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We examine the possibility of obtaining the transference of the squeezing effect between two 
coupled oscillators, one of them described by a quadratic Hamiltonian in terms of the ladder 
operators, the other one being a linear harmonic oscillator, plus an interaction term. We 
obtain an exact solution for the time evolution of our coupled system which allows us to find 
the variances for one- and two-mode oscillations. It is shown that the squeezing generated in 
one of the oscillators may or may not spread to the other oscillator, depending on the choice 
of the involved parameters. Other interesting features exhibited for the one- and two-mode 
oscillations are also discussed. 

1. I N T R O D U C T I O N  

Squeezed states for the electromagnetic field and oscillators have been 
widely studied, both  theoretically (Huen,  1976; Walls, 1983; L o u d o n  and 
Knight ,  1989; Stenholm, 1986) and experimentally for light fields (Slusher 
et al., 1985; Robinson,  1985, 1986; Wu  et al., 1986), and, more  recently, for 
oscillators (Cirac et aL, 1993). These states have reduced values in one o f  
the quadratures  al = ( 4  + f l + ) / 2  or ~ 2 = ( ~ - ~ + ) / 2 i ,  where ~ and ~+  
stand for the annihilation and creation operators  for photons ,  or the 
lowering and raising operators  for the harmonic  oscillator. Since a single 
mode  of  the electromagnetic field behaves like a simple harmonic  oscillator 
(HO)  with unit mass, the discussion of  the product ion  o f  squeezing for the 
H O  has also immediate relevance in the generation o f  this effect for light 
fields. 

The purpose  o f  this paper  is to examine the possibility o f  generating 
the squeezing effect in a linear H O  by its transference f rom a coupled 
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quadratic oscillator (QO), that is, a linear oscillator with quadratic self- 
interacting terms in fi and ~ +. As is well known (Huen, 1976; Walls, 1983; 
Loudon and Knight, 1989; Stenholm, 1986), this quadratic Hamiltonian is 
a candidate to exhibit the squeezing effect and we will show that this 
reduction of quantum fluctuation generated in the QO may be transferred 
to one of the quadrature components of the HO, thus becoming also 
squeezed, out of a coherent state. 

We will employ the definitions for quadrature-phase amplitudes as 
2 = (h/2)~/2(~ + ~ +), p = (h/2)1/2(~ - ~+)/ i ,  the shot noise level being 
(h/2) 1/2. We obtain exact closed solutions for the time evolution of 2(t) and 
/3(0 for the QO and also of J?(t) and/~(t), with an analogous definition, for 
the HO. This allows us to compute their variances as a function of time, 
which display interesting features. 

In a recent paper, Agarwal and Gupta (1989) studied a combined 
system constituted by an atomic oscillator interacting with a squeezed light 
field. They found exact solutions for the (non-Hamiltonian) dynamical 
equations for the combined system. From these solutions they were able to 
study relaxation of the atomic oscillator for arbitrary bandwidth of the 
squeezed radiation and also its effects on the vacuum-field Rabi splitting. 
Since these authors assumed the squeezed light as constituting a bath for 
the atomic oscillator, they employed consistently the density state formal- 
ism through the Wigner function to describe the combined system. In our 
case, the QO generating the squeezing does not constitute a bath for the 
HO, hence our approach is quite different from theirs. Our combined 
system has a Hamiltonian dynamics, thus allowing us to use the pure state 
formalism. In this way we have employed the Heisenberg picture in exactly 
solving our coupled system. 

Besides the investigation of one-mode oscillations, we also have stud- 
ied the two-mode oscillations. Here, contrary to the traditional investiga- 
tions on coupled systems, where one-mode squeezing is absent, both the 
coordinates of two-mode oscillations may become squeezed, simultaneously 
or not, depending on the values of the involved parameters. 

