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Elementary Particles 

F. Winterberg  1 

Received September 20, 1993 

A dense assembly of  an equal number of  two kinds of  Planck masses, one 
having positive and the other one negative kinetic energy, described by a 
nonrelativistic nonlinear Heisenberg equation with pointlike interactions, is 
proposed as a model for a unified theory of  elementary particles. The dense 
assembly of  Planck masses leads to a vortex field below the Planck scale having 
the form of  a vortex lattice, which can propagate two types of  waves, one 
having the property of  Maxwe11's electromagnetic and the other one the 
property of  Einstein's gravitational waves. The waves have a cutoff at a 
wavelength equal to the vortex lattice constant about ~ 10 3 times larger than the 
Planck length, reproducing the GUT scale of  elementary particle physics. The 
vortex lattice has a resonance energy leading to two kinds of  quasiparticles, both 
of  which have the property of  Dirac spinors. Depending on the resonance 
energy, estimated to be ~ 10 7 times smaller than the Planck energy, the mass of  
one of  these quasiparticles is about equal to the electron mass. The mass of  the 
other particle is much smaller, making it a likely candidate for the much smaller 
neutrino mass. Larger spinor masses occur as internal excitations, with a maxi- 
mum of  four such excitations corresponding to a maximum of  four particle 
families. Other vortex solutions may describe the quark- lepton symmetries of  
the standard model. All masses, with the exception of  the Planck mass particles, 
are quasiparticles for which Lorentz invariance holds, with the Galilei invari- 
ance at the Planck scale dynamically broken into Lorentz invariance below this 
scale. The assumed equal number of  Planck masses with positive and negative 
kinetic energy makes the cosmological constant exactly equal to zero. 

1, INTRODUCTION 

Relativistic quantum field theories lead to a divergent zero-point 
vacuum energy with an co 3 frequency spectrum, which is the only one 
invariant under a Lorentz transformation, but general relativity suggests 
a cutoff of  the zero-point energy at the Schwarzschild radius of  this 

1Desert Research Institute, University and Community College System of  Nevada, Reno, 
Nevada, 89506. 

1275 

0020-7748/94/0600-1275507~00/0 �9 1994 Plenum Publishing Corporation 



1276 Winterberg 

energy, with the Schwarzschild radius equal to the Planck length rp = 
( G h / c 3 )  1/2"~ 10-33cm (G is Newton's constant). Each region in space 
having this length would thereby form a black hole with a mass equal to 
the Planck mass mp = ( h c / G )  ~ /2~  - 10 -5 g, suggesting that space is densely 
filled with Planck-mass black holes (Wheeler, 1968; Hawking, 1978). 
Accordingly, the mass density of the vacuum should be of the order Qv 
m p / r  3 = c S / h G  2 ~ 1095 g/cm 3, large enough to put the mass of the entire 
universe in a cube with the side length of less than 1 fermi. The cosmolog- 
ical constant corresponding to this mass density is Av ~ 1/r 2 ~ 10 66 cm -2, 
whereas observational astronomy suggests a value of the order 
A < 10-54cm -2. Expressed in Planck length units, one has Av "-~ 1 and 
A < 10 -12~ demonstrating the smallness of the cosmological constant. 
Because of its very small upper bound, it has been suggested that A = 0. 

The large discrepancy between the actual value of A and the value 
predicted by quantum gravity demonstrates the existence of a highly 
perfect compensation mechanism. A mechanism of this kind is not un- 
familiar to physics. It is realized in the high degree of electric charge 
neutrality in condensed matter physics. To separate the positive from the 
negative charges in a 1 cm 3 piece of condensed matter would require a 
force of ~ 10 ~5 tons. In analogy, we therefore propose that the observed 
mass neutrality of space is explained by assuming that space is densely 
filled with an equal number of positive and negative Planck masses. But 
in order to avoid the decay of the positive into negative Planck masses, 
the Planck masses must obey an exactly nonrelativistic law of motion. 
Only then does the Hamilton operator commute with the particle number 
operator, conserving the number of both the positive and negative Planck 
masses. We call this hypothesis the Planck aether hypothesis because a 
zero-point energy cutoff at some high energy results in a distinguished 
reference system with the assembly of positive and negative Planck masses 
at rest in this system. A mass neutral vacuum would make the cosmo- 
logical constant equal to zero, and only in regions comparable to the 
Planck length would the mass neutrality be violated, in the same way as 
charge neutrality would be violated in regions comparable to the Debye 
length. 

It is assumed that the Planck masses interact locally through contact- 
type forces as in Heisenberg's nonlinear spinor theory, but are otherwise 
not the source of any field or charge. Long-range fields are rather the result 
of the contact-type interactions, very much as the long-range phonon field 
in condensed matter physics is the result of short-range interactions be- 
tween adjacent atoms. In the proposed model, the Planck masses therefore 
assume the role of a kind of nondestructible Leibnizian monads, with 
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Leibniz's dictum that the monads shall have no windows reflected in their 
being no source of long-range fields. 

A field theory for the Planck masses has to be based on the two Planck 
relations 

G m  2 = hc  (1.1) 

m v r v  c = h (1.2) 

from which one derives the Planck length rv = ( h G / c  3) 1/2 ~ 1.6 x 10 -33 cm 
and the Planck mass m y  = ( h c / G )  I/2 ~ 2.2 x 10 -5 g. 

With the exception of the Planck masses, all elementary particles have 
to be viewed as quasiparticles as quantized modes of the Planck aether. 
With the wave propagation velocity of these modes equal to the velocity of 
light, these quasiparticles obey Lorentz invariance as a dynamic symmetry, 
as in the older pre-Einstein view held by Lorentz, Poincar~, and others, 
very nicely explained in an article by Shupe (1985) for a "water-wave 
world". 

From this viewpoint, special relativity would be invalid near the 
Planck length, but because quantum effects become important there, classi- 
cal gravity would have to be replaced by some kind of quantum gravity. 
No theory of quantum gravity yet exists, but Einstein's gravitational field 
equations suggest that it should lead to a system of "wormholes." More 
recent studies, however, have shown that such a world of wormholes is 
unstable (Redmount and Sven, 1993). This is in addition to the unphysical 
feature of such a world which can bring into close contact regions of space 
and time at a macroscopic scale separated from each other by arbitrarily 
large distances. None of these problems arises in the Planck aether model, 
but for the model to have any chance to reflect physical reality, it must lead 
to Einstein's gravitational field equations, not at the Planck scale, but in 
the asymptotic limit of energies small compared to the Planck energy. It 
will be shown that the model not only can do that, but in addition also can 
reproduce both Maxwell's and Dirac's equations, including a value of the 
typical spinor mass in terms of the Planck mass. 

The Planck aether hypothesis replaces the Lorentz group with the 
Galilei group as the fundamental symmetry. The system of galaxies forms 
an almost crystal-like large-scale structure, not known at the time Einstein 
formulated his special theory of relativity, defining a system at rest with these 
galaxies suggesting a fundamental field, with the matter in the galaxies 
plausibly generated by this field. The idea that the Galilei group rather than 
the Lorentz group is the fundamental kinematic symmetry of nature 
therefore makes a lot of sense. In contrast to classical aether models, the 
Planck aether is not an additional substance, but rather the fundamental 
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field from which all particles and their interactions would have to be 
derived, very much as it was originally envisioned by Einstein and later by 
Heisenberg. 

2. FIELD EQUATION FOR THE PLANCK MASSES 

As the fundamental law describing the conjectured dense assembly of 
the positive and negative Planck masses, a two-component operator field 
equation is chosen, 

ih--~-- = -T-~mpV2~++_ +_2hcrZ(~kt+_qt+_ -~b~qJ~)~O + (2.1) 

with the operators ~b+, ~k*_+ obeying the canonical commutation relations 

[~k+ (r)~b *_+ (r')] = 6(r - r') 
(2.2) 

[~b• (r)l~_+ (r')] = [~O* ! (r)~O~ (r')] = 0 

The coupling constant 2hcr~, of the nonlinear term is explained as 
follows: The expectation value (~,*+ ~b+ ) of  a vacuum densely filled with an 
equal number of positive and negative Planck masses, each occupying the 
volume r~, is 1/2r 3. It thus follows that 2hcr~(~bti ~O ~ ) =  hc/r v = my c2. 
The fundamental law (2.1) can be interpreted as a nonrelativistic nonlinear 
Heisenberg equation, similar to Heisenberg's nonlinear spinor field equa- 
tion proposed by him as a model of elementary particles (Heisenberg, 1954, 
1957). The problem of Heisenberg's relativistic theory, that it had to 
assume a Hilbert space with indefinite metric and hence negative probabil- 
ities, is avoided in a nonrelativistic theory described by (2.1), because it 
always leads to a Hilbert space with a positive-definite metric. 

As a classical field equation, (2.1) can be derived from the Lagrange 
density 

hZ 
~+_ = ihq~*+_ ~o+ -T- ~mp (V~p*) �9 (V~p+) 

1 

T- 2hcrv ~o*+_q~+_ -~o* q~ r +_q~• 

Variation with regard to r  leads to 

ih--~-  = T-~mpVZ~p+ +__2hcr~[~p*+_ q~+ - r  r (2.4) 

The Hamilton density belonging to (2.3) is 

oeF+ = __.~mp(Vcp~:).(V~p+) +_2herr -~cp*icp+ - r  r q~*~r (2.5) 
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With ~_+ given by (2.5), one can derive the quantized Heisenberg equation 
of motion for the field operators ~O + ~O +: 

ih~+_ = [~+, H] (2.6) 

and one finds that (2.6) agrees with (2.1). It therefore follows that the 
quantized equation (2.1) and classical equation (2.4) are of the same form, 
for (2.1) even true for a nonlinear classical field equation. 

