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A thorough examination of the generalized field theory, formulated by the same 
authors in a previous paper, is being carried out in the absence of feedback 
effects. The results obtained are found to be in complete agreement with those of 
linear field theories of gravity and electromagnetism. Strict functions, which 
serve as indicators of the strength of the two fields, are being identified. This 
study reveals also two interesting results: the first is the classification of tetrad 
vector fields used, the second is the definite appearance of a mutual interaction 
between gravitational and electromagnetic fields. 

1. INTRODUCTION 

In a previous paper (Mikhail and Wanas (1977) referred to hereafter as 
I), the authors were able to formulate a generalized field theory using a 
tetrad space. The field equations of this theory were found to have the same 
strength as those of general relativity. In that paper the gravitational and 
electromagnetic features of the new theory are explored. Various quantities 
of physical interest are identified with the elements of the geometrical 
structure used in the formalism. 

We think that it is of great interest to reveal all possible links between 
the new theory and the classical field theories of gravity and electromag- 
netism. This can be done by applying the new theory to weak fields. In this 
case it is necessary to compare the results of the new theory with those of 
general relativity and Maxwell's theory under similar conditions. It is also of 
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interest to point out that this study has helped in revealing the mutual 
interaction between electromagnetism and gravitational fields. 

In Section 2 ;r162 discuss a method for expanding the derived elements of 
the field, in ascending orders of magnitude. Then, expressing the field 
equations in the same manner, we are able to get a linearized set of field 
equations. In Section 3 we study the solution of these linearized field 
equations. Detailed discussion of the results obtained is presented in Section 
4, and a final conclusion is given in Section 5. 

2. THE METHOD OF LINEARIZATION 

The field equations obtained in (I) are nonlinear in the field variables. 
This nonlinearity is thought to give rise to a feedback effect, in addition to 
the original source of the field. Thus in order to compare the new field 
equations with the classical equations of gravity and electromagnetism, it is 
customary to remove this factor at first. That is to put these equations into a 
linearized form. 

In the new theory, the field variables are the tetrad vectors X#(i,/z= 
. . . .  i 

0, 1,2, 3). The values of these vectors in the Galilean inertial frame of special 
relativity are given by 

~ ~ ~- ~i/x (1) 
i 

where ~i, are the Kronecker deltas. Hence, to get a space which differs 
slightly from the flat space based on (1), we may take the tetrad vectors in 
the form 

} # = 8 i ,  +eh/* (2) 

where c h/~ represents a perturbation term, ~ is a parameter, and h/~ are 
i i 

functions of the coordinates. The parameter e i s  assumed to be of small 
magnitude compared with unity. 

In deriving the new field equations, we have assumed that all physical 
fields are generated by the tetrad vectors ~/~ and their derivatives. Hence, 

i 
we can express each derived element of the field in terms of different orders 
of the parameter ~ in the following manner. If M is any derived member of 
the tetrad, we can express it in the form 

( r )  

M =  ~ e~M (3) 
r 
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(r) 
where r (=0 ,  1,2,3 . . . .  ) is the power of c and M is the coefficient of E'. For 

example, the symmetric tensor gu~(= ~i~iv) using (2), is found to be 

g~ =8~,~ +eye.  +e2h h~ (4) il,*i 

where 

(5) 

(1) (2) 
Thus comparing (4) with (3) we get g~ =y~ ,  g~ = h~ h~. 

The field equations derived in (I) have the form 

E~. = 0  (6) 

where E~. is a second-order nonsymmetric tensor. This tensor can be written 
explicitly, in terms of the tetrad tensors, as 

def 
E.~ = g~L-- 2L.~-- 2g.~C-~/,,-- 2C~C~- 2g. ,~CL~ 

+ 2 C ~  1~,--2g~A ~/~ I,~ 
+ + + +  

(7) 

where the ( + )  and the ( - )  derivatives appearing in this expression are 
defined in the usual manner with respect to the nonsymmetric connection 
F ~ ( =  X"?t .) [the same connection used by Einstein (1929) and Robertson 

i i / t '  
(1932)]; and 

def 
L = ~u gL,,~ 

def 
= 

def 
'~ = F" V '~ A.~ .~-_~. (8) 

def 
q = 

def 
A ~  = g ~ A ~  
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So using (2), we can express each of the tensors on the right-hand side of 
(8), and the field equations (6), in ascending powers of the parameter e in 
the manner indicated by (3). 

