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Periodicity and Chaos in a Modulated Logistic Map 
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We study the onset of chaos in a logistic map whose parameter is modulated 
nonlinearly. The bifurcation pattern with respect to a parameter/z is obtained 
and the critical value of ~ is seen to be 0.89, where periodicity just ends. Further 
evidence for this regime is obtained from the analysis of the intermittency pattern. 
The stability in the different ranges of p, under repeated iteration is exhibited 
by the values of Lyapunov exponents. Beyond /~ = 0.89, the largest Lyapunov 
exponent becomes positive and the situation turns out to be unstable. Confirma- 
tion comes from a functional analysis of the stable and unstable manifolds which 
touch at ~ = 0.89. 

1. I N T R O D U C T I O N  

The s tudy of  nonl inear  maps  in order  to analyze the behavior  o f  chaot ic  
p h e n o m e n a  started after the pioneer ing work  of  Fe igenbaum (1980). Various 
kinds o f  nonl inear  maps  have been studied and more  interesting features 
have been extracted. A m o n g  various nonl inear  systems are the logistic map 
(May,  1976), the s tandard  map  (Chirikov, 1979), and the quadrat ic  map 
(Collet  and Eckmann,  1980), which have paved  the way for the unders tand-  
ing o f  such intricate behavior.  Interest has grown in higher-dimensional  
systems. A simple method  of  generat ing a higher-dimensional  system is to 
couple low-dimensional  nonl inear  mappings.  It is usually conjectured that  
when such coupl ing occurs (e.g., in a coupled  logistic lattice, a coupled  
neuron-l ike lattice the dynamical  behavior  becomes  much  more  complex  
than in a s ingle-map system and the symbolic  dynamics  exhibits a behavior  
similar to cellular au tomata  (Collet and Eckmann ,  1980). In  this paper  we 
s tudy a h igher-dimensional  system obta ined by modula t ing  the original 
parameter  o f  a logistic m a p  nonlinearly.  Our  analysis explores the road to 
bi furcat ion that  leading to intermittency, the approach  to instability via 
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Lyapunov exponents, and the homoclinic tangency of stable-unstable mani- 
folds, away from the fixed point. 

2. F O R M U L A T I O N  

The mapping  we consider is a logistic one, whose parameter  is also 
modulated nonlineafly via another map and is written as 

Xn+l = 4Anxn(1 - x n )  
(1) 

An+ 1 = 4/~An(1 -An)  

The 1-cycle fixed point  of  this 2D map is given by 

x , = A , _ 3 / x - 1  - - - a  (say) (2) 
4/x - 1 

I f  we linearize the mapping with respect to this fixed point, that is, we set 

x n = x *  + 8Xn 

An = A*+ 8An 

then we obtain 

6 A n + l /  

(3) 

4 ~ ( 1 - 2 A * ) ] \ 6 A , ]  (4) 

So the linear stability of  the system can be analyzed by analyzing the 
eigenvalues of  the matrix, which is nothing but the Jacobian matrix of  the 
original equation (1). Since in the sequel we will be using this in our 
discussion of the Lyapunov exponents in a more elaborate analysis, we do 
not explore it here. 

Instead we go over to the discussion of  the bifurcation diagram drawn 
on a computer  which results from repeated iteration of (1). Figures la  and 
11" plot the resultant values of  xn versus values of  the new parameter  /~. 
The two figures show two different ranges of  values of  ~. In Figure l a  the 
minimum value of ~ is 0.7 and it exhibits the bifurcation pattern for 
0 .7 -< /~ -  0.9. In both figures the situation is similar to the usual logistic 
pattern, but with some asymmetry. The iterated values follow two different 
paths starting f rom/~ = 0.75. Afterward there are repeated bifurcations and 
finally we arrive at a chaotic scene at/~ >~ 0.89, where the ordered structure 
ceases to exist. To confirm our observation, we next plot the intermittency 
curve for the modulated map. In this case some value is preassigned and 
repeated iterated values of  (x, ,  An) are obtained. We have plotted these 
values of  xn against n. For example,  in Figure 2b, where /~ = 0.89, after 
some initial disorderliness, the map shows periodic character. But as /~ is 
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Fig. 1. Bi furca t ion  d i ag ram  for the  m o d u l a t e d  logistic map .  
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b)  
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Fig. 2. 
. . . . . . .  ,x n 

In t e rmi t t eney  curve for  the  m o d u l a t e d  logis t ic  m a p  for  (a) ~ = 0.89, (b) /~ = 0.898, 
( e ) /~  = 0.899. 
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increased to 0.898 the pattern changes totally and we observe a series of  
periodic and chaotic regimes. Next we set/z to 0.899, whence the situation 
becomes more chaotic. These observations justify the observation that the 
periodic behavior ends at/~ = 0.89 and the chaotic situation starts after that. 