Because 

where 

ihlq• = [N+, H] = 0 (2.7) 

(' 
N+ = j$*_+ O• dr (2.8) 

is the particle number operator, the number of each Planck mass species is 
conserved. 

The fundamental law is invariant under global U(1) transformations, 
which, according to Noether's theorem, leads to a conserved current. It is 
the mass current to be expressed by a continuity equation. Because (2.1) is 
exactly nonrelativistic, it is, with the exception of a phase, invariant under 
a Galilei transformation. It is also invariant under the transformations 

$*_+$+ ~ - ~ $ +  (2.9) 

m p  ~ - -  m p  

belonging to the SU2 group. Because the SU2 group is isomorph with the 
S03  rotation group of three-dimensional space, one may see it as the 
reason for the three-dimensionality of position space (von Weizsficker, 
1971, p. 271). 

The fundamental law is not invariant under the Lorentz group and 
also not under any local gauge group. The invariance under these groups 
would, for this reason, have to be derived dynamically. 

3. H A R T R E E - F O C K  A P P R O X I M A T I O N  

To obtain solutions of the nonlinear quantized field equation (2.1), 
suitable approximation methods must be used. Perturbation theory contra- 
dicts the spirit of the theory, because before perturbation theory can be 
applied, a spectrum of elementary particles should be derived nonpertur- 
batively. If the temperature of the Planck mass fluid is close to absolute 
zero, which means that kT  ~ mpc 2, each component is superfluid and is 
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described by a completely symmetric wave function. Under these circum- 
stances, one can use the Har t ree -Fock  approximation. 

In the less accurate Hartree approximation, one sets the expectation 
value of the product of three field operators equal to the product of their 
expectation values, 

t ~ ~n* ,-A 2 

<~ b t  0~- O• > --- r r r#+ (3.1) 

where <~O+> = ~0+, <6*_+>- -q~* +. Taking the expectation value of (2.1), 
one then recovers the classical field equation (2.4). In the more accurate 
Har t ree -Fock  approximation, where the exchange interactions are taken 
into account, one has to consider the symmetric wave function of  two 
identical Planck masses 

~O( 1, 2) = - ~  [q~l (r)q~2(r') + r (r')q~2(r)] (3.2) 
v 

The expectation value for a delta-function-type contact interaction between 
the identical Planck mass particles is 

<~O(1, 2)16(r - r')I~O( 1, 2) ) = 2q~ ~ (r)cp 22(0 (3.3) 

with the direct and exchange integrals making an equal contribution. In the 
Har t ree -Fock  approximation, one therefore has to put instead of  (3.1) 

<O~O_+O_+>_~2q~,_+q~+2 
(3.4) 

In this approximation, one obtains from (2.1) the nonlinear Schr6dinger 
equation 

&o_+ h 2 
ihct-;-- = -T-~--gsY'-V2q~• +2hcrg[2rp*q~+_ _ _ - (p*_v_ q~.v_ lop_+ (3.5) 

Putting 

n_ = q~: ~o+ (3.6) 
_ i h  , 

n+_v+ = +~--pmp [~o +Vqc+ - ~0_+V~0*] 

we can transform (3.5) into the so-called hydrodynamic form 

63v_+ 1 
Ot + (v+ �9 V)v+ = -2cEr3V(2n+_ -nT_) + - - V Q +  (3.7a) 

- - m p  

On+ + V(n+v+) = 0 (3.7b) 
Ot 
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where we have used (1.2). In (3.7a), Q_+ is the so-called quantum potential 

h2 V2(n+),/2 
Q+ = 2mp (n+) I/2 (3.8) 

In most cases where the distances are large compared to the Planck length, 
it can be neglected. The connection between (3.5) and (3.7a) (3.7b) is given 
by 

rp+_=A+_e is+-, A_+>0, 0 _ < S •  

h 
n_+ = A ~ ,  v+ = _ - - g r a d  S+ 

mp 

(3.9) 

showing that curl v_+ = 0. The uniqueness of S_+ requires that 

~ v_+ �9 dr = 0 (3.10) 

but the uniqueness of q~+__ only requires that 

~ v_+ . d r =  +nh/mp, n = 0 ,  1,2 (3.11) 

implying that there can be multiply quantized vortices as solutions of the 
Har t ree-Fock approximation. From the multitude of these solutions, those 
able to describe physical reality must be chosen. In principle, this could be 
done by a variational method. This is a problem similar to the correspond- 
ing one in condensed matter physics, where from atomic wave functions 
one has to find those which can lead to a periodic structure as it is realized 
by nature in the crystal lattice of a solid. In a quite analogous way, we have 
to guess the most likely wave function made up from the wave functions of 
the quantized vortices. 

4. STEADY-STATE VORTEX SOLUTIONS 

For steady-state solutions ~l~t = 0 and by neglecting the quantum 
potential one obtains by adding and subtracting (3.7a) (a, b constants of 
integration) 

v~+ + v ~_ 
2 2c2r~(n+ +n_)  +a  (4.1a) 

v~+ - v  ~_ 
2 = -6cZr3(n+ - n _ )  +b (4.1b) 
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For singly quantized line vortices, one has in cylindrical polar coordinates 

IV+ I = V,p = c(rp/r) ,  r > rp 
(4.2) 

= 0, r < rp 

At r = rp the centrifugal force is balanced by the force of  the quantum 
potential, leading to a finite radius of the vortex core. The continuity 
equation (3.7b) requires that V(n+_) 1 v+_. For a dense assembly of positive 
and negative Planck masses, 9ne has at r ~ o% n+ + n_ = 1/r 3. Because for 
r ~ ,  v + ~ 0 ,  it follows that a = 2 c L  Likewise, since for r ~ o o ,  
n+ - n _  = 0, it follows that b = 0. 

To satisfy (4.1b) for singly quantized vortices, one must have 
v 2+ = v 2_ ; hence 

v_ = i v +  (4.3) 

and 

n + - n  = 0  (4.4) 

The solution v = v+ consists of  two corotating positive-negative mass 
vortices, and the solution v_ = - v +  of two counterrotating positive-nega- 
tive mass vortices. With the value a = 2c 2, furthermore, putting n+ = n_ = 
n+,_ one obtains (by inserting into (4.1a) v~ -- v~,2 with v~2 given by (4.2)) 
for the particle number density distribution inside the vortex, 

n +_ = ( 1/2r ~)[ 1 - ( 1/2)(rp/r) 2] (4.5) 

If space is densely filled with vortices, forming a vortex field of what 
is sometimes called a vortex sponge, the vortices snap and reconnect by 
mutual collisions, with the likely ultimate outcome a lattice of vortex rings. 
In classical hydrodynamics, the lattice of line vortices realized in the 
Karman vortex street has been analyzed by Schlayer (1928), who found 
that a stable configuration exists for a distance of separation between the 
vortices ,-~ 300 times larger than the radius of their core. For  a three-dimen- 
sional lattice of  vortex rings, a stable arrangement with a larger ratio of the 
lattice constant to the vortex core radius is likely because there the vortex 
rings influence each other from all three directions of  space. A stability 
analysis of such a configuration seems to be very difficult, but it might be 
possible that the relevant nondimensional number, the ratio of the lattice 
constant to vortex core radius, can be obtained from experiments in 
superfluid helium, assuming that this number is universal. It also is 
plausible that the radius R of the vortex rings should be of  the same order 
of magnitude as the distance of  separation between adjacent vortex rings. 
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A ring vortex of radius R has a resonance frequency under elliptic 
deformation of the ring given by 

~ v  ~- crp / R 2 (4.6) 

leading to a resonance energy for the positive and negative mass vortex: 

hog~ ~- + _ m p c 2 ( r p / R )  2 (4.7) 

As will be shown below, this resonance energy can explain Dirac spinors as 
excitonic quasiparticles, and their mass in terms of the Planck mass. 

5. LONGITUDINAL WAVES 

For small-amplitude disturbances one obtains by adding and subtract- 
ing (3.7a) and by neglecting Q 

0 
d t  (v + + v _  ) = - 2 c 2 r 3 V ( n  + + n'_) (5.1a) 

3 t  (v + - v _  ) = - 6 c 2 r 3 V ( n  + - n '_  ) (5.1b) 

and for (3.7b) 

3 t  + n•  = 0 (5.2) 

where n'_+ are small disturbances imposed on n_+. Eliminating n'_+ from 
(5.1a), (5.1b) and (5.2), one obtains two wave equations 

~2 
c3t2 (v+ + v ) = c2V2(v+ + v _ )  (5.3) 

6 2 
~t--- 5 (v+ - v_ ) = 3c2V(v+ - v_) (5.4) 

The first of these two describes waves that propagate with c, the second one 
with x/~c. The first wave has the characteristic property of a compression 
wave and couples the vortex rings. The meaning of the other, "fast" wave 
is less obvious. 