3. LINEARIZED FIELD EQUATIONS 

Using the field equations (6), and confining ourselves to linear terms 
only ( r=  1), we get the following results: 

The Symmetric Part. The linearized equations arising from the sym- 
metric part of the field equations (6) can be written, using (5), in the 
following form: 

- - '  ( 9 )  7q2y~, _(y ,o ,o  ~y~ i , Y~o,,~-~Yoo,~) ~, 

where [] 2 is the four-dimensional D'Alembertian operator. Equation (9) is 
identical with that obtained from general relativity in the case of weak field. 
So following Weyl's method (cf. Adler et al., 1975), we get the following 
solution for (9): 

y.~ =q,~, ~ + q,.,. (10) 

where q,~ is an arbitrary four-component function of the coordinates satisfy- 
ing the relation 

o_ yoo.) (11) 

For any arbitrary solution X~, of the field equations (9), we can obtain the 
associated Weyl solution Y~r Besides, since equations (9) are linear, the 
difference between these two solutions will give a third one, namely, 

Y . . = X ~ . - Y ~ .  (12) 

which satisfies the relation 

[32Y~ =0 (13) 

This last equation represents a wave equation, which may be of some 
interest. 
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The Skew Part. Treating the skew part of (6) in a similar manner, we 
get the equation 

(1) (1) (1) 

= C -- C (141 
~v v,p. ,o.,v 

where ~.. is a skew tensor defined by 

+ +  

and -/~.~ is the world tensor corresponding to the Ricci coefficients of 
rotation (Cf. Eisenhart 1927). But the skew part of (6) can be written 
explicitly, according to (3), in the form 

(r) (r) (r) 

e~F = ( r C  - c r C  (15) 

where 

and 

def 

def 
Z.~ -- ~/~ +~,~ (16 t 

The fight-hand side of (16) are skew tensors defined by 

def 

def 
'Ore , = C a A a t ~ v  

Now from (14) and (15) we can see that ~/~, ~ have no linear terms. This 
result will be discussed later. 

The current vector density was defined in  (I) as 

where 

~-" ~f  ~'~, ~ (171 

def * 
~ = ?~F ""  '14  ll) (18) 
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It is to be noted that, in the linearized theory, raising and lowering of 

indices are carried out using Kronecker deltas; and the determinant h will 

have the value 

* ( ) h = 1 +c h o + h 1 + h 2 q- h 3 (19) 
0 1 2 3 

So the vector density (17) will be reduced to the vector J"  itself, and using 
(14), we can write (17) in the following linearized form: 

(I) (I) (I) 

Jr : C~, , , -  C~, ,~ (20) 

Contracting (9) and using (5), we get 

h~,~= h~,~ 

But expanding c~ using (2), we get 

O) 

So using (21), we get 

O) 
G,. =0 

(21) 

(22) 

Substituting from (22) into (20), we get 

(i) (i) 

D2q=J. (23) 

4. DISCUSSION 

(a) The previous treatment shows that some results of the new theory, 
in its linearized form, are classically known. 

The so-called material-energy tensor T~, of the new theory has been 
found to satisfy the relation 

T~ ,  = 0  
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where 

def def I " " 

T, = g ,  A + g % - - o u ,  , A = ~ ( o - - ~ )  (24) 

The tensors 

are symmetric. In the first approximation, covariant differentiation reduces 
to ordinary partial differentiation, and thus (24) can be reduced to the 
classical form of the law of conservations of matter-energy. 

Also in the new theory the current vector density ~- ~ has been found to 
satisfy the identity 

~-",.-0 (25) 

Tbds identity will reduce to the same form as the classical law of conserva- 
tion of charge. 

In the case of static weak fields, equation (9) can be reduced to the 
classical Laplace's equation for gravity when /~=u=0 ;  also equation (23), 
under the same conditions, will be reduced to Poisson's equation for a 
charge distribution (with a special choice of units). 

Taking as usual the symmetric.tensor g~,~ as representing the gravita- 
tional potential, the solution (13) shows that the first-order variations in the 
gravitational potential are propagated in the form of waves with the velocity 
of light. Also equation (23) will reduce in empty space to a wave equation 
showing that the vector c, is also propagated with the fundamental velocity. 
The vector c, has been identified (I) with the electromagnetic potential. The 
results discussed above are exactly similar to those obtained before using 
general relativity and Maxwell's theory. 

(b) We think that there are strong reasons to consider the scalar 
function A, given by (24), as an indicator showing the strength of the 
gravitational field. 

