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Since line defects (dislocations) and point defects (vacancies, self-interstitials, 
point stacking faults) in Bravais crystals can mutually convert, only theories 
which comprise these two sorts of defects can be closed in the sense of general 
field theory. Since the pioneering work of Kondo and of Bilby, Bullough, and 
Smith it is clear that differential geometry is the appropriate mathematical tool 
to formulate a field theory of defects in ordered structures. This is done here on 
the example of the Bravais crystal, where the above-mentioned defects are the 
only elementary point and line defects. It is shown that point defects can be 
described by a step-counting procedure which makes it possible to include also 
point stacking faults as elementary point defects. The results comprise two 
equations with the appropriate interpretation of the mathematical symbols. The 
point defects are step-counting defects and are essentially described by a metric 
tensor g, which supplements the torsion Z responsible for the dislocations. The 
proposed theory is meant to form a framework for defect phenomena, in a similar 
way that Maxwell's theory is a framework for the electromagnetic world. 

1. I N T R O D U C T I O N  

Not  long after the crystal l ini ty of large classes of solid matter  was 
proved by means  of x-ray diffraction, the decisive role played by crystal 

(or lattice) defects was discovered.  Ordered structures other than  solid 
crystals, e.g., l iquid crystals, spin structures,  and  polymers  in certain states, 

were invest igated as well and  again the defects were found  to be of extreme 
impor tance .  This suggests looking at these defects as a very general  

p h e n o m e n o n  within condensed  matter  physics and  trying to develop a 
general  theory for it. The ill:st steps in this direct ion were. done by K o n d o  
(1952) and  Bilby et al. (1955), who used the mathemat ica l  language of 

differential  geometry to show that the u tmost  impor tan t  crystal defect 
dislocation can be unde r s tood  as the discrete vers ion of the no t ion  of  tors ion 
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of  a space, introduced by Cartan in the early 1920s. To understand the term 
"discrete," note that, contrary to the spaces considered in differential 
geometry, a crystal is not a continuum, not even if the lattice constant, say 
a, is considered very small compared with any other length of  interest. In 
fact, a crystal is not defined as a three-dimensional collection of  dense-lying 
material points (to which we also refer as atoms), but the distribution of  
particles in a crystal is such that at each material point three independent 
crystallographic directions are defined along which lattice steps can be 
counted, and so distances between lattice points can be defined. If  then 
one wishes to retain the specific properties of  crystals (as compared, e.g., 
to amorphous structures), but nevertheless utilize the advantages of  a 
continuum or field language, one can use the concept of  the continuized 
crystal (Kr6ner,  1986). This concept is based on a limiting process, in which 
the lattice parameter (or in some cases several lattice parameters) suffer a 
limiting process a --> 0, however under conservation of  the above-mentioned 
crystal characteristics, namely existence of  crystallographic directions and 
countability of  lattice steps. Of course, this makes sense only if also the 
contents of  mass and of  defects are conserved in the limiting process. 

This limiting process is possible for dislocations, but not for disclina- 
tions, since these defects are specified by a finite angle (symmetry angle of  
the crystal) which must not be divided into smaller angles in the limiting 
process. This means that a crystal with disclinations cannot be continuized 
in Euclidean, or, more generally, in fiat space (space without curvature). 
Therefore, disclinations in solid (not in liquid!) crystals are sources of 
curvature (in the sense of  differential geometry) within the otherwise fiat 
crystal, or they are themselves nothing else than such curvatures. It is then 
suggestive to speak of flat crystals and of  curved crystals, a language used, 
e.g., by Kl6man (1981). In this terminology the only elementary (i.e., not 
composed) line defect in fiat crystals is the dislocation. If  all dislocations 
(and point defects, see below) are taken out, then there remains what can 
be called the Euclidean crystal. 

As an illustration of  a two-dimensional curved crystal, cut away from 
a plane primitive cubic crystal a wedge of 90 ~ and, under conservation of  
the lattice spacings, move the so-generated edges together. In this way a 
two-dimensional cone-shaped surface is obtained which can be considered 
as a perfect crystal in a certain two-dimensional Riemannian space. In this 
case the curvature is singular. 