For short wavelengths approaching the Planck length, the wave equa- 
tions are modified by the quantum potential. In the limit in which the 
quantum potential dominates, the equation of motion obtained from (3.7a) 
is 

3v_+ 1 
- -  - V Q  +_ (5.5) 

Ot mr, 
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With the help of (5.2), it becomes 

B2v_+ h 2 
Bt 2"= -4m~, V4v =i: (5.6) 

leading to the nonrelativistic dispersion relation for free Planck masses 

co = +_ hk2/2mp (5.7) 

6.  T R A N S V E R S E  W A V E S  

The vortex lattice, resp. vortex field, established below the Planck scale 
can propagate two kinds of waves, one having the property of an electro- 
magnetic and the other the property of a gravitational wave. If  described 
by a lattice of vortex rings, there are two distinct disturbances of the rings 
possible, each leading to a wave, one representing an elliptic deformation, 
the second one a tilting rotation. The wave associated with a tilting 
rotation was analyzed by Thomson (1887), who showed that it leads to a 
transverse wave which for small amplitudes simulates the waves derived 
from Maxwell's equations. The other deformation, as we will show, leads 
to Einstein's gravitational waves. 

In deriving these waves, we present a somewhat simplified derivation. 
We assume that the vortex field can be described by Euler's equations for 
a frictionless fluid. Then let v = {Vx, Vy, vz } be the undisturbed velocity of 
the vortex field and u = {Ux, uy, uz } a small superimposed velocity distur- 
bance, and let us take only those solutions for which div v = div u = 0. 
Going to the continuum limit, the vortex lattice goes from R to rp, where 
rv can be chosen arbitrarily small. The x component of the equation of 
motion for a disturbance u is 

Ou~ _ (Vx + ux) ~(Vx + Ux) (v~ + u~) a(v~ + uA 
Ot Ox By 

O(vx + Ux) 1 ap 
-(v~ + uz) -Oz (6.1) 

Q Ox 

From the continuity equation div v = O, one has 

avx + vx BVy Bv~ 
VXB x -~-y + vx-~-z = 0 (6,2) 

Subtracting (6.2) from (6.1) and taking the y - z  average, one finds 

BU__x.x= B(v-~-b'~x) B(v--~'-~) (6.2a) 
Bt By Oz 
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and similarly, by taking the x - z  and x - y  averages, 

where 4'x = - vy-~/2v 2, C~y 
the form 

OUy__ O(-V"--xDy ) ~(VzVy ) (6 .2b)  
at Ox Oz 

OUz_ O(VxV~) O(v--~) (6.2c) 
Ot Ox Oy 

With the condition div u = O, one obtains from (6.2a)-(6.2c) that 

Vil) k = --  OkU i (6.3) 

Taking the x component of  the equation of  motion, multiplying it by 
vy and then taking the y - z  average; taking the y component multiplied by 
Vx and then taking the x - z  average; and finally subtracting the first from 
the second equation, one finds 

~.~(1)xVy)= 2{OUy Ou~) (6.4) 

__ 2 2 is the average microvelocity of  the vortex field. where v ~ = v~ - Uy -~" l) z 
Putting ~5~ = -VxVy/2V 2, we find that (6.4) is just the z component of  

O4, 1 
- -  = - curl u (6.5) 
0t 2 

= - v - ~ / 2 v  2. Equations (6.2a)-(6.2c) then take 

011 
- -  = - 2 v  2 curl ~ (6.6) 
0t 

Elimination of  t~ from (6.5) and (6.6) results in a wave equation for u, 

- ( 1 / v  2) O211/Ot 2 + V2U = 0 (6.7) 

In the continuum limit, making the transition R ~ r p ,  one has for the 
microvelocity v 2 = c 2. In this limit (6.7) describes a transverse wave propa- 
gating with the velocity of  light c. In reality, though, R ,~ 103rp, which 
means that the equation describing this wave would break down at an 
energy corresponding to the scale R, that is, at an energy of  the order 
1016 GeV, the energy of  the grand unification scale. 

With v = c and putting u =  E and ~ = - ( 1 / 2 c ) H ,  we find that (6.5) 
and (6.6) have the same form as the two Maxwell vacuum field equations 

1 0H 
. . . .  curl E (6.8) 

c 0t 

1 0E 
- curl H (6.9) 

c at 
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To derive the second transverse wave mode, we add (6.2) and (6.1) 
and take the average over x, y, and z: 

~u__~x = ~v2 ~v~vy OVxV~ (6.10a) 
~t Ox Oy Oz 

and similarly 

Ou___~y = OV2y gv -~  OVyVx (6.10b) 
Ot Oy Oz ~3x 

Ou__~ = _ Ov_~2~ _ ~v~vx Ovzvy (6.10c) 
c~t c3z 3x c3y 

Combining (6.10a)-(6.10c) with the condition div u = 0 leads to 

dE 
OxiOx~ (vivk) = 0 (6.11) 

and for (6.10a)-(6.10c) one can write 

Ouk O 
(v--~) (6.12) 

~3t Ox~ 

Multiplying the v~ component of the equation of  motion with Vk and 
vice versa, its Vk component with v~, taking both, and adding the average, 
one finds 

0 2fOu~ euk~ 
= - v  + (6 .13)  

~t Oxl J \oxk  

From (6.12) one has 

2u k c~ 
at 2 ~t~x~i (vivk) (6.14) 

and from (6.13) 

dx,c~t (V~Vk) = \Oxk ~xt + c3x~ J = Ox 2 (6.15) 

the latter because of  div u = 0. Eliminating ~ from (6.14) and (6.15) and 
putting as before v2=  c z finally results in 

O2Uk __ C 2 OZuk 
Ot 2 Ox 2 (6.16) 

o r  

10Zu 
V2u - c-- 5 ~3t--- 2 = 0 (6.17) 
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To show that (6.17) can describe a gravitational wave propagating in the x 
direction, one has to compare it with the line element of  a linearized 
gravitational wave (Landau and Lifshitz, 1975) 

ds 2 = ds~ + h22 dx~ + 2h23 dx2 dx3 + h33 dx 2 (6.18) 

where 

h22 = - h33 = f ( t  - x/c),  h23 = g(t - x /c)  (6.19) 

w i t h f a n d  g two arbitrary functions, and ds 2 the line element in the absence 
of a gravitational wave. We compare this result with the deformation of an 
elastic body described by a distorted line element as follows (Landau and 
Lifshitz, 1970, p. 2): 

ds 2 = ds~ + 2eik dxl dsk (6.20) 

where 

elk = 2 \c~xk + ~x~) (6.21) 

= (~x, ey, ~z) is the displacement vector, which is In (6.20) and (6.21) 
related to the velocity disturbance vector u by 

u = - -  (6.22) 
Ot 

In an elastic medium, transverse waves obey the wave equation 

1 02~ 
V2~; c2 ~ = 0 (6.23) 

Because of  (6.22), this is the same as (6.17). From the condition div u = 0 
and (6.22) it also follows that div ~; = 0. 

For  a transverse wave propagating into the x-direction, ex = el = 0. 
The condition div ~; = 0 then leads to 

~2  0~3 
Ox--2 + ~x3 = e22 + e33 = 0 (6.24) 

hence 

e33 = - e22 (6.25) 

The identity with a gravitational wave follows by putting 

2~ik = hik (6.26) 

and by assuming that a vortex sponge behaves under symmetric deforma- 
tions like an elastic body. 
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The reason a vortex sponge (resp. lattice of vortex rings) can propa- 
gate two types of transverse waves is that the tensor ViVk describing the 
microturbulence of the vortex field has a symmetric, vivk = VkV~, and an 
antisymmetric, v~vk = - v k v ~ ,  part. A vortex field of this kind is only 
possible in a frictionless fluid where small-scale vortices can occur at high 
wave numbers and, for this reason, plays no role in classical turbulence 
theory describing a fluid with friction. It is through the quantum mechani- 
cal phenomenon of superfluidity, not known at the time William Thomson 
put forward the hypothesis of a frictionless, fluidlike aether, that a micro- 
turbulence with an antisymmetric part is possible at all. Because a vortex 
sponge can have both a symmetric and antisymmetric part, it has two 
transverse wave modes. It is for this reason that it can in a unique way 
attain Einstein's goal of unifying the gravitational with the electromagnetic 
field, and we see that for this unification to be possible, quantum theory 
plays an important role. 

7. COUPLING TO MATTER 

Both Maxwell's and Einstein's equations describe fields coupled to 
matter, Maxwell's equations through the electric charge (resp. four-current) 
and Einstein's equations through the mass (resp. energy-momentum 
tensor). 

In the Planck aether model, the phenomenon of charge can be 
understood to result from the quantum potential. The quantum potential 
leads to a finite radius of the vortex core, equal for the positive and 
negative mass component of the vortex, but it can do more than that. In 
the combination (1 /mp)VQ+ it depends on m~,, independent of the sign of 
mp, and for this reason can break the symmetry between the positive and 
negative Planck masses. The quantum potential describes the zero-point 
quantum fluctuations of the Planck masses bound in the vortex, in particu- 
lar near the core of the vortex, where these fluctuations give rise to an 
energy density e, which by order of magnitude is 

lel ,,~ hc/r 4 (7.1) 

By order of magnitude, it is also equal to the energy density g2 that a 
Newtonian gravitational field g of a Planck mass mp would have at the 
distance rp: 

g ,,~ x / ~ m p / r  ~ (7.2) 

(because Gm~, = hc). The interpretation of this result is as follows: The 
zero-point energy fluctuations of the Planck masses bound in the vortex 
filaments are the source of virtual phonons setting up a Newtonian-type 
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gravitational force field, with the coupling constant Grn 2 = hc. The gravita- 
tional charge is, for this reason, reduced to the zero-point fluctuations of 
the Planck masses bound in the vortices. The gravitational field produced 
by the zero-point fluctuations depends on the sign of rap, as does the 
kinetic energy mpv2/2.  It therefore explains the principle of equivalence, 
which says that a positive mass attracts both positive and negative masses, 
and likewise a negative mass repels both positive and negative masses. 
Because the field energy resulting from the gravitational interaction of a 
positive with a negative mass is positive, this positive energy must show up 
as an excess of the positive over the negative kinetic fluid energy. This is a 
higher-order effect, resulting from the zero-point collective excitations of 
the positive and negative mass components. For a densely packed assembly 
of positive and negative Planck masses, the energy density of one species of 
Planck masses would by itself be very huge ( ~ 1095 g/cm3), explaining why 
a very small imbalance in the positive over the negative kinetic fluid energy 
can give the double vortex a net, but in comparison to the Planck mass, 
small positive mass. 