We next explore the structure of stable and unstable manifolds away 
from the fixed point. For this analysis we convert this coupled system to 
the form 

with F given as 

Xn+l ~ Yn 
(5) 

Yn+l = F ( l ~ ,  x . ,  y.) 

2 y .  1 - y .  4x.(1 - x . ) - y .  
F = / x - -  

x. 1 - x .  x.(1 - y . )  
(6) 

We first set up the functional equations for the invariant curves (IV,) stable 
manifold and (Wu) unstable manifold. We seek them in the form 

y = f ( x )  

x = g(y) 
(7) 

where we have omitted the suffix n. It is then easy to observe that f ( x )  satisfies 

x2(1 -x)Zf[f(x)]  =/zfZ(x)[  1 -f(x)][4x(1 - x ) - f ( x ) ]  (8) 

and the equation for g is 

{ ~y2 1 - y  4 g ( y ) [ 1 - g ( y ) ] - y ~  
Y=g ~ y )  1 - g ( y )  g ( - - ~ - ~ y ) ]  J (9) 

If  we now set (Feigenbaum, 1980) 

X = X * + ~  

y =y*+37 

so that 

(10) 

y = f ( x ) - - f ( x * + ~ ) = y * +  Y~ akY~ ~ (say) 
k = l  

then from (11) we get 

a~(a 4-  2a3+ a 2 ) + al/x ( - 5  a2 + 16a 3 - 12a 4) 

- - / x  ( 8 a  4 --  12a 3 + 4 a  2) + 2a 2 - 6a 3 + 4 a  4 = 0 

(11) 

(12) 
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whose roots are 

a~-= 2 ( 2 / * -  1) (13) 

2/* - 1 
O~ 1 - -  

/* 

For  a similar analysis of  x = g ( y )  we set 

x = g ( y )  = g (y*+37)  = x * +  Y, /3k37 k (14) 
k = l  

The equat ion for/31 is 

2/321(2/, - 1) 2 -/31(2/* - 1)(2/* + 1) +/* = 0 (15) 

whence/31 has two values, 

/ 3+_  /* /37 = 1 (16) 
2/* - 1 '  2(2/,  - 1) 

Higher -order  coefficients 32, /32, etc., can also be de termined from the 
expans ion  o f  the funct ional  equation.  So finally we set 

3 7 =  0s O~2X2"~ O(3X3-~ - "  �9 �9 
(17) 

=/3137 + / 3 2 P  2 +/3337 3 + "  "" 

It is interesting to note  that in each case the lowest order  terms yield the 
fixed point  (x*, y*) as a check for  consistency. 

The equat ions for  32,/32 are 

32{(0~ 1 ~- 32)a2(1 - a ) 2 + / *  [a2(1 - a) + a2(3 - 4 a ) ( 3 a  - 2 ) ] }  

= / * { - 4 a 2 ( 1 -  a)  + (4 - 8a - eq) [2aa l (1  - a)  - 31 a2] 

+ (3a - 4a2)(1 - 3 a ) a  2} 

and {[ ]2 
/* (3 - 4 a  - 4 i l i a  --2/81) 4/* (2a/31-- /31+2--3a)  ( l - - a )  2 /32 1 - - a  

+4/*/31 ( 2 a -  1 ) -  ~/*fl;2 (2a -- 1)} 
1- -a  ( 

_ _ 4/* [ / 3 ~ ( 2 a _ 1 ) ( 2 a _ 3 a 2 ) + / 3 1 a ( 1 _ a ) ( 1 _ 3 a ) _ / 3 3 a 2 ( 1 _ a )  ] 
a2(1 -- a)  2 

/* [ 2 / 3 2 ( 1 _ 2 a ) a + 6 / 3 2 x ( 1 _ a ) ( 2 a _ 1 )  
+ a ( 1 - a )  3 

+3/31(1 - a)  2 - 3/31a (1 - a)  - 4/33a(1 - a ) ]  (18) 

In this way one can determine the coefficients al,/3i as required,  by keeping 
terms cubic in (2, 37) in equat ions (11) and (14). In Figure 3a we have fixed 
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Fig. 3. Diagrams for the stable and unstable manifolds W s and W, for various values of the 
parameter p, (a)/~ = 0.88, (b) p~ -- 0.89 (note the homoclinic tangency between the stable and 
unstable manifolds for the critical value of p,), and (c) ~ = 0.891. 