Obviously, curved crystals are possible only if the curvature is, in some 
sense, compatible with the considered crystal structure--e.g.,  the angle in 
the foregoing example should be 90 ~ and not 70 ~ or 80 ~ . One may imagine 
defects in a curved crystal. However, the curvature itself is not a defect in 
this picture. A curved crystal situation with continuous curvature can be 
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created, for instance, by nonuniform heating up of  a crystal. This work is 
restricted to the investigation of flat crystals. 

As a differential geometrical description, the mentioned theory of 
dislocations resembles the theory of the universe, in particular the general 
theory of  relativity. This suggests looking at a crystal with defects in a 
similar way as physicists look at our universe, namely as a space filled with 
certain objects, which we call elementary particles in the universe and 
elementary defects in the crystal. Here the term "elementary" is used as 
the opposite of  "composed."  There are reasons to believe that the number 
of types of  elementary particles in the universe is finite, and the same can 
be said about elementary defects in crystals, or, more generally, in any 
ordered structure (see below). 

As the particles do in the universe, so also the defects surround 
themselves with physical fields (stresses) through which they interact during 
their motion in their world. Of course, this motion obeys physical laws in 
both cases. The detection and description of these laws is the primary goal 
of  the theoretical physics of  elementary defects. 

There exists an interesting difference between the tWO situations just 
sketched. In our universe we are internal observers who do not possess the 
ability to realize external actions on the universe, if there are such actions 
at all. Here we think of the possibility that the universe could be deformed 
from outside by higher beings. A crystal, on the other hand, is an object 
which we certainly can deform from outside. We can also see the amount  
of  deformation just by looking inside it, e.g., by means of an electron 
microscope. Imagine some crystal being who has just the ability to recognize 
crystallographic directions and to count lattice steps along them. Such an 
internal observer will not realize deformations from outside, and therefore 
will be in a situation analogous to that of the physicist exploring the world. 
This physicist clearly has the status of  an internal observer. 

The concept of internal observer is fundamental. Although he has no 
access to certain information, he does not miss that information which is 
really relevant for the physical situation. In our case of interest this is the 
knowledge about the defects and their "life." Note that the topological 
observer has even more restricted information. For instance, point defects 
in Bravais lattices escape completely his attention. One of the most important 
tasks of  the internal observer is to find out about the possible elementary 
defects in his world. As in the elementary particle theory, this is not at all 
trivial. To find a new elementary defect has a similar significance for defect 
theory as the discovery of  new elementary particles has for their theory. 

The foregoing discussion suggests that the theory of  defects be 
developed in the language of physical field theories. Such theories have 
been particularly successful with the so-called "gauge" or "gauge field" 
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approach. Application of this approach to defects in crystals seems to have 
first been proposed by Turski (1966). Others followed. It has been claimed 
by Kadic and Edelen (1983) and Edelen and Lagoudas (1988) that in this 
way a dislocation and disclination dynamics h a s b e e n  developed. In this 
respect one must raise the following doubts if this theory is supposed to 
describe the physical world of  defects in solid or liquid crystals. As is well 
known, there exists a certain convertibility between dislocations and point 
defects such as vacancies and (self-)interstitials. For instance, dislocations 
moving perpendicular to their Burgers vector (so-called nonconservative 
motion) produce such point defects, and similar processes occur when 
dislocations cut each other. Both modes of  motion are physically real and 
responsible for various effects. Point defects also migrate toward dislocations 
and annihilate there. Analogous effects exist with disclinations in liquid 
crystals. All these effects are not discussed by the mentioned authors and 
are not contained in their theory. A consequence of the facts sketched above 
is that there cannot exist a general theory, e.g., dynamics, of  dislocations 
and disclinations which does not contain also the point defects. Recall that 
for some time the question of  whether or not a closed theory of  electrody- 
namics exists was unanswered. Meanwhile, incidentally thanks to the gen- 
eral gauge idea, it is known that indeed electrodynamics is not a closed 
theory, but rather forms a complex together with the theory of weak 
interactions. 

The above remarks are not intended to dispute the value of the men- 
tioned work, which has shown to a certain degree how the formalism of 
the gauge approach can be applied to the problem of defects in ordered 
structures. In particular, the above authors also have provided a mathemati- 
cal apparatus which is not so commonly known among materials scientists 
and physicists. We can learn from all this the following: A mathematical 
formalism alone cannot lead to physically realistic theories. It has to be 
accompanied by physical investigations, and this requires good insight into 
the physical situation, in particular on the microscale. Only if the gauge 
approach is combined with this insight can it lead to progress in our field. 