In the absence of an interaction between its positive and negative 
masses, the mass of each positive-negative mass double vortex vanishes. 
Space can therefore without the expenditure of energy be filled with a large 
number of such vortices. If the gravitational interaction is switched on, the 
double vortices assume a positive mass, but the mutual gravitational 
interaction energy between all the double vortices is negative. Because the 
total energy must remain zero, this simply means that the positive energy 
of the double vortices is compensated by the negative gravitational interac- 
tion energy with other double vortices. As a consequence, the cosmological 
constant remains zero. 

According to (6.23)-(6.26), a small-amplitude gravitational wave is 
derived from the equation 

Dh,.k = 0 (7.3) 

In the presence of matter, it can be brought into the form (K = 8~zG/c 4) 
(Landau and Lifshitz, 1975) 

E]hik = tr (7.4) 

where Oek is the energy-momentum tensor. 
It was shown by Gupta (1954) that by splitting | into its matter part 

Tik and gravitational field part tik 

| = Tik + tik (7.5) 

one can bring (7.4) into Einstein's form, 

1 
Rik -- ~ gik R = rcT~k (7.6) 
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The physical meaning of the splitting into a matter and a gravitational 
field part can be understood as follows: As explained below, matter 
composed of Dirac spinors comprises quasiparticles made up from the 
positive and negative mass components of the Planck aether. The masses of 
these quasiparticles are representative for the matter part Tik. But because 
the vortex field also has a kinetic fluid energy, the magnitude of which 
depends on the interaction between the quasiparticles, this kinetic energy 
makes an additional contribution to | In the Planck aether model, it is 
representative for the gravitational field part t~k of the energy-momentum 
tensor. 

Because the kinetic energy of the Planck masses is a continuous 
function, and because the kinetic energy of the positive Planck masses can 
be compensated by any amount by the negative kinetic energy of the 
negative Planck masses, the gravitational charge is a continuous parameter, 
depending on the degree of cancellation between the positive and negative 
kinetic energies. It is for this reason that the gravitational charge Gm2/hc of 
a Dirac spinor quasiparticle can be much smaller than the gravitational 
charge of a Planck mass, which is Gm~,/hc = 1. 

The situation is quite different for the electromagnetic coupling con- 
stant. Vector field equations like Maxwell's equations, can only have a 
vector four-current as their source, satisfying a continuity equation 

aQe ~-~- + div Je = 0 (7.7) 

where Qr and Je may be called 
respectively. A quantity which 
continuity equation of the form 
source for a charge are Planck 

the electric charge and current density, 
in the Planck aether model satisfies a 
(7.7) and at the same time can act as a 
masses bound in the vortex filaments. 

According to (2.7), their number is conserved and according to (7.1), their 
zero-point energy gives them a charge of the order Gm2/hc = 1. By 
comparison, the electric charge has the coupling strength e2/hc "~ 1/137 
instead, but this coupling strength becomes larger at higher energies, being 
at lower energies reduced by vacuum polarization. A value e2/hc ~ 
Gm2/hc = 1 at high energies is predicted by grand unified theories. It was 
noticed by Nussinov (1988) that all other coupling constants are within a 
few orders of the same magnitude, giving substantial support to the 
hypothesis that the phenomenon of charge has its origin in the zero-point 
fluctuations of Planck masses bound in the vortex filaments. 

With charges as the source of the elctromagnetic field, one would have 

div E = 4rcQ~ (7.8) 

and in order to satisfy (7.7), a term must then be added to the Maxwell 
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equation. It thereby becomes 

1 0E 4n 
c Ot + c -  Je = curl H (7.9) 

The other Maxwell equation (6.8) is purely kinematic, as its hydrody- 
namic form (6.5) demonstrates, and therefore is unchanged. Finally, be- 
cause of (6.5), div dO = 0 and it follows that 

div H = 0 (7.10) 

We now can say that not only is Einstein's goal to unify the gravita- 
tional with the electromagnetic field reached in a very satisfactory way 
through the hydrodynamics of the vortex lattice, but that this unification 
reduces the problem of quantum gravity to the quantum mechanics of the 
superfluid Planck aether. In this regard, it is important to remark that in 
Gupta's interpretation of Einstein's field equation, space is Euclidean with 
Einstein's field equations to be supplemented by a gauge condition, fixing 
the coordinate system. In any case, the arbitrariness of the coordinate 
systems, which is at the source of the difficulties in quantum gravity, cannot 
arise in the Planck aether model, which always has a distinguished refer- 
ence system at rest with the superfluid Planck aether. 

8. DIRAC SPINOR QUASIPARTICLES 

Because a positive and a negative mass vortex occupy the same 
position in space, they form a mass dipole, with the components of the 
dipole interacting gravitationally. As will be shown, at the resonance 
energy given by (4.7), the mass dipole can form an excitonic quasiparticle 
having the property of a Dirac spinor. 

The interaction is different for corotating as compared to counterrotat- 
ing vortices. For corotating vortices, the interaction is determined by 
Newton's law. In either case, the interaction energy is positive. Both 
configurations can be viewed as a mass dipole with a superimposed mass 
monopole. 

We first analyze the case of two corotating vortices in the framework 
of a simple nonrelativistic two-body model. According to (4.7), the mass of 
the positive and negative vortex resonance is 

m + = + _ m p ( r p / R )  2 (8.1) 

Through the zero-point fluctuations, the corresponding positive and 
negative mass components in the double vortex interact gravitationally. 
This interaction energy generates a small positive mass m ,~ m + . We add 
this small positive mass to m + by putting m + = m  + + m ,  with my  
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unchanged, hence putting m - = m~-. Because the gravitational interaction 
energy between m + and m~- is small, one has m + - I m - I ~ m  +, with 
m + >  I m-I" As the resonance energy can propagate through the vortex 
lattice as an excitonic quasiparticle, a bound state of a positive and 
negative mass forms likewise an excitonic two-body system. Approximating 
it by two pointlike masses m +, m - ,  with m + larger than Ira-I, one has 
what has been called a pole-dipole particle, extensively studied by H6nl 
and Papapetrou (1939a,b) as a model for a Dirac spinor. Its center of  mass 
is not located between m + and m - ,  but rather outside. And because its 
translation generates angular momentum, the pole-dipole particle executes 
a circular motion around its center of  mass (Fig. 1). It is this motion which 
simulates the "Zitterbewegung" derived by Schr6dinger (1930, 1931) as the 
trajectory of  a particle described by Dirac's wave equation. 

Let m + be separated by the distance r from m - ,  and let the distance 
of m + from the center of mass be re. If  m ~ m + _ l m - ] ,  then r ~ r c .  
Conservation of the center of  mass requires that 

m +i'c = ]m-I(rc + r) (8.2) 

For the angular momentum of  the pole-dipole particle, one obtains 

J = [m+r~ - [ m - I ( r c  + r)21~o (8.3) 

where ~ is the angular velocity around S. With m = m + -  I m-[ and 
p = m +r " Im-[r  ~-mrs ,  where m is the mass pole and p the mass dipole, 
one finds from (8.2) and (8.3) that 

J = - m + r r , . ~  = - p v  (8.4) 

~v 

v 

m -  m - v  

r 

a b 

Fig. 1. (a) A translation of  a mass dipole generates angular momentum; (b) a pole-dipole 
executes a circular motion around its center o f  mass S. 
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In the limit v ~ c, one has 

J = - m c r c  (8.5) 

Putting J = - h i 2 ,  it would follow that 

h 
rc - 2me (8.6) 

which is the radius of the "Zitterbewegung" derived by Schr6dinger from 
Dirac's equation. The angular momentum is negative because m -  is 
separated by a larger distance from S than m +. The factor 1/2 is more 
difficult to explain, but otherwise this simple model suggests a close 
relationship between the pole-dipole configuration and a particle described 
by Dirac's equation. 

Applying the solution of the well-known nonrelativistic quantum 
mechanical two-body problem with Coulomb interaction to the pole-  
dipole particle with Newtonian interaction, we can obtain an expression for 
m. For the Coulomb interaction, the ground-state energy is 

1 rn*e  4 
W o = .  2 hZ (8.7) 

where m* is the reduced mass of the two-body system, with the potential 
energy -eZ/r  for two charges _+e of opposite sign. The gravitational 
potential energy of two masses of opposite sign is +Gm+lm-I / r  ~-+ 
GIm~lZ/r instead, and one thus has to make the substitution e 2 ~  - 
GIm ~ I z. The reduced mass is 

1 1 1 1 1 m 

m - - - g - m ~ + ~ - m + m  Im-1- Im+l 2 (8.8) 

Finally, putting Wo = mc 2, one finds from (8.7) that 

m = (1/x/~)lm~ 13/m~ (8.9) 

and with (8.1) that 

m/me = ( llq%(r,,IR) 6 (8.10) 

This expression explains why m is so many orders of magnitude smaller 
than rap. For rptR , ~  10 -3, one would have mlmv ,~ 10 -18. 

