + \frac{4E}{A(3+2w)} = \frac{8\pi a(1-3\alpha)\mathbb{C}}{(3+2w)S}
$$
(17)

$$
\frac{8\pi aC}{S}(3-A) + wA^2 \left(\frac{3}{2m} - 1\right) + \frac{6A}{m} - \frac{9A}{m^2} = E\left(\frac{3}{m} - 2\right)
$$
(18)

If $k = \pm 1$, we must also impose $m = 1$, which means that relation (2) is obeyed in a more general context than Bertolami's.

If $k = 0$, we need not particularize m, and we can find a solution were *E, C/S, w, and A are determinable in terms of* α *and m, which remain* arbitrary.

As we can observe, Bertolami's solution for Λ is valid in the more general approach given here. Berman *et al.* (1989) found the same solution (1) in the static case, and Berman (1990) also retrieved it in another model for the static case. We conclude that the relation

 $\Lambda \propto t^{-2}$

plays an important role in cosmology.

ACKNOWLEDGMENTS

This work was supported financially by CNPq (Brazilian Governmental Agency). The author thanks Dr. Orfeu Bertolami for comments on this manuscript.

REFERENCES

Abets, E. S., and Lee, B. W. (1973). *Physics Reports,* 9(1), 1. Berman, M. S. (1983). *Nuovo Cimento,* 74B, 182.

Berman, M. S. (1990). *International Journal of Theoretical Physics,* 29, 567.

Berman, M. S., and Gomide, F. M. (1988). *General Relativity and Gravitation,* 20, 191.

Berman, M. S., Som, M. M., and Gomide, F. M. (1989). *General Relativity and Gravitation,* 21, 287.

Bertolami, O. (1986). *Nuovo Cimento,* 93B(1), 36.