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A new, physically more plausible definition of a fuzzy quantum logic is 
proposed. It is shown that this definition coincides with the previously studied 
definition of a fuzzy quantum logic; therefore it defines objects which are 
traditional quantum logics with ordering sets of states. The new definition is 
expressed exclusively in terms of fuzzy set operations which are generated by 
connectives of multiple-valued logic studied by Lukasiewicz at the beginning of 
the 20th century. Therefore, the logic of quantum mechanics is recognized as a 
version of infinite-valued Lukasiewicz logic. 

1. I N T R O D U C T I O N  

The so-cal led q u a n t u m  logic a p p r o a c h  to the founda t ions  o f  q u a n t u m  

mechanics  (Be l t ramet t i  and  Cassinell i ,  1981, and  references cited therein) is 
based  on the fo l lowing not ion:  

Definit ion 1. A quantum logic is an  o r t h o c o m p l e m e n t e d  a - o r t h o c o m -  
plete o r t h o m o d u l a r  poset ,  i.e., a pa r t i a l ly  ordered  set Aa which conta ins  the 
smal les t  e lement  0 and  the greates t  e lement  1, in which the o r thocomple -  
men ta t i on  m a p  l :  A o ~ A a sat isfying the condi t ions  ( i ) - ( i i i )  exists: 

(i) (a • z = a ( idempotency) .  

(ii) I f  a <- b, then b x -- a • ( o rde r  reversing). 

(iii) The  greates t  lower  b o u n d  (meet)  a A a • and the least upper  
b o u n d  ( jo in )  a v a • with respect  to the given pa r t i a l  o rder  exist in A ~ for 
any  a s A e ,  and  they satisfy the law o f  cont rad ic t ion ,  a A a •  O, and  the 
excluded midd le  law, a v a • = 1. 
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Moreover, the a-orthocompleteness condition holds: 

(iv) If  ai -< a~ for i ~ j ,  then the join V;  ai exists in La. 

And so does orthomodular identity: 

(v) I f a < b ,  t h e n b = a v ( a  • 1 7 7  • 

We warn the reader accustomed to the standard fuzzy set notation that 
^ and v throughout this paper denote meet and join with respect to the 
given partial order and that they in general do not denote Zadeh (1965) 
standard fuzzy operations. 

Elements of a logic represent elementary statements about physical 
system. Probability measures on a logic Ae, i.e., mappings s: A ~ ~ [0, 1] such 
that 

(a) s(1) = 1 
(b) s(W , at) = ~ s(a~) for any sequence {a,} of pairwise orthogonal 

elements, i.e., elements such that a; < a~ for i :~j 

represent states of a physical system and, therefore are often themselves 
called states on a logic s A set of states 6 a on a logic A a is called ordering 
iff 

s(a) < s(b) for all s~6e implies a < b 

Let q / #  ~ be a fixed set called a universe. According to Zadeh (1965), 
the fuzzy set A in q/ is  defined by its membership function Pa : q/---> [0, 1] in 
such a way that for any x~q / t he  number #A(x)~[0, 1] represents the degree 
of membership of x to the fuzzy set A. Many authors identify fuzzy sets with 
their membership functions and write A(x) instead of #A (x). This convention 
is adopted throughout the rest of this paper. 

2. FUZZY QUANTUM LOGICS 

It was noticed by the author (Pykacz, 1987a,b, 1988, 1990, 1992) that, 
due to the theorem of M~czyflski (1973, 1974), any quantum logic Ae with 
an ordering set of states A e can be isomorphically represented in the form 
of a family l_(A a) of fuzzy subsets of A e such that: 

( f l )  l_(6e) contains the empty set ~ .  
(f.2) L(Se) is closed under the standard fuzzy set complementation, i.e., 

if A ~ I_(6P), then A'  = 1 -- A ~ 1_(6~) (1) 

( f 3 )  I fA inAj  = ~ for i # j ,  i.e., if sets Ai, Az . . . .  are weakly disjoint 
(Giles, 1976), then ~iA i  < 1 and UtAi el_(6~). 
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Remark I. ~ i Ai denotes algebraic sum of (membership functions of) 
fuzzy sets A1, A2,. �9 �9 Notation A n B denotes the Giles intersection (Giles, 
1976) of fuzzy sets A and B: 

(An  B)(x) = max[A(x) + B(x) - 1, 0] (2) 

A wB denotes the Giles union (Giles, 1976) of fuzzy sets A and B: 