The Bohr radius for the hydrogen atom is 

r B = h2/m *e 2 (8.11) 

Making the substitution for e 2 and m*, one finds for the corresponding 



1294 Winterberg 

radius of the pole-dipole particle 

rv = h/x/~lm U [c (8.12) 

For  R / r p  ~ 103, it follows from (8.1) that rv ~ 10 -27 cm. 
To derive the Dirac equation from the pole-dipole particle configura- 

tion alone, requires half-integer angular momentum quantization. If  
Lorentz invariance is understood as a dynamic symmetry, only those 
configurations which are Lorentz invariant are in a stable equilibrium. A 
rigid rotator always leads to an integer angular momentum quantization, 
but this is, in general, not true for a nonrigid rotator. It was shown by 
Delcr6taz e t  al. ( 1 9 8 6 )  that half-integer angular momentum quantization 
can occur in rotating molecules provided the rotation is accompanied by a 
time-dependent periodic deformation. For  the angular momentum quan- 
tization to be (1/2)h simply requires that the period for the deformation 
must be twice as long as the period of  rotation. In the pole-dipole  particle 
configuration, the rules of quantum mechanics permit radial s-wave oscilla- 
tions of m + against m - .  For  the nonrelativistic pole-dipole particle 
configuration, this leads just to the correct angular momentum quantiza- 
tion, as can be seen as follows: From Bohr's angular momentum quantiza- 
tion rule m * r v v  = h, where v = r~o~, one obtains by inserting the values for 
m* and rv that m c 2 =  - ( 1 / 2 ) h o ,  and because of  ~ = c/rc  that m r c c  = - 

(1/2)h. Therefore, even in the nonrelativistic limit, the correct angular 
momentum quantization rule is obtained, the only one consistent with 
Dirac's relativistic wave equation. For  the mutual oscillating velocity, one 
finds v / c  = ( [ m y  }/rap) 2 = ( r p / R )  4 ,~ 1, showing that our nonrelativistic ap- 
proximation appears quite well justified. 

For  a relativistic treatment of  the pole-dipole particle configuration, 
one has to distinguish the reference system at rest with the two rapidly 
moving m + and m -  particles from the system at rest with their common 
center of  gravity. In the system at rest with the two particles, their 
gravitational interaction energy is 

G l m U  ]2 
mo c2 = (8.13) 

r 

Putting m + = m + + m0, m -  = m j ,  momentum conservation requires that 

m+y+rc = [m-lr_(rc + r) (8.14) 

where ~ + = ( 1 - v2+ /c  2) - 1/2, y _  = ( 1 - v L /c  2) -1/2, v+ = r~co, v _  = (re + 0o9. 

For r ,~ r,., one can expand (putting y+ = y) 

7 _ = ~  1 +  c-----y--- + �9 �9 �9 (8.15) 
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The dipole moment of  the pole-dipole  particle is 

p = rn+r ~ - I m - l r  - m+7 - I m - ] w -  re (8.16) 

or because of  (8.15) 

p ~_ mor~/72 (8.17) 

and the energy is 

E / c  2 = m = m +y - - ]m  -1~_ ~- py  /r~ (8.18) 

Finally, the angular momentum (putting r~co ~_ c) is 

J = [ M + ~ r  2 - ] m - ] y _  (re + r)2]co ~ - p ~ c  "~ - mcrc (8.19) 

In (8.18) and (8.19), m is the mass of the pole-dipole  particle in the 
center-of-mass rest frame. 

From (8.17) and (8.18) it follows that 

m = mo/y  (8.20) 

and hence from (8.13) 

GIm  12 
m - - -  ( 8 . 2 1 )  

c27r 

From (8.18) and r e = h /2mc ,  with p ~- lm+lr ,  one has 

271m~ Irc = h (8.22) 

From (8.21) and (8.22), one can eliminate r, which means that one can go 
to the limit r ~ 0 of a mass dipole. One obtains 

m = 2G[m + [3/hc = 2lm + 13/m 2 (8.23) 

Finally, eliminating ]mf I with the help of  (8.1), one finds 

m / m p  = 2(rp /R)  6 (8.24) 

Since mprpC = h and m G R c  = h, where rnc is the mass at the G U T  
scale ( m a c  2 ~ 1016 GeV), one can write instead of (8.24) 

m / m p  = ( 2 m G / m p )  6 (8.25) 

With mp----(hc/G) i/2 one can then write down the remarkable equation 

G = ( 2 / m )  2hc(m~ Imp)  12 (8.26) 

If  the value of m in (8.26) is set equal to the electron mass, one finds that 

R mp _ ( 2 ~ 1 / 6 ( ~ 1 r  1/12 

rp = m'---G - \m/ /  \ G J -~ 6000 (8.27) 
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The mass obtained for the case of two counterrotating vortices is 
obtained in a similar way, except that the gravitational interaction is 
reduced by the factor y - 2 =  ( 1 -  v2/c2), where v is the rotational velocity 
(Pfister and Schedel, 1987). The value of y can be estimated by the 
uncertainty principle. If  applied to the vortex resonance energy, it is 

ymvRc ~ h (8.28) 

With mvc2= mpc2(re/R) 2, one thus has 

y ,~ R/rp (8.29) 

For the counterrotating vortices, one thus has instead of (8.24) 

m/mp = (2re~R) 8 (8.30) 

If one assigns the mass of excitons coming from the corotating vortices 
to the mass of the electron and the mass of the counterrotating vortices to 
the mass of the neutrino, one has for the neutrino-electron mass ratio 

mv/m~ = (raG~me) 2 --- 3 x 10 -8 (8.31) 

implying a neutrino mass equal to my ~ 10-2 eV. 
The relativistic treatment assumed that the pole-dipole particle can be 

treated like a rigid rotator, thereby leading to an integer quantization of its 
angular momentum. The nonrelativistic treatment with internal motion of 
the pole-dipole particle correctly predicted the half-integer spin angular 
momentum quantization, but it led to a mass formula differing from the 
mass formula (8.24) by the factor 2 -3/2 . 

The expression (8.10) for m was computed in a comoving system of 
the pole-dipole particle. In a system at rest with its center of mass, the 
pole-dipole particle executes a rapidly circulating motion with the radius rc 
around its center of mass. This motion, however, does not alter the value 
of m, as can be seen as follows: According to (8.20), in the center-of-mass 
system the mass pole has to be multiplied by the factor I/y, and the reduced 
mass m* in the Bohr-Sommerfeld quantization rule has to be multiplied 
by y. But because Glm + t 2 plays the role of the gravitational coupling con- 
stant, it should be the same in the comoving and rest frames. As a result, 
the factor 1/y and y compensate each other, leaving (8.10) unchanged. 

Therefore, if the internal motion of the pole-dipole particle is taken 
into account, (8.25) is changed into 

m/mp = ( 1/V/2)(mo/me) 6 (8.32) 

(8.26) into 

G = (hc/2m2)(mo/mp) 12 (8.33) 
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and, finally, (8.27) into 

R mr, 1 (_~)1/~2 
rp m G 21/12m 1/6 --- 5000 (8.34) 

9. WAVE MECHANICAL TREATMENT OF SPINOR 
QUASIPARTICLES 

A generalized Lagrange formalism ideally suited to treat the pole-  
dipole configuration has been developed by Bopp (1946, 1949) in his field 
mechanics. 2 In the presence of negative masses, the Lagrange function must 
be of the form L = L(qk, (Ik, qk), because even without external forces 
present, a mass dipole is self-accelerating. 

The Euler-Lagrange equations of the variational principle 

f L(qk, (tk, qk) dt = 0 (9.1) 5 

lead to a set of two canonical equations, one for the macrovariables 
describing the system as a whole, and one for microvariables describing the 
Zitterbewegung-type degrees of freedom. 

For the relativistic four-vector of  the velocity 

u,=dx~/ds=-Sc~, ds=(1-flE)~/E dt (9.2) 

where fl = v/c, x, = (x2, x2, x3, ict), one has 

2 _ c  2 (9.3) F=u= = 

With units where c = 1, one can take instead of (9.1) the variational 
principle 

t ~  

j A(x=, u=, ~ )  ds = 0 (9.4) 6 

With (9.3) as a subsidiary condition, the Euler-Lagrange equations, with 
2 a Lagrange multiplier, are 

-~s \ Ou~ ds d ~  ] t3x~ = 0 (9.5) 

For a field-free configuration without external forces, the Lagrange function 
depends only on ~ .  With the arbitrary function f(Q) one can write for A 

A = - f ( a ) ,  Q = fi2 (9.6) 

2Bopp's theory has been also discussed in considerable detail in a review article by H6nl 
(1952). 
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with the equation of motion (9.5) taking the form 

~ [f(Q) - 4Qf'(Q)]u~ + 2 ~ [f'(Q)zi~] = 0 (9.7) 

and the dipole moment equal to 

du~ 
p~ = - 2 f ' ( Q )  ds (9.8) 

For the transition to wave mechanics one needs the canonical repre- 
sentation of the equation of motion. From S Ads = ~ L dt, one obtains by 
separating the space and the time parts 

L = A(1 - V2) 1/2 = - f (Q)(1  - / ) 2 )  1/2 

(9.9) 
1 2 

Q - [ ( 1 -  v-2) 1/214 [%' 7t- (( 1 u " Ir ._ v~_) 1/2) ]2 
where L = L(r, f, ~). 