This paper is organized as follows: in Section 2 we present our model 
Hamiltonian and establish the notation. In Section 3 we derive the Heisen- 
berg equations of motions and obtain their solutions. In Section 4 we 
compute the fluctuations in quadrature-phase amplitudes for one-mode 
oscillations, while in Section 5 we study the squeezing in two-mode 
oscillations. Finally in Section 6 we present some comments and conclu- 
sions. 
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2. MODEL HAMILTONIAN 

Following Gordon et  al. (1963), we take the model Hamiltonian 

where the first, second, and third brackets stand for the HO, the QO, and 
the coupling term, respectively. We also have the commutation relations 

[& a +] = [A, .d +1 = 1 (2.2) 

[a, A] = [a, d +1 = [a +, A] = [a +, ~/+1 = 0 (2.3) 

Setting the canonical transformation (e.g., Merzbacher, 1977; Cohen- 
Tannoudji et  al.,  1977) 

1 
a - (2h) 1/~ (2 + i/3) (2.4) 

l ( 2 + i P )  (2.5) 
d = (2h) 1/2 

and their corresponding adjoints, we obtain the Hamiltonian (2.1) in the 
form 

/~ f~f~(/32 A2"Q f 1 ^2 1 ^2 ) f / . .  /3/3)} (2.6) 

where 

m = (09 -- 2f) - - 1  (2.7) 

k = (r + 2f)  (2.8) 

3. HEISENBERG EQUATIONS OF MOTION AND SOLUTIONS 

From equation (2.6) we obtain the Heisenberg equations of motion 
A x = n P  - ~/3 (3.1) 

e = - -~J(  + ~2 (3.2) 

=/3 - 7/3 (3.3) 
m 

= - k 2  + 72  (3.4) 



1448 Bonato and Baseia 

This system of coupled differential equations can be decoupled 
through the transformation 

[i I [e~/2CO~~/2 --e-~/2sirl~b/2 0 ] i l l  e x/2 s ~b/2 e-;~/2 cos ~b/2 0 00 
0 e -'V2 cos ~b/2 - e  "V2 sin ~b/2 
0 e-~/2 sin q~/2 e ;~/2 cos ~/2 

(3.5) 

where 
, Fm(k +o) l 

2 = ~ In L i-+-m--~J (3.6) 

2y 
~b = arctan ke-4 _ f~e ~ (3.7) 

The application of the above transformation, which corresponds to a 
rotation plus a scale transformation, transforms the coupled Hamiltonian 
(2.6) into the uncoupled Hamiltonian 

1[ ~2 ~2  "~ l {o~2ff2 q_ f12~2'~ H=~,p +~lx )+2k ] (3.8) 

where 

~1 '-,~e- sn  ~ + m  e cos ~+ysinq~ (3.9) 

fll =f2easin2 +ke-~-cos2~+ 7 sin~b (3.10) 

~ 2 = ~ e  COS ~ + m  e sm -~-Y sinq5 (3.11) 

fl2=Oe~cos2 ~ + ke-'~ sin2 ~- T sin ~ (3.12) 

Now, the Heisenberg equations of motion obtained from the uncou- 
pled Hamiltonian (3.8) are similar to those given by equations (3.1)-(3.4) 
with 7 = 0. Hence the solutions of our modified system are given by 

~(t) = )~(0) cos co2t + (c~z']l/zff(O) sin o)2t (3.13) \&/ 

P(t)= --(f12)'/2.Y(0)sin r + if(0)cos e)2t (3.14) 
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/ ,v \1/2 

~(t)=~c(O)coscolt+l~l) /~(0) sin co, t (3.15) 

/~(t) = --(fll~1/22(O) sincolt +/~(0) cos colt (3.16) 

where col = (~lfll) 1/2, co2 = (~2fl2) in, whenever ~ifli > 0, i = 1, 2; otherwise 
hyperbolic or linear solutions will occur. 

