
International Journal of Theoretical Physics, Vol. 24, No. 7, 1985 

Geometrical Interpretation of Ini~nii-Wigner 
Contractions 

Eric  A. Lord 1 

Received February 16, 1985 

The In/bnii-Wigner contractions which interrelate the Lie algebras of the isometry 
groups of metric spaces are discussed with reference to deformations of the 
absolutes of the spaces. A general formula is derived for the Lie algebra commuta- 
tion relations of the isometry group for any N-dimensional metric space. These 
ideas are illustrated by a discussion of important particular cases, which inter- 
relate the four-dimensional de Sitter, Poincar6, and Galilean groups. 

1. INTRODUCTION 

Recently Sanjuan (1984) has investigated the geometrical significance 
of the In6nii-Wigner contractions that interrelate the Lie algebras of  the 
isometry groups of the nine Cayley-Klein planes. We shall relate this idea 
to the projective characterization of metric planes, whereby a metric plane 
is obtained from a projective plane by specializing a conic and its envelope. 
The generalization to higher dimensions will then be described, and finally 
illustrated by a discussion of some particularly interesting special cases. 

2. PROJECTIVE CHARACTERIZATION OF THE 
CAYLEY-KLEIN PLANES 

Let Q be a nonsingular conic in a real projective plane P(2). Call the 
points on Q isotropic points (or "points at infinity") and the tangents to Q 
isotropic lines (or "null lines"). Define the dis tance  between two non- 
isotropic points to be KIn ~(, where X is the cross ratio determined by the 
two points and the two isotropic points collinear with them, and K is an 
arbitrary constant. Define the angle between two nonisotropic lines to be 
K' In X, where X is the cross ratio determined by the two lines and the two 
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isotropic lines concurrent with them, and K' is a constant. The distance 
measure on a line is elliptic or hyperbolic according as the isotropic points 
on it are conjugate complex or real and distinct (two different constants K 
can be used for these two cases). If  the line is isotropic the two isotropic 
points on it coincide and hence all distances on an isotropic line are zero. 
The measure of  angle about a point is elliptic or hyperbolic according as 
the isotropic lines through it are conjugate complex or real and distinct 
(two different constants K'). If  the point is isotropic the two isotropic lines 
though it coincide and the angle between any two lines whose intersection 
is isotropic ("at  infinity") is zero. Lines intersecting at infinity are called 
parallel. The trivial distance measure on an isotropic lines and the trivial 
angle measure about an isotropic point will be called null measures. 

The set of all nonisotropic I~oints and lines now constitute a metric 
plane. The quadric Q is its absolute. 

The foregoing is just a brief sketch of  the standard projective approach 
to metrical concepts. The reader is referred to projective geometry textbooks 
for further details. 

Let the homogeneous coordinates of  a point x in P(2) be denoted by 
x i (i = 1, 2, 3) and let the dual homogeneous coordinates of  a line l be 
denotes by Ii (i = 1, 2, 3). Let e and ~ be two real numbers (nonzero for 
the moment) and, in a given coordinate system, associate with each point 
x the following function of  e and ~7: 

(x) = e~7 (xl) 2 - e (x2) 2 + (x3) 2 (1) 

Associate with each line the function 

~ ( 1 )  = z 2 2 ~711 - 12+ e~713 (2) 

(These functions are determined only up to a positive factor, because of  
the homogeneity of  the coordinates.) The equation ~ (l) = 0 is the envelope 
equation for the conic Q whose point equation is ~ (x) = 0. These equations 
determine the isotropic elements for a metricization. We take the distance 
measure on a line to be 

k l n x  (3) 

and the angle measure about a point to be 

k' 
In X ( 4 )  

r/ 

where X denotes in each case the appropriate cross ratio and k and k' are 
constants. The denominators have been inserted in preparation for the 
contraction process that will give rise to parabolic measures. We find that 
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the distance measure on a line I is elliptic, null or hyperbolic according as 
e~(l)  is negative, zero or positive, and that the angle measure about a point 
x is elliptic, null or hyperbolic according to whether "O~(x) is negative, 
zero or positive. 