With 
0L d 0L 0L 

P =  0 = - -  
Ov dt 0�88 0~ 

one obtains the canonical equations 

OH OH p = - - -  f = - -  
Or ' 0P 

OH OH 
0 = - - -  ~ = - -  

0v '  00 

(9.10) 

(9.11) 

From (9.10) one finds that 

0 =  
2f'(Q) F~ (v '~ )v ]  

(1 _ v2)3/2 L + 1 _-7--2-7~j 
1 (1 -- v2) 3/2 

[o - ( v .  O)v] 
2 f '(Q) 

(9.13) 

(9.14) 

H = v .  P + ~ .  0 - L  = H(r ,  P ;v ,  0) 

P and r are here the macrovariables, 0 and v the microvariables. With these 
variables, the angular momentum conservation law takes the form 

r x P + v  • 0 = const (9.12) 

The first term represents the external angular momentum of the macromo- 
tion and the second term the internal spin-type angular momentum of the 
micromotion. With P and 0 given by (9.10) one obtains the Hamilton 
function (P = {0, i04} ) 
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Eliminat ing ~.  0 f rom these equat ions  leads to 

4Qf ' (a )  2 = R = (1 - /)2)[02 - (v .  0) 2] (9.15) 

f rom which the funct ion Q = Q(R) can be obtained,  and  by which ~ can be 
el iminated f rom H,  

H = v '  P + (1 -/)2)l/2F(R) (9.16) 

where 

F(R) = f (Q)  - 2Qf'(Q) (9.17) 

Fo r  the linear dependence 

f (Q)  = ko + ( 1/2)kl Q (9.18) 

where k0 and kl are constants ,  one finds 

H = ko(1 - / ) 2 ) 1 / 2  _ (1/2kl)(1 - - / ) 2 ) 3 / 2 [ 0 2  - -  ( 0 "  v )  2] (9.19) 

which has the same form as the Dirac  Hami l ton ian .  
Put t ing 

h 0  
p __1, __ _ _  

i 0 r  

v ~ ot (9.20) 

(1 - / ) 2 )  1/2 --)' (X 4 

where a = {~, ~4} are the Dirac  matrices,  one obtains  the Di rac  equation:  

h 0q/ 
- - -  + H ~k  = 0 ( 9 . 2 1 )  
i 0t 

where 

with 

H = ~lPl  + ~2P2 + asP3 + ~4 m (9.22) 

2 = 1; ~p~v + ava~ = 0, kt # v (9.23) 

and the mass  given by 

m = ko - ( 1/2kl )[02 - ( 0 .  v) 2] (9.24) 

Fo r  the linear dependence (9.18) one obtains  f rom (9.7) 

d 
dss (22u, + k~//~) = 0 (9.25) 

o r  

2)~u~ + 22fi~ + kl ff~ = 0 (9.26) 
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Differentiating (9.3) with regard to s, one has 

u~u~ = O, u~//~ + ~2 = O, u~/~ + 3~//~ = 0 (9.27) 

and by which (9.26) becomes 

3 d 
-2 ) ,  - 3k. z~//~ = - 2 ) '  - ~ kl dss (fi~) = 0 (9.28) 

Summation over v gives 

22 = ko - (3/2)kl ~ (9.29) 

where ko appears here as a constant of integration. Inserting (9.29) into 
(9.25), we can eliminate the Lagrange multiplier, 

d 3 .2 ~ [ ( k o - ~ k ,  uv)u~+k, ii~]=O (9.30) 

To show that (9.30) is the equation of motion for a pole-dipole particle, 
one writes it as follows: 

dP~ 
= 0  ds 

(9.31) 

P~= ko-~k l f~  u~-'kklil~ 

where P~ are the components of the momentum-energy four-vector. For  
k~ ---0 one has P~ = kou~, which by putting k0 = m is the four-momentum 
of a spinless particle with rest mass m. 

With the mass dipole moment computed from (9.8) 

p~ = - kl ~ (9.32) 

conservation of angular momentum is given by 

d 
J~a = 0 (9.33) 

where 

J~a = [x, P]~a + [p, u]~a (9.34) 

and where [x, PLa = x~Pa - xaP~. For a particle at rest Pk = O, k = 1, 2, 3, 
one has 

Jkt = [P, u]kt =PkUt -PtUk, k, l = 1, 2, 3 (9.35) 

which is the spin angular momentum. 
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The energy of  a pole-dipole particle at rest, for which u4 = 7, is 
determined by the fourth component 

( 3 kl fi2)? (9.36) P4 = im = i \ko - -~ 

but it can also be obtained from 

P ~ u ~ = - T m =  k o - ~ k l u v  u ~ + k l i i ~ u ~ = -  k o - ~ k l ~  2 (9.37) 

The mass m therefore obeys the double equation 

3 2 1 fi2)? (9.38) m 

To keep m finite in the limit v ~ 1, resp. 7 --* o% one must have 

l im ko -- ~ klUv ~ 0  

-' ~ (9.39) 

lim ko ~2 ~ 

which means that k0 ~ (3/2)kl zi 2 and k0 ~ oo. 
From (9.31) with Pk = 0, k = 1, 2, 3, it follows for a circular orbit of  

radius rc that 

3 .z 
p = ( k o - ~ k l u v ) r c  (9.40) 

or because of  (9.36) 

p = mr,.~7 (9.41) 

With u = Vv, one obtains for the spin angular momentum 

Jz = - p u  = - m v r  c ~- - m c r c  

which is the same as (8.19). 

(9.42) 

10. HIGHER PARTICLE GENERATIONS FOR SPINOR 
QUASIPARTICLES 

Internal excitations of  the positive-negative mass pole-dipole 
configuration can lead to excited states. Because of  the highly nonlinear 
interaction, there is a finite number of  such excited states. In conjunction 
with the observed finite number of  particle families, it is suggested that the 
excited states are a representation of  the higher particle generations. 
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Excited states are possible with more general nonlinear dependencies 
f(Q) (Bopp, 1946, 1949). For  the wave mechanical treatment of  this 
problem it is convenient to use the four-dimensional representation by 
making a canonical transformation 

0" dv + 00 dvo + u~, dp~, = d~(v, Vo, p~) (10.1) 

with the generating function 

~ _  Vo 
(1 - v2) m (v" 0 + i04) (10.2) 

and where Vo, 0o are superfluous coordinates. Expressed in the new vari- 
ables, one has 

1 
R = --~ M~ ,  M~  = u=O~ - u~O~ (10.3) 

and with P~ = {P, ill} one finds for (9.16) 

K = u~P~ + ( - u~)~/2F(R) = 0 (10.4) 

2 - 1  and u~p~ 0, the superfluous coordinates Vo and 0o can Because u= = = 
be eliminated. Putting 

h 
P= =7 x= 

h ~ (10.5) 

P= = i ~u~ 

one obtains the wave equation 

I (  h ~-~)+ F(R)] ~'(x'u) =O (10.6) K~ -~ u:, 7 

where 

R = - ~  M ~ ,  M~p i u~ ~u~ ~ ~u~ (10.7) 

For  P = 0, the wave function has the form 

O(x, u) = ~k(u)e -i~,/~ (10.8) 

with the wave equation for ~,(u): 

F(R)r = ( 1 - v 2) ,/2 $(u) (10.9) 
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or if G is the inverse function for F, 

Rip(u)= G ( ( 1 -  v2 ) l/2)ip(U) 
From the condition u~p~ = 0 it follows that 

Oz 
R = - h  2 - -  ~u~ 

With (0, q9 spherical polar coordinates) 

u~ = [sinh ~ �9 sin 0 �9 cos 4, sinh ~ �9 sin 0 �9 sin ~b, sinh ~ �9 cos 0, i cosh ~] 

(10.10) 

(10.11) 

with 

having the eigenvalues j ( j  + 1), where j is an integer. The wave equation, 
therefore, finally becomes 

d2tP~ = V(~)~o = [ J(J + l ) - G ( e  cosh -t ~n~-i~ (10.15) 

The eigenvalues can be obtained by the WKB method, with the factor 
j ( j  + 1) be replaced by ( j  + 1/2) 2 to account for the singularity at ~ = 0. 
The eigenvalues are then determined by the equation 

J = -  [ -V(~) l /2]dot=n+z ,  n = 0 , 1 , 2  . . . .  (10.16) 

( j  + 1/2) 2 
V(cr = 1 + sinh2a G(8 cosh~) (10.17) 

Of  special interest are the cases where j = - 1/2, because they correspond 
to the correct angular momentum quantization rule for the Zitterbewe- 
gung. For  j = - 1 / 2  one simply has 

V(a) = 1 - G(e cosh ~) (10.18) 

M Z = ( v x 0 ) 2 =  s in000  sin0 sinZ0~b 2 (10.14) 

Ip = Ip0/sinh ~ (10.12) 

tgh ~ = v 

the wave equation becomes 

- ~ -  1 sinh2~ Ipo = G(e cosh e)ipo (10.13) 

where 
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To obtain  an eigenvalue requires a finite value o f  the phase  integral (10.16). 
The  funct ion G(x), (x = e cosh ~), mus t  therefore quali tat ively have the 
fo rm of  a pa rabo la  cutt ing the line G = 1 at  two points  xl ,  x2 between 
which G(x) > 1. One can then distinguish two limiting cases: first if e ,~ 1 
and second if e > 1. In  bo th  cases one m a y  approx ima te  (10.16) as follows: 

J -~ (1 / r r ) [ -  V(a)] 1/2(a2 - =1) 

In the first case e >> 1, and one has 

hence 

~- - - ln  + ~ - - 1  ,,~ln -7- - 4 - ~ + . . .  