The noted gauge theories of defects also suffer from the neglected effect 
that the motion of the defects is always highly dissipative, so that a 
Lagrangian does not exist, at least not in the simple form as the gauge 
principle of  minimal coupling would suggest. A way out might be Anthony's 
thermodynamics based upon a Lagrangian formalism (Anthony and 
Knoppe,  1987). We shall not go further into this question, but discuss a 
problem which in our opinion is basic to the desired defect theory, gauge 
approach or not. This is the field theory of point defects. 

The theory of Kondo and Bilby et al., being correct, makes it plausible 
that also point defects should fit into the scheme of differential geometry. 
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However, point defects have not yet been brought into connection with 
differential geometry in a final convincing manner, whereas the correspond- 
ing problem for dislocations is solved. It is the attempt of the present work 
to provide the desired connection. This will lead to the description of a 
new type of  elementary point defect for which we propose the name point 
stacking fault or elementary shear fault. 

2. VACANCIES AND SELF-INTERSTITIALS AS ELEMENTARY 
POINT DEFECTS IN BRAVAIS LATI'ICES 

At present we are far from a general dynamical theory of defects. In 
this work we are satisfied to develop the geometrical part of the theory in 
which we describe the configurations of Bravais crystals with point defects 
in the language of  differential geometry so that this theory can be combined 
with that of dislocations in a natural way. We restrict our investigation to 
the Bravais crystal, because this crystal has the smallest amount of different 
defect types, but enough to study the general principles. We shall first 
consider the elementary point defects, vacancy and self-interstitial, where 
the term "se l f"  indicates that the atom sitting on an interstitial site is of 
the same sort as the atoms on the regular lattice sites. We have treated his 
problem recently (Kr~iner, in press); therefore, we restrict ourselves to a 
short review. 

The basic idea is that the very definition of the Bravais crystal requires 
step counting along crystallographic directions. We distinguish between 
primitive crystallographic (p.c.) directions, well defined in any Bravais 
lattice, and nonprimitive ones (n.p.c.). To give an example: In the frequently 
encountered face-centered cubic (fcc) crystal, the base vectors of the p.c. 

1 [011], where the figures in brackets are 1 [1103,  ~ [101 ] ,  directions are ~ 
Cartesian vector components,  i.e., referring to the Cartesian base vectors 
[100], [010], [001]. The directions defined by the latter vectors are n.p.c. 
Another n.p.c, system of base vectors is [ i l l ] ,  [111], [ l lT] ,  where T stand 
for -1 .  This notation is very common in crystallography and physics. 

In the following we shall treat the continuized crystal as described, but 
keep in mind always the real crystal with nonvanishing lattice constant. In 
the ideal crystal, which is the undeformed and defect-free crystal, the 
distance between two lattice points can easily be defined just by the step- 
counting procedure along three allied crystallographic directions. Of course, 
we require that the distance of two lattice points be invariant with respect 
to the choice of the "crystallographic system," a notion which is self- 
explanatory. 

We are particularly interested in the distances of lattice points which 
are infinitesimal neighbors judged from the macroscale. If dx k specifies the 
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relative position of  such points in any crystallographic coordinate system, 
then the law of  distance is given by 

ds 2= akl dxk dx I (1) 

In the fcc crystal we have for the (nonprimitive) Cartesian coordinates 
ak~ = ~kt, whereas for the p.c. system defined we have, from ak~ = ek" et (scalar 
product of the base vectors) 

=1  1 2 
(akl) 4 1 1 

(2) 

We remark that noncrystallographic coordinate systems have no meaning 
for the description of  a crystal, at least not from the standpoint of  the 
internal observer who sees the atoms, but not the space in between. 