In particular the set of all points satisfying ~ ( x ) >  0 and all lines 
satisfying ~ (1 )>  0 constitute a Cayley-Klein plane in which the distance 
measure is elliptic or hyperbolic according as e is negative or positive and 
the angle measure is elliptic or hyperbolic according as r/ is negative or 
positive. 

So far, Q is nonsingular. We can, however, consider deformations of 
the conic Q obtained by varying e and 7/and in particular we can consider 
the limit-is either e or 7/ or both go to zero. Then ~ ( x ) =  0 becomes the 
equation of  a singular conic and ~ (1) = 0 that o f  a singular conic envelope. 
They continue to specify isotropic elements for a metricization. The distance 
measure (3) on a nonisotropic line becomes a parabolic measure in the limit 
e --> 0 and the angle measure (4) about a nonisotropic point becomes para- 
bolic in the limit r/--> 0. With this interpretation, we get all nine Cayley-Klein 
planes: 

The set of  all points satisfying ~ (x )  > 0 and all lines satisfying ~(1) > 0 
constitutes a Cayley-Klein plane in which the distance measure is elliptic, 
parabolic or hyperbolic according as e is negative, zero or positive and the 
angle measure is elliptic, parabolic or hyperbolic, according as ~1 is negative, 
zero or positive. 

The corresponding Cayley-Klein plane will be denoted b,y the symbol 
{e, r/}. (The planes {e, r/} and {ae, f lrl}(a>O , f l > 0 ) ,  are of course 
isomorphic.) 

3, THE LIE ALGEBRAS 

The isometry group of the Cayley-Klein plane {e, ,/} is the group of  
projective collineations on P(2) that preserves the conic Q and its 
envelope. It is easily seen that the corresponding matrix group that acts on 
the coordinate triples is generated by 

o1(i i 
The commutators for the Lie algebra are therefore 

[G2, G3] = - e G  1 

[G3, o , ]  = o2  

[ G1, G2] =-riG3 

(6) 
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(our G1, G2, and (33 are Sanjuan's H, P, and K, respectively). We now have 
an intuitively appealing geometrical interpretation of the various contrac- 
tions of  (6), in terms of  deformations of  a conic and its envelope. 

4. GENERALIZATION TO HIGHER D I M E N S I O N S  

Let Q be a nonsingular hyperquadric in a real P(N). Call the points 
on it, and the p-dimensional  subspaces tangential to it, isotropic. Distance 
measure on all the lines can be imposed as for the case N = 2. There are 
various angle measures. 

Let to be a ( p - 1 ) - s p a c e  and II  a (p+2) - space  containing ( p =  
1 , . . . ,  N -  1). Then an angle measure can be associated with such an (to, f l)  
pair as follows: The angle between two nonisotropic p-spaces containing 
to and contained in 12 is defined to be KIn X, where X is the cross ratio 
that the two p-spaces make with the two isotropic p-spaces containing to and 
contained in l-l. K is a constant, depending only on p and on whether the 
resulting measure is elliptic or hyperbolic. The measure is null if either to 
or II  is isotropic. 

It is convenient to introduce the " ( - 1 ) - s p a c e "  Q (the null space) which 
is contained in every subspace of  P(N) and which is nonisotropic. The 
distance measure on a line 1 is then a measure associated with the (to, f~) 
pair with to = ~ and f l  = 1. 