(A w B)(x) = min[A(x) + B(x), 1] (3) 

Conversely, due to the same M~czyfiski Theorem, any family 0_(q/) of fuzzy 
subsets of an arbitrary universe o// which satisfies conditions (f.1), (f.2), 
and (f.3) is a quantum logic partially ordered by the fuzzy set inclusion 
and with the standard fuzzy set complementation (I) as an orthocomple- 
mentation. Therefore, in Pykacz (t987b, 1988, 1992) the following defini- 
tion was adopted: 

Definition 2, A fuzzy quantum logic (FQL) on a universe q/ is  a family 
~_(0g) of fuzzy subsets of og which satisfies conditions ( f l ) ,  ( f2) ,  and (f.3). 

The strongest and, I dare say, the strangest assumption in the defini- 
tion of a fuzzy quavJtum logic is the part of the condition ( f 3 )  which says 
that the algebraic sum of membership functions of any sequence of 
pairwise weakly disjoint sets does not exceed 1. Weak disjointness of a pair 
of fuzzy sets A n B = ~ is equivalent to the condition 

A(x) + B(x) ~ 1 for any xeq /  (4) 

Thereforel the above-mentioned assumption says that even for arbitrary 
long sequences of  membership functions which pairwisely satisfy the in- 
equality (4) the algebraic sum of all functions does not exceed 1. This 
condition seems to be neither natural nor easy to fulfill. However, careful 
examination of the proof of the Moczyfiski Theorem shows that the 
above-mentioned assumption is responsible for o'-orthocompleteness of the 
obtained structure and for the fact that A'  = 1 - A is an orthocomplemen- 
tation, i.e., for the features that make it possible to use the obtained 
structure as a basis of reasonable generalized probability theory and for 
building models of physical systems. 

From condition (iii) of the definition of a quantum logic it follows that 
if a < a  -L for some aeSe,  then a = 0  ( a < a  • implies a , x a  x = a ,  but 
a ^ a • = 0 for any a e ~ )  and, similarly, if a I <_ a for some a e ~ ,  then 
a -- I. This result is very natural since if elements of a logic are interpreted 
as propositions about a physical system, and partial order and orthocom- 
plemcntation play, respectively, the role of implication and negation, then 
a -< a • would mean that a proposition implies its own negation. 
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Any fuzzy set E such that 

E ___E' (5) 

was called a weakly empty set by Piasecki (1985). Any fuzzy set U such that 

U ' ~  U (6) 

was called by him a weak universe. Since conditions a < a • =~ a = 0 and 
a •  < a =~ a = 1 translated into the language of fuzzy quantum logics 
(Pykacz, 1992) mean that 

for any A~fl_(q/) if A _ A ' ,  then A = ~  (7') 

for any AeD_(q/) if A'c_A, then A = ~  (7") 

we see that a fuzzy quantum logic does not contain any weakly empty set 
except ~ and any weak universe except ql, or, equivalently, that it does not 
contain any nonempty set weakly disjoint with itself: 

f o r a n y  Aefl_(~ if A n A = f g ,  then A = ~  (8) 

We shall show that if we adopt these natural conditions as an axiom, 
then we can obtain the structure of a a-orthocomplete orthomodular poset, 
i.e., a quantum logic, without assuming that algebraic sums of membership 
functions of sequences of weakly disjoint sets do not exceed 1. 

3. INTRINSICALLY HOMOGENOUS DEFINITION OF A FUZZY 
QUANTUM LOGIC 

Let us study the following definition of a fuzzy quantum logic in which 
the part of the condition (f.3) of Definition 2 saying that ~ i A ; - <  1 is 
rejected, but any equivalent condition (7'), (7"), or (8) is adopted instead. 
We shall show in the sequel that objects defined by this definition are in 
fact identical with objects defined by Definition 2. 

Definition 3. A generalized fuzzy quantum logic (GFQL) on a universe 
q / i s  a family G(q/) of fuzzy subsets of ~ such that: 

(g.1) G(q/) contains the empty set ~ .  
(g.2) G(q/) is closed under the standard fuzzy set complementation. 
(g.3) G(q/) is closed under Giles unions of pairwise weakly disjoint 

sets, i.e., if AinAj  = ~ for i # j ,  then [,_)~.Ai~G(q/). 
(g.4) G(q/) does not contain any nonempty weakly empty set, i.e., in 

G(~) the condition (7') or equivalent condition (7") or (8) holds. 