Imagine now that vacancies of  a certain density are distributed in the 
crystal. Usually, such densities, given by the ratio of  vacancies to atoms in 
the unit volume, are very low, e.g., do not reach more than 1 0  - 3  , say, in 
thermal equilibrium just below melting temperature.  Now the frequency of 
seeing a vacancy along a crystallographic path, measured by lattice steps 
between neighboring vacancies, is the same in the real and in the continuized 
crystal. This is due to the requirement that the content of  mass and defect 
is not changed in the limiting process. We conclude that the number  of  
vacancies along a crystallographic path between two lattice points of  
macroinfinitesimal distance is infinite if the real vacancy density is finite. 
The ratio of  vacancies over the step number  between the two points, however, 
is finite. Introducing the convention that vacancies are omitted from count- 
ing, we see that each vacancy means one step less. 

Now each vacancy sits on a crystallographic lattice site, and thus at 
the junction of three crystallographic direction lines. These might be chosen 
p.c. or not. For the already mentioned p.c. coordinates in fcc crystals we 
have calculated the metric tensor which takes account of  the vacancies as 

g~1 = (1 - N-)2akt(p.c.) (3) 

where N -  is the number  density (number per unit volume of  crystal) of  
vacancies (Kr6ner,  in press). Transformation into Cartesian coordinates 
yields 

g~-t = (1 - N-)2ak, (4) 

which shows that the vacancy, being a crystallographic defect, is isotropic 
in fcc crystals, and more generally in any Bravais crystal. 

If  interstitials rather than vacancies are considered, then a slight compli- 
cation arises, because the interstitials are never on lattice sites, and thus 
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not in the junction of the p.c. coordinates. However, it is possible to find 
allied crystallographic coordinate lines with junctions on interstitial sites. 
It then makes sense to count an extra step at each interstitial in these 
coordinates. In this way one arrives at a metric tensor for a crystal with 
interstitials, 

gk+l = (1 + N+)2akt (5) 

where, as derived, the k, l refer to any coordinates having junctions at the 
interstitial sites. Transformation to Cartesian coordinates yields 

g~t = (1 + N+)2~k~ (6) 

so that also the interstitial appears as an isotropic defect. 
We emphasize already here that the action of  an interstitial can well 

be anisotropic. This, however, is to be described by means of the response 
law whose derivation requires energetic considerations and therefore goes 
beyond the presently employed differential geometry. 

If vacancies and (self-)interstitials are present simultaneously, then the 
resulting metric tensor is 

gkt = (1 -- N -  + N+)2akx (7) 

Obviously, (7) contains the mutual annihilability of vacancies and self- 
interstitials. 

The square root of the determinant of the metric tensor g is equal to 
the volume V of the unit cube, after one atomic volume has been subtracted 
for each vacancy and added for each interstitial. Since the volume Vo of 
the unit cube without defects equals the square root of the determinant of 
a, we can prove with help of  (7) that 

V = ( I + A N ) V o ,  A N = - N §  - (8) 

Equations (7) and (8) give a nice picture of how vacancy and interstitial 
are described in the language of differential geometry. 

3. POINT STACKING FAULTS AS ELEMENTARY 
POINT DEFECTS 

In the last section we introduced a step-counting procedure which 
allowed us to define and measure distances between lattice points with the 
help of  a metric tensor. If vacancies and /o r  interstitials are present, then 
this leads to a change of the metric tensor (akl) in absence of these defects 
[equation (7)]. This change, however, has the quality of an isotropic tensor, 
i.e., of a scalar. If elementary point defects disturb the step counting, thus 
the metric, then it is suggestive to expect a full tensor rather than an isotropic 
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one as a measure of the point defects. So the question arises of whether 
there are perhaps further elementary point defects. We try to show in the 
following that there does in fact exist a further type of point defect, later 
called a "point stacking fault." This defect can be related to a general 
volume-conserving metric tensor so that a full metric tensor is required to 
take into account all elementary point defects. 

A point stacking fault is created if the surface defect stacking fault 
shrinks to a point. In other words: the (surface)stacking fault can be 
considered as surfacewise composed from the elementary point stacking 
faults. For detailed descriptions of the concept of stacking fault see, e.g., 
Seeger (1955), Diehl (1965), and Friedel (1967). 