Denote the homogeneous  coordinates of  a point x in P(N) by x ~ (i = 
1 , . . . ,  N +  1). A ( p - 1 ) - s p a c e  to can be specified by a set of  homogeneous 
coordinates to ~'"$ constructed by skewsymmetrization from the coordinates 
of  p points in to that are not all in a ( p - 2 ) - s p a c e :  

t o i  . . . . . .  ip= Xl[il.,i2.x~, 2 " " " Xpip] (7) 

Let Co, el, �9 . . ,  eN-I be a set of  nonzero real numbers and write 

QN+I := 1 

Q N :~ -- eO 

QN--1 : =  e o e l  ( 8 )  

QN-p : =  ( - - ) P + l e o .  �9 �9 ep 

Q1 := ( - -  )NEo... eN-I 

Associate, with each point x, the following function of the Co,. �9  eN+I: 

~ ( x )  := E Q,(xi) 2 (9) 
i 

More generally associate with each ( p - 1 ) - s p a c e  to(p = 1 , . . . ,  N + I )  the 
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function 

r il . . . ipX2 
Y,  Q i ,  . . . ~ i ~  to  ) 

~(to) := '"'~ (10) 
N + I  

II Qj 
j = N - - p + 2  

(These functions are defined only up to a constant positive factor, because 
of the homogeneity of the coordinates.) It  is convenient to define also 
~ (Q)  = ~ ( P ) =  1, where P is the whole P(N) .  

Let Q be the hyperquadric whose point equation is ~ ( x ) =  0. Then if 
Q is nondegenerate, the equations ~(to) = 0 are the equation for the sub- 
spaces tangential to Q. For N >  2, a nonsingular (hyper-) quadric can be 
degenerate, and in this case the tangent spaces are defined to be those 
satisfying the equations ~ (to) = 0. The denominator in (10) has been inserted 
in preparation for the contraction process. 

The set of  equations ~ = 0 determine all the isotropic elements for a 
metricization. The measure associated with an (to, f~) pair is defined as 

kpln x (11) 
sp 

where X is the appropriate cross ratio and kp is a constant (depending only 
on whether the resulting measure is elliptic or hyperbolic). We find the 
following: 

The measure is elliptic, null, or hyperbolic according as ep ~ (  to ) ~(~).) is 
negative, zero, or positive (statement A). 

Moreover, it is possible to consider the limits are various of the ep go 
to zero. In this way, we arrive at 3 N metric spaces that are generalizations 
of  the nine Cayley-Klein planes. 

The set of  all subspaces of  the P ( N )  that satisfy ~ ( t o ) >  0 constitutes 
a "Cayley-Klein N-space," in which the measure associated with each 
value of p (p = 0 , . . . ,  N - 1 )  is elliptic, parabolic, or hyperbolic according 
as ep is negative, zero, or positive. 

We can denote the Cayley-Klein N spaces by the symbols 

{~o,. . . ,  ~N-1} 
The Lie algebra of the isometry group of { Co,. �9 �9 eN_ 1} can be obtained 

as follows. Let e U denote the n • n matrix with a 1 at the intersection of 
the ith row and j th  column, and zeros in all other positions. These matrices 
generate GL(n) and satisfy 

[ eu, e k l ]  ~-- t~ikeil  - t~l iekj  (12) 

Taking the ep to be all nonzero for the moment, it is easy to see that 
the equation ~ ( x ) =  ~i Qi(x i )  2 is preserved by the linear transformation of 
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coordinates generated by the G L ( N +  1) matrices 

G i j  = - G j i  - -  ( Qieo - Qjeji)/ Qrnax(i,y) ( 13 ) 

(The denominator  is necessary in order to get the correct limit as some of 
the ep go to zero.) The commutation relations for the Lie algebra of  the 
isometry group of {eo , . . . ,  eN-1} are easily obtained. 