(10.19) 

(10.20) 

hence 

or if  x/e >> 1 simply 

- - 1 (10.22) 

~- (2x/~),/2 (10.23) 

(2\ 
,/2 

_ )  1/2 0{2 -- =' ~' (X 2 -- Xl/=) (10.24) g 

One therefore sees that  the phase  integral has for  e a 1 the fo rm 
J = a + bg 2, but  for  e ~> 1 the fo rm J = a/x/~. The J(e) curve can for  this 
reason cut twice the lines J = 1/2 (n = 0) and J = 3/2 (n = 1). 

In Fig. 2 we have adjusted the phase  integral to account  for  the 
electron, muon ,  and tau electron, where e = E/me 2, with m the electron 
mass.  The  fact tha t  the mass  rat io of  the tau and m u o n  are so much  smaller  
than  the mass  rat io o f  the m u o n  and electron suggests that  bo th  the m u o n  
and tau result f rom cuts o f  the line J = 3/2. Because o f  the proximi ty  on 
the J = 3/2-line, it is unlikely that  the phase  integral would cut the line 
J = 5/2 or  higher. Since for  large values o f  ~, J oc 1/x/~ , it follows that  there 
mus t  be one more  eigenvalue for  which J = 1/2, which f rom the posi t ion of  
the first three families is guessed to be a round  80,000rnc 2 ~  - 40 GeV. Our  
result therefore suggests that  there are no more  than  four  particle families. 

In  the second case one has 

(xX121) 2 2 E:2 xz- -x l  + " "  (10.21) ~2--(~1 - - I n  + - ~ -  4 
XlX2 
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Fig. 2. Qualitative form of  the phase integral J = J(g) to determine the number  of  families 
and their masses. 

In the framework of the proposed model a more definite conclusion has to 
await the determination of the structure function f ( Q )  from the mass 
distribution of the exciton made up from the positive-negative mass vortex 
resonance. 

11. QUARK-LEPTON SYMMETRIES 

In the model, all particles are quasiparticles like the phonons and 
excitons in condensed matter physics. For this reason, one may expect that 
the quark-lepton symmetries should have a condensed matter physics 
analogy. We claim that it is provided by the fractional quantum Hall effect. 
It occurs in a very pure thin sheet confining a two-dimensional electron gas. 
As Laughlin (1983a,b) has shown, an electron gas can be described by the 
wave function 

where zj = xj - iyj is the coordinate of the j th  electron in complex notation 
and l~= h c / e H  (obtained from ml2o)= h and co--ell~me for the lowest 
Landau level). The magnetic field H is directed perpendicular to the sheet. 
If/~ is an odd integer, the wave function is completely antisymmetric, 
obeying Fermi statistics, and is made up from states of the first Landau 
level with the kinetic energy equal to (1/2)hco per electron. For the square 
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of the wave function one has 

I 'l= = e - a n  (11.2) 

/~H= 2/z ~ lnlr j - r k ]  + (1/2l 2) E IrJ] 2 
j < k  j 

which is the probability distribution [~,[2 of a one-component two-dimen- 
sional plasma. 

For # = 1, the wave function is a Slater determinant, but this wave 
function does not describe the situation actually observed. Numerical 
calculations for four to six electrons done by Laughlin, rather, show that 
the wave function (11.1) for/~ = 3 gives a much better agreement. It is this 
wave function which satisfactorily explains the fractional quantized Hall 
effect, in which plateaus in the conductivity are found to occur in multiple 
steps of (1/3)e2/h. 

The physical meaning of the wave function (11.1) can be understood 
if one keeps all electrons, except one, fixed in their position and carries out 
a closed loop motion of the one electron around a point at which the wave 
function vanishes. This displacement produces the phase shift 

A~ =(e/hc) ~A. ds=(e/hc) f H. df (11.3) 

where H = curl A. Accordingly, there should be 

Z = (e/hc) _Il l .  df  (11.4) 

l 

vortices within the area S dr. To satisfy the Pauli principle there must be at 
least one vortex at the position of each electron. In Laughlin's wave 
function there are exactly p vortices for each electron. We therefore have to 
put Z = p. The fractional quantized Hall effect then simply means that the 
charge of one vortex is e/3 provided # = 3, and it follows that in the 
two-dimensional electron fluid each electron splits into three vortices of 
charge e/3. 

The quantization condition for the vortices in the presence of a 
magnetic field is given by 

~v ds h e f �9 = - - v - - -  H ' d f ,  v = 1 , 2 , 3  . . . .  ( 1 1 . 5 )  m mc 
which shows that the presence of a magnetic field causes the occurrence of 
the vortices in the electron fluid. If  a magnetic field is adiabatically applied 
to the electron fluid, the Helmholtz theorem 

v. a s = o  (11.6) 
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states that if the circulation ~ v - d s  is zero before a magnetic field is 
applied, it remains zero thereafter. This, of  course, does not imply that the 
circulation inside the contour taken in (11.6) cannot differ from zero, 
because the circulation of  different vortices can add up to zero, as would be 
the case for four vortices with equal and opposite circulation. A vortex 
configuration with the total angular momentum (1/2)h could be con- 
structed from two vortices with opposite circulation quantum number 
v = + 1 and one vortex with v = 1 with the spin quantum numbers adding 
up to a total angular momentum (1/2)h. 

To explain the fractionally charged quarks, an analogy to the frac- 
tional quantum Hall effect is tempting to explore. We propose the conjec- 
ture that it results from the splitting up of the electron and neutrino wave 
functions into vortices, with the splitting up caused by a strong field acting 
like a magnetic field. Leaving aside for the moment the question of  what 
that field might be, the occurrence of  three-quark configurations suggests 
that this field acts within a thin sheet, with the vortices perpendicular to 
and confined within this sheet and with a minimum of  three vortices needed 
to define the orientation of a planar sheet. 

If the electron and neutrino wave functions split up in a similar way as 
happens in the fractionally quantized Hall effect, the quark- lep ton  sym- 
metries can easily be understood. The angular momentum of  a vortex in 
units of  h is equal to the circulation quantum number v. The vortices for 
which v = 1 we call A, those for which v = 0 we call B, and finally those for 
which v = - 1 we call C. The neutrino (v) and positron (e+) wave functions 
are then to be represented by six vortex states, with the lower indices giving 
the value for the electric charge of these vortex states: 

(V) ----- B 0 (e+) = Bl/3 (11.7) 
CO C1/3 

A second set of six vortex states is obtained by replacing the neutrino and 
positron by their antiparticles. We claim that the first six vortex states can 
reproduce all the six u and d quarks of  the first family. How the neutrino 
and positron are composed of  these vortex states is already shown in 
(11.7). With the indexes r, g, b (red, green, blue) identifying what is called 
the color, we have for the three colors of  the u quark 

t'nl/3 (nl /3  t A~ 
u,= B1/3  ug=~Bo u~= B1/3 (11.8) 

(Co (C1/3 (CI/3 
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For the three d quarks we have 

Ao I Ao 
d, = Bo dg= B-1/a 

C_ ~/3 [Co 

A_ ~/3 
db = lBo 

Co 

(11.9) 

Because the vortices are substates of the leptons, color confinement then 
simply means that only those vortex configurations which can be combined 
into leptons are able to assume the form of free particles. Mesons are made 
up from quark-antiquark configurations, each containing three vortices 
and three antivortices. 

If the vortices interact, they do this by the exchange bosons. But 
because they are confined within a thin sheet, the bosons are massive, very 
much like an electromagnetic wave in a waveguide where the photons are 
massive with a longitudinal component in addition to their transverse 
component. It is then possible to explain the eight gluons of the standard 
model. The gluons are bosons transmitting angular momentum. To change 
an A vortex into a B vortex, a B vortex into a C vortex, or vice versa, 
requires a change in the angular momentum AL = _ 1, and to change an A 
vortex into a C vortex, or vice versa, a change by AL = +2  is needed. 
These changes can be made by just two angular momentum operators with 
L = I  and L = 2 ,  having ~ ( 2 L + 1 ) = 2 + 1 + 4 + 1 = 8  states, equal to 
the number of the gluons in QCD. The transitions in QCD identified by 
red-green (r-g), red-blue (r-b) and green-blue (g-b), lead to changes in 
the angular momentum of the vortices in the following way: 

A A A A 
r---,g=g---,b: B ~ B ,  r---,b: B ~ B  (11.10) 

C / ~C  C C 

These transitions require four changes AL = ___1 and two changes 
A L  = _ 2, in total 6 changes. In addition, there is the change for which 
AL = 0, 

A--,A 
r---,r =g---,g=b---,b: B---,B (11.11) 

C---, C 

realized with the two L~ = 0 components of the angular momentum opera- 
tors for L = 1 and L = 2, and which for this reason must be counted twice. 
Together with the six changes involving AL = + 1, __+ 2, one has a total of 
eight possible changes involving the exchange of angular momentum. The 
eight gluons of QCD are not to be identified with these eight angular 
momentum-transmitting bosons, but rather with certain combinations of 
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them. A color-changing gluon would be always a superposition of a spin-1 
and a spin-2 boson. A transition leaving the color unchanged would 
involve the superposition of spin-2 or spin-1 bosons. The color charge is 
thereby reduced to angular momentum, and through angular momentum, 
quantization to the zero-point fluctuations of the Planck masses like the 
other charges. 