Let us note that A _ A' is equivalent to A(x) < 1/2 for all x ~q/, and 
A' _cA is equivalent to A(x) > 1/2 for all x~q/.  
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We shall prove that any G F Q L  is a quantum logic in the traditional 
sense. Before we pass to the main results we list some useful identities 
fulfilled by Giles operations and the standard fuzzy complementation. 

Lemma 1. 

(a) A u B  = B uA ,  A n B  = B n A  (commutativity) 
(b) A u ( B u C )  = (A u B )  u C ,  A c ~ ( B n C )  = (A  n B )  n C  

(associativity) 
(c) ~ w A = A, og n A = A (neutral elements of union and intersec- 

tion) 
(d) q lwA =ql, ~JnA  = ~  
(e) A n A'  = ~ (law of contradiction) 
(f) A u A'  = q/ (excluded middle law) 
(g) (A u B)'  = A'  n B', ( A n  B)'  = A'  w B'  (De Morgan laws) 
(h) if A _ B, then B = A u (A' r iB)  ("or thomodular"  identity) 

All identities follow immediately from definitions of Giles operations 
and the standard fuzzy complementation. 

Many identities of  Lemma 1 were noticed already by Giles (1976). If 
G(~ is a G F Q L  and A, B, C~G(ql), then in the case of  expressions which 
do not belong to G(q/) by the definition of GFQL,  the identities of Lemma 
1 are fulfilled in G(q/) when all necessary unions and intersections are 
defined in G(q/). Let us show that all components of the "or thomodular"  
identity belong to G(q/) for any A, B~G(ql), A ~_ B. 

Lemma 2. If A, B~G(q[) and A _~ B, then A and B', as well as A and 
A ' n  B, are weakly disjoint, which means that A u B', (A u B ' ) ' =  A ' n  B, 
A u ( A ' n B ) ,  and ( A u ( A ' n B ) ) ' = A ' n ( A u B ' )  belong to G(q/). More- 
over, A'  n B = B -- A and A w (A' n B) = A + (B - A), so the "orthomodu- 
lar" identity takes the trivial form 

if A ~ B ,  then B = A + ( B - A )  (9) 

Proof If  A _ B, then 

( A n  B')(x) = max[A(x) + 1 - B(x) - 1, 0] = max[A(x) - B(x), 0] = 0 

i.e., A r i B ' =  ~3. Therefore, by (g.3), A wB'EG(~ which, by (g.2), im- 
plies that (A u B ' ) '= A" nB~G(ql).  

Weak disjointness of A and A' n B follows from the identities (b), (d), 
and (e) of  Lemma 1: 

A n ( A ' n B )  = ( A n A ' )  n B =  ~2~nB = ~ (10) 

Therefore, by (g.3), A u (A 'nB)eG(q l ) .  
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If  A ~ B, then 

(A'  n B)(x) = max[ 1 - A(x) + B(x) - 1, 0] 

= max[B(x) -- A(x), 0] = B(x) - A(x) 

Therefore, 

(11) 

[A w (A' c~ B)](x) = min[A(x) + B(x) - A(x), 1] 

= A(x) + B(x) - A(x) = B(x) �9 (12) 

The following theorem was conjectured in the first version of the 
paper. However, the given proof  was erroneous. The correct proof  of  (an 
even more general version of) this theorem was given later by Mesiar 
(1994). 

Theorem 1. Let G(~)  be a GFQL and let A1, A2 . . . .  , ~G(#/). If 
A i n A j  = ~ for i r  then 

VIA,-= VIA," (13) 

i.e., the join of  any sequence of  pairwise weakly disjoint sets exists in G(q/) 
and coincides with the Giles union of  these sets. 

Proof. See Mesiar (1994). 

We shall show now that the standard fuzzy set complementation is an 
orthocomplementation in any GFQL.  

Theorem 2. Let G(q/) be a G F Q L  and let ': G(q/) ~ G(q/), A'  = 1 - A 
be the standard fuzzy complementation. Then it is an orthocomplementa- 
tion with respect to the fuzzy set inclusion as partial order, i.e.: 

(i) A " = A ' .  
(ii) If  A ___ B, then B' ~ A'. 
(iii) For  any AeG(~ A v A '  and A ^ A '  exist in G(#/), and 

A v A ' = q / , A  A A ' = ~ .  

Proof  Conditions (i) and (ii) follow from the very definition of the 
standard fuzzy set complementation. 