We get 

[ Oij, Gk,] = [Qmax(i,j)Qmax(&d-l( QjSjklQmax(i.dGit 

- Qi6,k I Qma~(y,,)l ~ t  + QiSi, l QmaxU, k)[ Gyg 

-O/Sy, lQ~ax(,,k)lG,k) (14) 

5. THE DE s I T r E R  AND MINKOWSKI SPACES 

The content of the previous section can be clarified by considering 
particular examples. Consider the case (eo, el, e2, e3)= (e, 1, -1 ,  - 1 )  in 
P(4). The isotropic points are those whose homogeneous coordinates satisfy 
~ (x )  = 0, where 

s = e(x2 + x2 + x ] -  x2)+ x~ (15) 

According to (14), the generators P~, and J~.~ = (sign e ) G . .  (/z, u = 1 , . . . ,  4) 
satisfy 

[L~, P.]  = ~7..P~. - ~7..P. (16) 

[P., P.] = - e y , ~ .  

where (V~)  = diag(1, 1, 1, - 1). These are the commutation relations for the 
Lie algebras of  the de Sitter groups [SO(4, 1) if e is positive and $0 (3 ,2 )  
if e is negative]. 

The two de Sitter spaces familiar to physicists are those consisting of 
all the points for which ~ ( x ) >  0. They both become Minkowski space in 
the limit e =- 0. The set of  all points satisfying ~ (x )  < 0 constitutes a different 
kind of geometry which [as is seen from the form of  (15)] has no e -> 0 limit. 

The expressions ~(co) given by (10) for lines, planes, and hypersurfaces 
(3-spaces) in a de Sit ter  space are easily written down, and those for 
Minkowski space obtained from them by taking the limit e --) 0. It turns out 
that ~ (co)>  0 corresponds to a timelike subspace co and ~ ( c o ) < 0  corre- 
sponds to a spacelike subspace co. [This is mos t  easily seen by working out 
~(co) for the coordinate axes, coordinate planes, and coordinate 3-spaces 
of  the Cartesian coordinate system in Minkowski space whose axes are the 
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edges of the reference simplex that do not lie in the 3-space at infinity 
x 5= 0.] Therefore, the points of a de Sitter or Minkowski space, together 
with all its tirnelike lines, planes~, and 3-spaces, constitute a Cayley-Klein 
4-space { e + - - } .  Bearing in mind that all the subspaces of a spacelike 
subspace are necessarily spacelike, one can employ statement A of  the 
previous section to deduce that every spacelike 3-space is the Cayley-Klein 
space { e - - } .  This is of course Riemann's elliptic space, Euclidean space, 
or Lobachevski's hyperbolic space according as e is negative, zero, or 
positive. 

Consider now the case (Co, el, e2, e3)= (e, ~, -1 ,  -1) .  The isotropic 
points are those whose homogeneous coordinates satisfy ~ ( x ) = 0 ,  where 

( x )  = erl ( x  2 + x 2, + x 2 ) - ex  2 + x 2 ( 1 7) 

Of course, if 77 > 0 the geometrical situation is the one we have discussed. 
In terms of  

Mi : =  --l•ijkGjk" (sign e~7) 

Li := -Gi4"  (sign e~/) 
( i , j , . . .  = 1, 2, 3) (18) 

Pi := - Gis 

E "---- --045 

equation (14) can be written in the form 

[ M,,  Mj]  = eokMk 

[ M,,  Lj] = eokLk 

[ L,, Lj] = ~qeokM k 

[ M,, PA = Eoke,, 

[L,, Ps] = r/~oE 

[M,, E]  = 0 

[L,, E]  = P, 

[ P', Pi] = eTqeokMk 

[ Pi, E]  = eLi 

(19) 

For 77 > 0 we have the Lie algebras of the two kinds of de Sitter groups 
(e = +1) and the Poincar6 group (e = 0). In the latter case the generators 
M, L, P, and E correspond, respectively, to rotations, boosts, space trans- 
lations, and time translations in Minkowski space. In the limit rl ~ 0, 
Minkowski space turns into the space-time of classical kinematics and the 
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Poincar~ g roup  contracts to the Gali lean group.  Less familiar is the limit 
~7 ~ 0 when E ~ 0. The de Sitter space-t ime turns into a curious space-t ime 
appropr ia te  to classical kinematics in a 3-space o f  constant  curvature.  Its 
Lie algebra is given by setting ~/= 0, e ~ 0 in (19). 
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