In this section we investigate the so-called conservative stacking faults 
originally studied by Heidenreich and Shockley (1948). They are of funda- 
mental importance in fcc and close-packed hexagonal crystals. These crystals 
can be described as stacks of close-packed planes of spheres with a stacking 
sequence ABCABCABC...  for the fcc lattice (Figure 1) and ABABAB...  
for the hexagonal lattice. The stacked planes are (111), i.e., their normal is 
the vector [111]. Atoms lying in the same plane are specified by the same 
symbols (A, B, C) in Figure 1. In the full stacking sequence the planes 
specified by A follow one from the other by translations [111]. The corre- 
sponding applies to the planes B and C. Figure 2 shows one of the planes 
(110) of the crystal of Figure 1. The intersection of this plane with the 

A - [1 0] 

Fig. ! .  

(111) - p ~ s  

Stacking sequence (3 planes) of an fcc crystal. A, B, C denote the three positions for 
dense packing of { l l  l }  planes. 
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Fig. 2. Defect-flee (110) plane of  the crystal of Figure 1. Shown are the underground net 
(n.p.c., dashed) and the p.c. coordinate net. 

drawing plane of Figure 1 is given as a dashed line in Figure 1. The crystal 
is in its ideal state. Figure 3 exhibits the crystal represented by the plane 
of Figure 2 after the upper half has been parallel-displaced relative to the 
lower half  by the vector ~ [112]. In this way we have produced a surface 
defect of  which we see the trace only in Figure 3. This defect is the Shockley 
stacking fault. 

In Figure 3 is also sketched (dashed) an underground orthogonal net 
which can be used as a crystallographic coordinate net with primitive base 
vectors ~ [ 112] and �89 [ 111]. Another orthogonal net with base vectors �89 [ 110] 
and [001 ] is also shown. Looking at the plane only, this net can be understood 
as (two-dimensional) primitive crystallographic with respect to the atomic 
positions. In three dimensions, of course, the primitive base vectors of the 
fcc lattice are all of  type �89 (110). 

Figure 4 shows the same crystallographic plane with three stacking 
faults arranged above each other. We have chosen a periodic sequence of 
these faults mainly for illustration. In fact, a random sequence would finally 
lead to the same general result. The underground net is as before. Note 
that not all junctions of  this net are occupied by atoms. The disturbance 
of the lattice by the stacking faults is shown by the primitive, originally 
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( 1 ~ 0 ) -  p / . - e  

Fig. 3. Crystal of Figure 2, with one surface stacking fault. 

rectilinear, net. This net is now rectilinear only between the stacking faults. 
Here the base vectors are still �89 [110] and [001], whereas in the stacking 
faults we see base vectors 1 [221] and ~ [114] (check!). 

In Figure 4 we have also drawn two straight lines which go through 
lattice points in equal distances, namely 8, if we count atoms along the 
distorted p.c. coordinate lines. Eight is the periodicity number of the stacking 
faults. 

Both of  the straight lines belong to one of  the distorted (p.c.) coordinate 
lines. We can draw the corresponding lines for each distorted line and so 
obtain an oblique rectilinear coordinate net (Figure 5). This net is crystallo- 
graphic with respect to the defected crystal. It shows that by the introduction 
of  the stacking faults the crystal has undergone shearings whose average is 
specified by the deviation from the original net of  the now oblique new net. 
The base vectors of this net can be read off from Figure 4. Giving the vectors, 
say e, between equivalent points along the oblique axes the length 8 (the 

periodicity length), we obtain 

e =~(3 [11,2] +~ [111]) = ~[25, 25, 23 
r 

( 9 )  
1 5 e = ~ ( - ~  [119-] + ]  [111]) = ~[1, 1,46] 

2' 
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Fig. 4. Crystal of Figure 2 with three periodically arranged surface stacking faults. 

The values for the metric 

o f  the obl ique net are 

and 

g k ' l '  ~- e .  e 
k ,  i, 

gin' = 1254/482, g2'2 ' =  2118/482 

gl'2' = g2'l' = -42 /482  
0o) 

let =0.738,  le] =0.959 (11) 
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Fig. 5, The p.c. coordinate net of the distorted crystal of Figure 4. The net is not orthogonal. 