We can easily see from (24), by contraction, that 

A = �89  

Thus T vanishes with A. We also note that the two tensors ~ and ar when 
expressed in powers of c will start with terms in c2~ Hence the scalar A will 
consequently involve only terms of the second and higher orders in c. This 
means that, in the new theory, if we keep only first-order terms in c in the 
field potentials, we get T =  0, and so also A = 0 as a direct consequence. 
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Similarly, as the two tensors ~ ,  ~ start with the terms in c 2, we can 
take the tensor Z~(=~/~ + ~ )  as an indicator showing the strength of the 
electromagnetic field; such that its nonvanishing means that the electromag- 
netic field is strong. 

(c) The above study provides a means for getting some important 
physical characteristics specifying the field under consideration directly 
from the geometrical elements of the tetrad space used. Namely, we can get, 
off hand, a clear idea about the strength of the gravitational field as well as 
the electromagnetic field represented by a certain tetrad space before the 
actual study of the field equations. As a result of this treatment we can 
specify some distinct classes of gravitational fields (denoted by the letter G) 
and electromagnetic fields (denoted by the letter F) according to Table I. 
Possible combinations of the two fields which may be of physical interest 
are classified into two main groups: 

The first group: FOG-0, FOGI, FOGII, FIGII. 
The second group: FOGIII, FIGIII, FIIGII, FIIGIII. 

Models belonging to the first group are expected to show full agreement 
with the classical field theories of gravitation and electromagnetism. Devia- 
tions from classical field theories will only appear when using models 
belonging to the second group. 

More recently, in a trial to describe strong gravitational fields, Moiler 
(1978) has established a generalized field theory based on a tetrad space. He 

Table I 

Indicator Field represented Type 

F~ = 0 No electromagnetic field F0 

F~ v~0 Electromagnetic field, 
Z ~  = 0  not strong FI 

F.~ 4= 0 Strong electromagnetic 
Z ~  4=0 field FII 

R~.~,~o = 0  a No gravitational field GO 

T,~ = 0 Gravitational field in 
A = 0 empty space, not strong GI 

T~ v ~ 0 Gravitational field within 
A =0  a material distribution, 

not strong GII 

T~ ~ 0 Strong gravitational field 
Av~0 within a material distrib- 

ution GIII 

aThe tensor R~,~~ is defined in (I), equation (4.2). 
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failed to obtain results different from those obtained by using orthodox 
general relativity. This is due to the tetrad space he used rather than to his 
field equations. In fact he used in his application a tetrad space of the type 
denoted above by FOGI. We believe that deviations from general relativity, 
if any, can only be discovered if tetrads of the second group are used in the 
testing application. 

(d) A final interesting result of the above study, which may appear for 
the first time, is the mutual interaction between the gravitational and 
electromagnetic fields. This is shown in the condition (22) to be satisfied by 
the electromagnetic potential c~, as a direct consequence of the vanishing of 

(1) 
the scalar curvature R =0, in the first approximation. As the scalar 
curvature R is usually considered to be of a gravitational nature, condition 
(22) expresses the effect of the gravitational field induced on the electromag- 
netic potential. It is of interest to note that a condition similar to (22) is 
usually assumed to hold in Maxwell's classical theory, in order to remove 
the ambiguity in the field equations, while it presents itself, here, quite 
naturally. 

Another interesting feature of this interaction can be seen into the 
following. Expanding c~ in terms of e, up to the first power only, we get 

(1) 
- -  ' ( 2 6 )  c ,  - - y ~ .  ~ - -  ~ y ~ .  ~ - -  h ~. 

g 

The first two terms on the right-hand side of (26) represent the gravitational 
contribution to the electromagnetic potential, since y,~ is the variation in the 
gravitational potential. It is clear that this contribution will be very limited 
in the case of gravitational fields which are not strong (GI, GII). Thus this 
new phenomenon can only be tested in the case of strong gravitational 
fields. 

On the other hand, substituting from (26) into (9) we get 

(l) (1) 
2 - c + ha, (27) [] y , ~ -  ~,,~ + c~,~ + h . . . . .  f, 

g 

The first two terms on the fight-hand side of (27) represent the contribution 
of the electromagnetic field to the gravitational field. This type of contribu- 
tion is not strictly new. A similar type of contribution appeared in studies 
using the Einstein-Maxwell field equations. 
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5. C O N C L U S I O N  

The  above s tudy shows that  the new theory, in its l inearized form, 
covers the domain  of classical linear field theories of gravitat ion and 
electromagnet ism.  The  new theory has given rise to a lmost  all the classical 
known results. Besides, using the new theory, we get two more  new results, 
which are of physical  interest. Firstly, we can determine the strength of the 
field represented by  a part icular  tetrad space. Secondly, we can describe, for 
the first time, in a definite way the mutua l  interact ion between gravitat ional  
and electromagnet ic  fields. 
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