The same decomposition into vortex states done here for the first 
family can be repeated for the higher generations. And the weak interaction 
phenomenon is explained by the exchange of bosons made up from spin-1 
and spin-2 angular momentum transitions between the vortices of the 
leptons given by (11.7). 

We remark that our model can be compared with the rishon model, 
with the rishons turning out to be vortex states. The three hypercolor 
charges of the rishon model are the three angular momentum states 
L -- 1, 0, - 1 of the vortices. The prescription of the rishon model that only 
those configurations are possible which are color neutral with regard to the 
hypercolor is explained by the requirement that the vortex states must add 
up to zero angular momentum. 

The axial current interaction of the standard model occurs only for 
configurations involving in our model vortex substructures in which the 
leptons split up in a triplet of vortices. Very much as a bound particle can 
execute radial zero-point oscillations, a vortex can execute azimuthal 
zero-point oscillations. With the moment of inertia 19 ~_ m v r  2 and angular 
velocity ~o, the magnitude of these zero-point fluctuations is determined by 
the uncertainty principle for rotational motion 

19o~ -~h (11.12) 

leading to an energy density equal in order of magnitude to the energy 
density of the radial oscillations. The vortices thereby become the source of 
virtual vector field waves which by order of magnitude again must have the 
coupling strength g2 ,,~ hc. However, because the virtual rotational fluctua- 
tions have the character of an axial vector, the current to which these 
interactions couple must be an axial vector as well. 

The origin of non-Abelian gauge theories can be explained as a result 
of vortex-vortex interaction through their radial and rotational zero-point 
fluctuations. These vortices behave like small electrically charged magnets, 
and the total vortex-vortex interaction must therefore be a superposition 
of electric- and magnetic-type interactions. The static electric force exerted 
by a magnet 1 on a magnet 2 is 

F e = --eVO 1 (11.13) 

where ~ is the scalar electric potential produced by the electric charge on 
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magnet 1. To compute the static magnetic force, we consider two magnets 
of moments ml, I~ 2 separated by the distance r, with the magnetic fields 
produced by them expressed through their vector potentials: 

A I  = m 1 x e r 
r 2 

A 2 --- m 2  • e r 
r 2 

(11.14) 

where it is assumed that er is perpendicular to m I and m2, and where e, is 
a unit vector along r. The magnetic force on m2 by m~ is then given by 

Fm= V(m2' curl A1) = 6Al �9 A2er (11.15) 

For three interacting vortices, three vector potentials are likewise needed. 
The nonlinear quadratic term in (11.15) is typical for terms occurring in 
Yang-Mills theories. The expressions for Fe and Fm are valid for static 
fields. Relativistic invariance requires that the forces must in general be 
expressed by relativistically invariant Yang-Mills field theories. 

12. THE ORIGIN OF THE HIGGS FIELD 

Because the vortex resonance energy (4.7) gives the elementary parti- 
cles a finite rest mass, it suggests that this resonance energy be identified 
with the mass of the hypothetical Higgs particle. With the above given 
value R/rp - 6 • l0 s, this would mean that the Higgs particle has the mass 
h~o v < 1012 GeV (far too large for the SSC). 

To explore this hypothesis in more detail, we write down the relativis- 
tic nonlinear wave equation derived from the Higgs Lagrangian 

7 q ~  + ~2 t~  - -  4~ t~  3 = 0 (12.1) 

where 2 > 0 and x = mc/h, with m equal to the mass of the Higgs meson. 
Because our model is exactly nonrelativistic, we have to make the transition 
of (12.1) to its nonrelativistic approximation. In the nonrelativistic limit we 
have to put 

1 c32c~ 2imO~ 
- c  -5 Ot ~ ~ - -h -  Ot + 1r 

by which (12.1) becomes 

ih Oq~ h 2 2 ,,],h 2 
O---f = -2"--m V2~b - mc2(a + m 

(12.2) 

~3 (12.3) 
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As in the Higgs model, (12.3) has the static global solution 

4)o 2 = x2/22 (12.4) 

If  ~b0 z = 1/2r 3 as suggested by our model, one finds, with m = m p ( r p / R )  2, 

,~ = t c Z r  3 = rp(rp /R)  4 ~- 2.5 x 10 -4s cm (12.5) 

In the standard model the weak vector boson mass can be expressed 
by the "weak magnetic vector potential" A of the WSG theory as follows 
(with the vacuum gauge A = 0): 

m w c  2 = eA  (12.6) 

We suggest that the "weak magnetic field" of  WSG theory is the cause of  
the lepton wave functions splitting up into the vortices representing the 
wave functions of  the quarks, implying that 

m w c 2  = 21/4g(hC/GF ) 1/2 ,,, 85 GeV (12.7) 

where g is the semiweak coupling constant. If  the vortices into which a 
lepton splits up are line vortices in a sheet of  thickness 6, with the vortices 
ending at the two surfaces of  the sheet, the "weak magnetic field" in the 
sheet must be of  the order H ~ A l l .  And because of  m w c 6  ~- h, one finds 
from (12.6) an expression for H: 

H = ( m w c 2 ) 2 / e h c  "~ 1026 [esu] (12.8) 

corresponding to a huge "weak magnetic field" of  ,-~1026 G. As in the 
fractional quantized Hall effect, it leads to a Lorentz force strong enough 
to produce a vortex structure. According to (12.8), the magnetic field 
needed must be at least of  the order 

H ~ hc /er  2 (12.9) 

where r is the Larmor radius. For relativistic velocities r is of  the order 

r , , , m w c 2 / e H  (12.10) 

Eliminating r from (12.9) and (12.10) gives the same value o f  H as (12.8). 
Furthermore, from 

H ,~ 4rme6 (12.11)  

one finds for the number density of  charges in the sheet 

n ~ - ( m w e / h )  3 ~- 1051 cm -3 (12.12) 

[provided each intermediate vector boson has the unit charge e ~ (hc)i/2]. 
The intermediate vector bosons of the WSG theory are explained in 

the model as vortex-ant ivortex pairs from the first generation. This implies 
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Fig. 3. The different hierarchies and scales. 

(R) 

(R21rp) 

(R6/r~) 

Table I. Meson States and Their Corresponding 
Higher Families 

Lepton-antilepton = positronium . . . . .  higher families 
Quark-ant iquark = n § meson . . . . .  higher families 
Vortex-antivortex = W, Z b o s o n s , . . . ,  higher families 
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the existence of heavier intermediate vector bosons made up from vortices 
of the higher generations. Assuming that the mass ratios of the vector 
bosons are about equal to the mass ratios of the leptons, the vector boson 
of the second generation should have a mass of ~2 x 104 GeV. 

In Fig. 3 we display the different hierarchies and scales, and in Table 
I the different meson states. Because mesons are derived from the leptons, 
positronium has been included as a meson state. 

13. THE STANDARD MODEL AS AN ASYMPTOTIC LIMIT 

It is often argued that the extremely good agreement between theory 
and experiment in quantum electrodynamics (QED) provides strong evi- 
dence in support of the special theory of relativity. However, it was shown 
by Weinberg (1987) that this argument is questionable. Very generally, the 
Lagrange density describing the electron and photon must be an infinite 
series of the form 

+ieoAu(yu ~ (13.1) 

IOAv OAr) 
-e ,  t OxV   "VO-e2 O O + " "  

In QED only the first three terms, which are the kinetic energy of the 
electron, the kinetic energy of the photon, and the interaction energy 
between both through the coupling constant eo, are taken into account. In 
the form (13.1), e0 is nondimensional, but the coupling constants el, e2 . . . .  
with which the following terms are multiplied have dimensions of the 
inverse power of a mass, el the dimension mass -I, e2 the dimension 
mass -2, and so on. The very good agreement of theory and experiment in 
QED can be readily understood if this mass is very large, for example, 
equal to the GUT mass (~1016GeV) or Planck mass (~1019GeV), 
because one can then completely ignore all the higher-order terms. With the 
remaining three terms in the Lagrange density, the theory can be renormal- 
ized, which would not be possible if the higher-order terms are included. 
One can therefore say that QED in particular, and the standard model in 
general, are low-energy asymptotic approximations. At the very high 
energies at which the higher-order terms cannot be neglected, one would 
either have to find a way to sum up all the higher-order terms or look for 
another theory of which the Lagrange density (13.1) is a low-energy limit. 

The Planck aether model is an attempt to follow the second alterna- 
tive. In it there would be complete symmetry between the positive and 
negative Planck masses, canceling each other out, were it not for the 
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quan tum potential.  Th rough  it this symmetry  is broken.  The quan tum 
potential leads to zero-point  oscillations o f  the Planck masses bound  in the 
vortices, setting up a Newtonian- type  gravitat ional  force. This force cou- 
ples the vortex filaments, leading to Maxwell 's  and Einstein's equations, 
and to Dirac spinors. It  is th rough  the nonlinearity o f  the gravitat ional  
field, resulting in a residual positive mass for two interacting masses o f  
opposite sign but  equal in magnitude,  that  the vortex lattice o f  the Planck 
aether assumes a positive mass and with it all elementary particles, includ- 
ing photons  and gravitons. I f  this positive energy is compensated  by the 
negative gravitational interaction energy, the total energy remains zero and 
with it the cosmological  constant.  
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