Next, the application of the inverse of transformation (3.5) to the 
solutions given by equations (3.13)-(3.16) results in the solution for our 
original coupled system. We find 

]((t) = - [ a d ( ~ )  1/2 sin colt-bc(~2) 1/2 sin c02t}(0 ) 

+ L  \fl-T1J s inco l t+c2 [~2)  sinco2t ]3(0) 

--cd[cos col t - cos co2 t]2(0) + [bd cos col t + ac cos co2 t])((0) (3.17) 

P(t)=fbc(fll]l/2sincolt-ad(fl2]l/2sinco2t] \ ~ 1 / I  \0~2/I 

-fb2(fllY/2sincoltL k~] +a2(fl2y/2sinco2t] 
- ab[cos col t - cos co2t]~(0) + [bd cos 0) 1 t "~- ac cos co2t]/~(0) (3.18) 

for the HO, and 

[ (~101/2 bEf~2~l/2sincoEt~(O) 2( t )=  a 2 s inco l t+  \f12,] 

/~  \1/2 
-[ad(~-l)l/2sincol t - b c ~ )  sinco2t]/6(O) 

+ [ac cos e) it + bd cos c02t]2(O) - ab[cos colt - cos ro2t]){(O) (3.19) 

~(t) -[c2(fl1") 1/2 sinco, t +d2(f12] 1/2 ] = sin c02t 2(0) 

+fbc(fll]l/2sincolt-ad(fl2]l/2sinco2t] \~1,1 \~2,/ 

+ [ac cos col t -- bd cos co2t~(O) - ad[cos co I t - cos co:t]/~O) (3.20) 
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for  the QO, where 

rh 
a = e-Z/2 cos ~" (3.21) 

2 

d~ 
b = e -)./2 sin ~ (3.22) 

2 

rh 
C = e z/2 cos ~- (3.23) 

2 

rh 
d = e a/2 sin ~ (3.24) 

2 

with 2, ~b given by equat ions (3.6), (3.7). 

4. F L U C T U A T I O N S  IN Q U A D R A T U R E - P H A S E  A M P L I T U D E S  

F r o m  the solutions given in equat ions (3 .17) - (3 .20)  we obtain  the 
fluctuations in quadra ture -phase  ampli tudes  AO, defined as 

AO(t) = ( 0 ( 0  2 -  (O(t)~2) m (4.1) 

for  an arbi t rary  opera to r  0 = )(, /~, ~ or p and where the angle brackets  
stand for  expectat ion values with respect to the eigenfunctions of  the 
corresponding annihi lat ion opera tors  ~ or 4 .  We obtain  

AX(t) = d2(b 2 + c 2) cos 2 ~01 t + c2(a 2 + d 2) cos 2 ~2t  

+d2-~l(a2+da ) sin2 o)lt + c  2 ( b a + c  2) sin2 c02 t 

+ 2cd(ab - cd) cos co x t cos c02t 

(5152)  1/2 sin 092t11/2 (4.2) + 2cd ~ (ed - ab) sin c01 t 

AP(t) = b2(a 2 + d 2) cos 2 (,01 t + aZ(b 2 -q- c 2) cos 2 092t 

+ b 2//1 (b 2 + e 2) sin 2 co1 t + e 2/~2 (a 2 + d 2) 
51 5 2 

• sin 2 co2t + 2ab(cd - ab) cos o91 t cos co2t 

�9 - ] U 2  

--I- 2ab(fllf12Y/2(ab\5152/-cd)sin colt sin fo2/ j  (4.3) 
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/h\l/EI- 
Ax(t) = ~-~) LaE(bE + cE) cosE (0] t + bE(aE + dE) cosE (0E t 

+ aE ( a2 + dE) sin2 (01 t + b E ~ (b E + c E) 

x sin E (0Et + 2ab(cd -- ab) cos m]t cos (02t 

..]_~ . {0(1 ~2 ~1/2 t]1/2 
zao~--~2 ) ( ab -cd )  sin(01tsin (4.4) (0 2 

/h\l/2r Ap(t)=~) Lc2(a2 + d2) cos2 (01t + dE(b2 + c2) cosE (02 t 

+ c E fll (b E + c 2) sin E (01 t + d 2 fl2 (a 2 + d E) 
t~l ~2 

• sin E o92 t + 2cd(ab - cd) cos (01t cos (02t 

+ 2cd(fllflE)(cd- ab)sin colt sin (02t~ 1/2 (4.5) 
\~1(Z2//  J 

The  results for  the variances expressed in equations (4 .2 ) - (4 .5)  are 
plot ted in Figs. 1 - 4  [in units o f  (h/2) m] for  some values o f  the involved 