C o m p a r i n g  this with 

lel = I11-- 1 

which is the  co r respond ing  base  o f  the undefec ted  crystal,  we see tha t  le I 

is somewha t  longer  than  lel and  le[ slightly smal ler  than  ]el, as is also p roved  

by Figure 4. The  angle,  say cr be tween  e and  e is de te rmined  f rom 
1'  T 

cos a = ( e .  e ) / ( l e  I lel) = 0.026 (12) 

so that  a ~ 88.5 ~ 
The  shear ing of  the originally unpe r tu rbed  crystal can be descr ibed by  

means  o f  a matr ix  B - (BI,) def ined by  

i i i 
e =  Bi,e, B i , = e . e  (13) 
F i i '  
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i 

where the meaning of  e and e is evident. 
i 

Obviously, B and its transpose B t are the sums of three dyadics: 

and 

i i '  B t  ~ . i" 
B = B i , e e ,  B'i,ee (14) 

i i 

B B t i j i ' j '  i ' j '  
�9 = B i , B f a ~ e e  = gi,j,ee --- g (15) 

so that the metric tensor g can be calculated if the matrix B is known 
(compare a corresponding formula in nonlinear elasticity theory.) It is not 
possible to calculate B completely from g, because the rotation part of B 
does not contribute to g. We shall return to this problem later. 

It is interesting to note that, with 

aij  = e . e 
i j 

we have 

det{giy} = det{aij} (16) 

which expresses the fact that the Shockley stacking faults do not change 
the volume. Equation (16), which is exact, can be verified generally. As an 
example, the numerical values of  (10) may be used. 

If  vacancies and interstitials as well as point stacking faults are present, 
then all these together can be described by the full metric tensor g, whose 
determinant takes care of  the (excess) vacancy-interstitial density, whereas 
the remainder is representative of the point stacking faults. Above we have 
proved this in a two-dimensional simplification illustrated by Figure 4. 
There is no doubt that the result extends to three-dimensional crystals. 

So far we have treated surface stacking faults, whereas the main interest 
of  this work lies in elementary defects, and thus in point stacking faults. 
However, if the internal observer runs along the distorted crystallographic 
lines, it is not important that the deviations from the undisturbed crystallo- 
graphic lines occur in equal distances nor that neighboring distorted lines 
have their deviations mutually correlated. This means that as far as length 
measurement is concerned, it makes no essential difference whether the 
elementary point stacking which builds up the surface stacking fault really 
forms a surface fault or is distributed, e.g., at random in the volume of the 
crystal. Hence, the results gained for the surface stacking faults apply 
immediately to three-dimensional densities of point stacking faults. Figure 
6 shows how a distribution of point stacking faults can be represented in 
a somewhat idealized picture. The symbols, double-sided arrows, indicate 
the elementary shears. 
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Fig. 6. Example for the density of point stacking faults (schematic). 

The results of  this section were illustrated on the fcc lattice. There do 
exist stacking faults in other types of Bravais lattices as well. The theory is 
the same, only the numerical values change. 

4. DIFFERENTIAL GEOMETRY OF DISLOCATIONS 
AND POINT DEFECTS 

We shall now show how the elementary point defects can be embedded 
into the differential geometry of affinely connected spaces. As indicated in 
Section 1, we consider flat crystals, i.e., demand that the material geometry 
possesses teleparallelism. 

An essential part of  this geometry can be incorporated into Cartan's 
structure equations, which we copy from Edelen and Lagoudas (1988). A 
collection of  exterior forms 

veAl,  l, F 1 2 2 c A  .... Y~E At, l ,  O EAr,  r (17) 

forms a complete differential system of  degree 1 and class r if and only if 

d r + F ^  v = Z  (18) 

d Y . + F ^ E = O  ^ v (19) 

d F + F ^ F = O  (20) 

d O + F ^ | 1 7 4  (21) 

The mathematical symbols in these equations represent ( r x  r) matrices 
(F, O) and (r x 1) matrices (v, Z) of differential forms of degree 1 (v, F) and 
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2 (E, 0). Here d is the symbol for exterior derivation. If  we consider u and 
F as a priori given quantities, then equations (18) and (20) are definitions 
of  E and O and equations (19) and (21) are integrability conditions which 
are satisfied identically by (18) and (20). The geometrical meaning of 
the occurring quantities is: F, linear connection; E, torsion; @, curvature; 
u, some matrix to be discussed later. 

Here we are interested in flat spaces, i.e., 19=0. Hence equation (21) 
disappears identically, (20) is the teleparallelism equation, and (19) is 
satisfied identically by (18). Equations (20) and (18) are the equations of 
main interest. 