/z = 0.88; the  curves for  f(x)= IV, and  g(y)= Ws do  not  touch.  In  F igure  
3b the va lue  o f / z  is f ixed at /z = 0.89, and  the curves f(x) and  g(y) j u s t  
touch.  In  F igure  3c, /x is fu r ther  inc reased  to 0.891, and  the curves cross 
each  other .  These  obse rva t ions  fur ther  conf i rm the obse rva t ions  r ega rd ing  
the  zone  o f  pe r iod ic i t y  a n d  chaos  in the  m o d u l a t e d  logis t ic  map .  

Las t ly  we cons ide r  the  p r o b l e m  of  the  de t e rmina t i on  o f  L y a p u n o v  
numbers .  M e y e r  (1986) and  Berry (1978) de t e rmine  the form o f  the  reg ion  
o f  the  a t t r ac to r  set. A t t r ac to r s  can  exhib i t  a wide  var ie ty  o f  shapes  a n d  it 
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Fig. 3. Continued. 

is to be expected that the complexity of  these shapes will be related in some 
way to the relative amount  of  stretching and compression. For a two- 
dimensional discrete map 

Xn+l=h(x. ,yn)  

Y,,+1 = k(x . ,  y.)  

we can linearize about some exact orbit 

(x0, Yo) ~ (Xl, Yl) ~ "  " " (x. ,  y . ) - > - - .  

to obtain the error propagat ion equation 

~X.+I = A . 3X .  

as in equation (4), where 

= k a y . /  

with the Jacobi matrix 

A =(Oh/Ox.  Oh/Oy.] 
\Ok/Ox. Ok/Oy./ 

(19) 

(20) 

(21) 

is evaluated for each iteration at the point (x. ,  y . )  on the exact trajectory. 
It is useful to think of  the solution of the equation 

t ~ X n  = A n _ I A , ~ _ 2  . . . , Ao 6Xo = J,~ 6Xo 
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Fig. 4. Lyapunov coefficient for the modulated logistic map for (1) /z =0.9, Xo=Ao=0.4; 
(2) /~ =0.9, Xo=Ao=0.7; (3) /z =0.89. 

in terms of a matrix J .  which is composed of the product  Ao, A 1  �9 �9 �9 A n - 1 .  

The eigenvalues o f  J .  vary with n, as do the eigenvectors, and are obtained 
by solving 

det[J.  - o ' (n ) I ]  = 0 (22) 

Lyapunov exponents X1, X2 are then defined by assuming that 

o'i(n)- .->e nx' a s  n - - > ~  (23) 

so that X i - - ( 1 / n ) l n o ' i ( n )  for n large, so the stability of  the system is 
controlled by the sign of X1, X2. I f  XI+Xz = 0, then the mapping is an 
area-preserving one. On the other hand, if both of  the coefficients are 
negative, then the system is stable. And if the larger of  the pair (Xa, X:) 
becomes positive, then it turns out to be unstable. Computat ional  results 
for the present situation are displayed in Figure 4. It is easily seen that at 

= 0.89 the Lyapunov index (in our case the larger of  the two) remains 
negative. But as the value o f /~  is increased further to /z = 0.9 (the initial 
value of the iteration being Xo = )to = 0.4) and in another situation when 
/z = 0.9 but the starting value is Xo = Ao = 0.7, the Lyapunov index converges 
but remains positive, showing the instability of  the system beyond the 
parameter  value/.~ = 0.89. 

3. C O N C L U S I O N  

We have explored the zones of  periodicity and chaos in a logistic map 
whose original parameter  follows a second nonlinear map with /x as the 
parameter.  We have evidence tha t / z  = 0.89 is a critical value, because the 
bifurcation, intermittency, the Lyapunov index, and the stable-unstable 
manifold tangency all show a transition af ter /x  = 0,89. 
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