Fig. 1. 
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Fig. 2. 
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and  7 = 2.0. 

parameters Q, co, f, and 7, or equivalently for m, k, fZ, and 7, and for initial 
coherent states of both oscillators. 

5 .  S Q U E E Z I N G  I N  TWO-MODE OSCILLATIONS 

The results for the variances in Section 4 are those for the one-mode 
oscillations. In the present section we will investigate the possible occur- 
rence of the squeezing effect for two-mode oscillations in our coupled 
system. According to some authors (Milburn, 1984; Caves and Schumaker, 
1985), in much of the experimental realizations of squeezing phenomena, 
what is actually produced is two-mode squeezing, rather than the (more 
traditional) one-mode squeezing. While one-mode squeezing refers to this 

effect in an individual oscillator, two-mode squeezing occurs in a collective 
mode, which is a linear combination of variables of both oscillators. 

The treatment of two-mode squeezing in the literature usually refers to 
the case where the effect is absent in the one-mode oscillation (Kim and 
Noz, 1991; Milburn, 1984; Caves and Schumaker, 1985). In this case 
two-mode squeezing only will emerge for a highly correlated state of the 
two oscillators that exhibits the reduced quadrature noise. As we will see 
here, that is not the case for our coupled system, where squeezing may 
appear simultaneously in one- and two-mode oscillations. Furthermore, as 
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a consequence, both collective coordinates of the two-mode oscillation (as 
defined below) may also display the squeezing effect simultaneously, con- 
trary to the traditional result where the occurrence of  the effect in one of 
the collective coordinates excludes the other: reduction in one of  them 
below the shot noise level causes amplification of  the other coordinate. 

The coordinates for two-mode oscillations are defined in the literature 
as (see, e.g., Milburn, 1984; Caves and Schumaker, 1985) 

:~'(t) = ~ (:~(t) + ]((t)) (5.1) 

.Y'(t) = ~ (:~(t) -- s (5.2) 
N / -  

w h e r e  ~'(t) stands for the center-of-mass coordinate (C.M.) and .Y'(t) is the 
relative coordinate (R.C.). 

The above definitions gives the coordinates for the two-mode oscilla- 
tions in terms of  those for one-mode oscillations. Using definition (4.1), 
and after some simple algebra, we find for the variances 

Ax'(t) = ~ {(Ax(t)) 2 _~_ (AX(t)) 2 + 2[ (x(t)X(t))  - (x( t ) )  (X(t))]  }1/2 (5.3) 

and 

AX'(t) = ~ {(Ax(t)) 2 + (AX(t)) 2 _ 2[ (x( t)X(t))  - (x( t ) )  (X(t))] } 1/2 

(5.4) 

By the use of equations (3.17)-(3.20) and some additional simple 
algebra we easily compute the variances of  the two-mode oscillations 

/h \1/2(  
AX" = ~-~) ~[(ac - -cd)2+ (db --ab) 2] cos 2 colt 

+ [(bd + cd) 2 q- (ac + ab) 2] cos 2 co2 t 

61 + [(a2 - ad)2 + (d2 - ad)2] fll sin2 c~ 

+ [(b 2 + bc) 2 + (c 2 + bc) 2] ~ sin 2 co2t 

+ 2[(ac - cd)(bd + cd) + (bd - ab)(ac + ab)] cos 091 t cos r 

+ 2[(a 2 - ad)(b 2 + bc) + (d 2 - ad)(c 2 + bc)] 