We now use a well-known result of differential geometry, namely that 
any linear teleparallel connection can be represented in the form 

Fk; = a~'oia~,, ak,  a~  = 3k', ak 'A~,  = 6~ (22) 

where A k' is any (n • n) matrix (in our case of interest 3 • 3), and 0i denotes 
partial differentiation with respect to some coordinate system (i) which we 
shall take to be crystallographic and representative for the ideal crystal. 
Also, (i') and (a )  relate to coordinate systems, about which we speak later. 
Equation (22) is easily verified by insertion into (20). 

Using the notation of (22) also in (18) and writing B instead of u to 
conform with our earlier papers, we obtain after a routine calculation, with 

i i '  i '  i i '  i i 
Bk,Bi = t~k', BrBk  ~" t~k ,  01'~--" BrOi (23) 

the fundamental equation 

-BI'OE,'B~k'I + a~o~,,a~,l = "~ i;k, (24) 

which can also be found in Schouten (1954), equation (III. 9.3). Identifying 
B with the matrix of equation (14), we have the additional equation [cf. (15)] 

BI'B~'au = gi'j' (25) 

According to (13), the matrix BI, transforms a system e of base vectors into 
i 

a system e. If e and e are material vectors, then B is a distortion (or 
i '  i i '  

deformation) from e to e. The distortion is a physical process, i.e., indepen- 
i i '  

dent of what system we choose as (i). We may take, for instance, the 
Cartesian system and obtain from (25) 

B I,Bj, = g,7' (26) 

(sum over i from 1 to 3) 
Thus, if BI, is given, we can easily obtain the metric tensor for the 

(dragged along) coordinate system (i'). In Section 3 we introduced this 
tensor as a measure of  elementary point defects. 

The matrix BI, has to do with elementary point defects, whereas the 
matrix A~, introduced in (22) is related to dislocations. It is instructive to 



1234 Kr~ner 

investigate the point defects in the absence of dislocations (A~, = 6~,) and 
vice versa (BI' = 61'). The latter study is found in many texts on the differential 
geometry of  dislocations (e.g., Krfner ,  1981). 

With A~, = t~, the defect equations (24) and (25) become 

and 

(B) 
i '  i " 

- B i  Oti,Bk q = ~'rk" (27) 

BI,BJ,ao = go" (28) 

where the latter can also be written as 

B.  Bt = g (29) 

(B) C 
[cf. (15)]. If  our former results are physically sound, then Erg' and grj' 
must be representative of  the point defects. "No  point defects" means that 
the right-hand side of  (27) vanishes and that of (28), (29) becomes the unity 
tensor. The general solution of (29) then reads B = R, where R is any 
rotation matrix. Substituting this in equation (27) with vanishing right-hand 
side leads easily to the result that R is a spatially constant rotation matrix. 
The occurrence of this matrix is not completely understood. However, it is 

(B) 
clear that 3z and g together represent the point defects except those perhaps 
contained in the constant rotation matrix. It seems that for some reason 
they cannot be seen by the internal observer. 

It is convenient to use for the coordinate net (i') the dragged along 
coordinates belonging to (i). Then it is evident that B describes a kind of 
deformation of  the crystal, which accompanies the introduction of  the 
elementary point defects. This deformation, considered as a field, might 
well be incompatible. In such a case, B contributes to the torsion according 
to (27). 

If  no point defects are introduced, we have BI '=  81' and the defect 
equation (24) becomes 

( A )  . 

A~Ot,A~I = Elk' (30) 

Equation (25) is no longer needed. Note that we have replaced the primed 
coordinate net (i') by the unprimed (i). This is legitimate because the 
material coordinate system (i') is obtained from that of  the defect-free 
crystal by the introduction of point defects. If there are no point defects, 
then (i') = (i). 

Equation (30) is a basic equation of the theory of  Kondo (1952) and 
Bilby et al. (1955), who interpret E as the dislocation density. Again it is 
convenient to consider the coordinate system (i) as crystallographic in the 
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ideal crystal. If  (a )  is a crystallographic coordinate system after dislocations 
have been introduced, then (a )  is anholonomic, as is the system (i') if  it is 
chosen crystallographic in the case of  incompatible B. 