• (5.5) \fllfl2J sinco, t sin 
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/ h \ l / 2 f  
A X ' =  ~ )  ~[(ac + cd) 2 + (db + ab) 2] cos 2 colt 

+ [(bd - cd) z + (ac - ab) 2] cos 2 co2t 

+ [(a2 + ad)2 + (d2 + ad)2)] ~1 sin2 COl t 

~2 + [(b2 - bc)2 + (c2 - bc)2] f12 sin2 CO2t 

+ 2[(ac + cd)(bd - cd) + (bd + ab)(ac - ab)] cos COl t cos CO2t 

+ 2[(a 2 + ad)(b 2 - bc) + (d 2 + ad)(c 2 - bc)] 

X (  ~10~2 ~ 1 / 2  CO2t} 1/2 (5.6 
\ f l l f l2J  sinCOlt sin 

where the symbols a, b, c, d, c~;, fl;, and COe were defined in Section 3. 
These results are plotted, in units of  (h/2) 1/2, in Figs. 5-10, for 

some values of the parameters f~, CO, f, and 7, or equivalently for m, k, f/, 
and ~. 

Fig. 5. 
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Fig. 6. 
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Fig. 9. 
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values m =0.5, k = 1, f2= 1, and y =0. 

6. C OMMENTS  AND CONCLUSION 

We have computed the time evolution of one- and two-mode oscilla- 
tions of  a combined system constituted of a HO coupled to a QO. As is 
known, the HO does not exhibit a squeezing effect, whereas the QO does, 
when starting from a coherent state. We have shown that, due to the 
coupling, the squeezing generated in the QO (Figs. 1 and 2) spreads to the 
HO (Figs. 3 and 4). 

For one-mode oscillation we point out the following features: 

(i) If f =  0 in equation (2.1), then there is no squeezing in the QO. In 
this case there is no squeezing effect to be transferred to the HO, and both 
oscillators remain in their initial coherent state. 

(ii) If  f #  0, the QO exhibits a squeezing effect (Figs. 1 and 2). In this 
case the squeezing is transferred to the HO (Figs. 3 and 4). Note in Figs. 
2 and 4 that if the squeezing generated in the QO alternates between both 
its quadratures, then the squeezing transferred to the HO remains in only 
one of  its quadratures. However, in Figs. 1 and 3, for other values of the 
parameters, the reverse occurs. 

For  two-mode oscillations it is known that the squeezing can occur 
even if x(t) and X(t) are not themselves squeezed (Barnett and Knight, 
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1987). The minimum requirement for this to be possible is that the two 
coupled subsystems should be strongly correlated, since (2(t)X(t))- 
(2(t))(J?(t))  must be sufficiently large and negative (positive) to reduce 
the variance of 2'(0 [)?'(t)] below the threshold for squeezing. In this case, 
the occurrence of the effect in one of the collective coordinates 2'(t), J('(t) 
is accompanied by enhancement of noise in the other coordinate. However, 
if we have that 2(0 and/or )?(t) are themselves squeezed, as is the case in 
our coupled system, then the occurrence of squeezing in both collective 
coordinates 2'(0, )?'(t) may be concomitant (cf. Figs. 5, 6, and 8) or not 
(Figs. 7, 9, and 10). For two-mode oscillations we point out the following 
features: 

(i) In Fig. 5 there is an almost permanent squeezing in one of the 
collective coordinates, but the effect scarcely occurs in the other coordinate, 
for all values of the time. In Fig. 6 this role played by the coordinates is 
reversed. 

(ii) In Fig. 7 the squeezing affects both coordinates for almost all 
times, but the effect is not the same for 2' and )?'. In Fig. 8, however, 
besides being permanent in time, the squeezing coincides exactly for both 
coordinates, the coupling being zero. 

(iii) In Fig. 9 there is no squeezing for almost all times, but the 
enhancement of noise is not the same for 2"(0 and )?'(t). In Fig. 10, 
however, besides being permanent, the enhancement of noise coincides 
exactly for both coordinates, the coupling being zero. 
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