In the absence of dislocations, (30) has the general solution A~ = 0kq5 ~ 
with an arbitrary field th ". This A~ describes a distortion from the ideal to 
a deformed state without dislocations. In this case (a )  is holonomic and 
the distortion is identified as compatible, elastic. This follows from the 
well-known theory of dislocations (e.g., Kr6ner, 1981). 

Obviously, ~b ~ does not contribute to Y~ in (30). It follows that only 
six of the nine functions A~ contribute to the defects, whereas all nine 
functions BI, imply defects. Thus, the totality of elementary point and line 
defects is represented by 15 functions of  positions. The defect equations 
(24) and (25) express the fact that the defects can be produced by certain 
distortion operations A and B which are not elastic. 

5. CONCLUSION 

The defect equation (24) contains two contributions, where the first 
one results from an incompatible distribution of point defects and the 
second one is the dislocation density in the usual meaning. Both terms l o o k  
relatively symmetric, but they are not, because Or, contains B, but not A. 
Incidentally, the first term, but not the second, has the form of an 
anholonomic object (Schouten, 1954). There is the possibility that A = B, 
so that y = 0. This means that certain distributions of elementary point 
defects can annihilate dislocation densities. Further investigation is needed 
to see whether this annihilation is related to the one postulated at the 
beginning of  this paper. Whereas E, like g, is a tensor, and thus capable of 
describing physical quantities, the two separate terms in (24) are not. The 
reason is that in the presence of point defects, the dislocations are not, in 
general, autonomous physical objects, but they mix with point defects, and 
only the sum of  the two terms in (24) represents a physical object. So we 
come to the conclusion that E and g have to be combined into a quantity 
{E, g} which then represents the elementary pointline defects. This reminds 
us of  our early discussion according to which point and line defects can 
mutually convert. It also seems to be related to a discussion by Kunin 
(1986), who distinguishes an affine connection {F, h} from a linear connec- 
tion F, emphasizing that the linear connection misses some degrees of 
freedom. The quantity h is called a tensor by Kunin. We are inclined to 
compare it with our B. The identification of h with point defects, however, 
is not done by Kunin. Detailed investigation of these questions is urgent. 

The theory was developed for an internal observer who has a few 
clearly defined abilities. It is not difficult for him to find the metric tensor 
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in a certain situation with point defects (for dislocations the analogous 
problem was solved long ago). In fact, the internal observer is able to 
recognize the vacancy and the interstitial when, on his step-counting path, 
he arrives at one of the atoms adjacent to the vacancy or interstitial. As 
described, these objects are length defects. Similarly, we have introduced 
the point stacking faults as angle defects, also seen by the internal observer. 
To specify the defect state of his world, this observer only has to count the 
frequency with which all these defects separately appear on his counting 
path. This frequency determines the densities of the defects. The metric 
tensor describing this follows easily. 

We have not discussed the mechanical stability of the point stacking 
faults. These might well be unstable in many cases, depending on the 
material, temperature, pressure, etc. The existence of surface stacking faults 
shows that several or many point stacking faults can mutually stabilize in 
the form of  surface stacking faults. There might be other cases where point 
stacking faults really exist. 

In our investigation of  point stacking faults we have omitted the second 
type of  defects, the so-called Frank stacking faults. These are related to 
plane arrays of  vacancies or interstitials, and hence they are not elementary 
defects. In the transition to point stacking faults they become elementary, 
however related to the vacancies and interstitials, and thus also contained 
in the metric g. The Frank stacking faults often form small tetrahedra. If 
these composed defects shrink to a point, they become single vacancies or 
interstitials, so that also the stacking fault tetrahedra fit in our picture. It 
would be possible to develop our analysis without speaking explicitly of  
vacancies and interstitials, just by including Frank's stacking faults. 

The investigation of  this work shows that there is no closed theory of 
elementary point defects and no closed theory of  elementary line defects 
(dislocations) in Bravais crystals. The theoretical proposition, represented 
in particular by the defect equations (24) and (25), implies a unification of 
the older incomplete theories. To achieve this unification, we had to intro- 
duce elementary defects which so far have hardly, if at all, been discussed. 
They seem to be closely related to a defect called "Verhakung" by Dehlinger 
(1929). This defect was later discarded in favor of the dislocation. 

In this paper the theory was developed for the ordered structure 
"Bravais crystal." It is evident that similar investigations should be done 
for other ordered structures as well. 
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