The proof  of  condition (iii) follows from the condition (g.4) since, 
obviously, ~ ~ A, A'  ~ oR, and if there exists BeG(~ ') such that B _ A, A', 
then for any x e q /  

B(x) < min[A(x), A'(x)] = min[A(x), 1 - A(x)] -< 1/2 (14) 

which means that such a B is a weakly empty set, i.e., by (g.4), B = ~ .  
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Similarly, if there exists BEG(://) such that A, A'~_ B, then for any xzq/  

B(x) >- max[A(x), A'(x)] = max[A(x), 1 - A(x)] - 1/2 (15) 

which means that B is a weak universe, i.e., by (g.4) B = q/. �9 

Theorems 1 and 2 imply, since Ai :7 Aj = ~ is equivalent to A~ _ Aj = 
A~, i.e., to orthogonality of A; and A:, that G(q/) is a o--orthocomplete 
orthoposet and that for any G(q/) the "orthomodular" identity (h) of 
Lemma 1 is actually an orthomodular identity in the traditional sense: 

if A,B~G(q/) and A_cB, then B = A  v ( A ' ^ B )  (16) 

All the above-mentioned results can be summarized as follows. 

Corollary I. Any GFQL G(q/) is an orthocomplemented cr-orthocom- 
plete orthomodular poser, i.e., it is a quantum logic in the traditional sense 
with respect to the standard fuzzy set inclusion as partial order and the 
standard fuzzy set complementation as orthocomplementation. Orthogo- 
nality of elements is equivalent to their weak disjointness and for an 
arbitrary sequence of pairwise weakly disjoint elements their join exists in 
G(q/) and coincides with their Giles union. 

As we mentioned at the end of Section 2, a fuzzy quantum logic does 
not contain any nonempty weakly empty set. Therefore, any fuzzy quan- 
tum logic is obviously a generalized fuzzy quantum logic. Let us recall that 
by the M~czyfiski Theorem any quantum logic ~ with an ordering set of 
states 6 e is isomorphic to any FQL ~_(6a), and conversely: any FQL D_(q/) 
is a quantum logic in the traditional sense with an ordering set of states 
(Pykacz, 1987b, 1988, 1990, 1992). However, there exist quantum logics 
without an ordering set of states, or even without any state at all (Greechie, 
1971; Pt~ik and Pulmannov~, 1991). Therefore, the question of whether any 
GFQL is an FQL is not trivial, especially since the condition ~/A~ < 1 for 
any sequence of pairwise weakly disjoint sets seems to be more restrictive 
than the condition (g.4) of Definition 3. However, the following theorem 
shows that this condition is satisfied in any GFQL, i.e., that objects defined 
by Definitions 1 and 2 are identical, so the word "generalized" in the name 
"generalized fuzzy quantum logic" should be in fact omitted. 

Theorem 3. Any GFQL is an FQL. 

Proof. Let G(q/) be a GFQL. We shall prove by induction that 
~ A ~  -< 1 for any finite sequence of pairwise weakly disjoint elements of 
G(q/). 

For n = 2 ,  A I c ~ A 2 = ~  is equivalent to AI+A2<-I  by the very 
definition of Giles intersection (2). 
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Let us assume that  ~ 7= 1 Ai < 1 for  any sequence of  pairwise weakly 
disjoint sets o f  the length n. Let  {Ai}7__+~ ~ be any sequence of  pairwise 
weakly disjoint sets o f  the length n + 1. By the induct ion hypothesis  we can 
write down n + 1 inequalities: 

A2 + A3 + Aa q- " " " + A  n -+-An+ l <-- 1 

A 1 + A 3 + A 4 + . ' - + A .  + A . +  l < 1 

A 1 + A 2 + A 4 + . . . + A  n + A n +  1 < 1 
: (17) 

A I + A 2 + A 3 + ' " + A n  l + A n + l < l  

A l + A 2  + A 3  + - " + A n _  1 + A  n <- 1 

After  summing  them up and dividing by n we obta in  

.+1 n + l  
A ; < - - - -  (18) 

i = 1  /'/ 

Let us denote  B.  = UT=~ Ai = ~7=~ Ai and B n + 1  = ~ ) n = §  Ai = 

B. u A. + l, and calculate (B~, + 1 + A. + 1)(x) There  are two possibilities: 

1. I f  ~ ' "+~ A~(x) = B.(x)  + A , , + l ( x )  > 1, then / ~ i = l  

(B'. + 1 + A . +  0(x)  = [1 - (B. u A . +  1) + A .+  1](x) 

= 1 - min[B.(x)  + An+ l(x), 1] + An+ l(X) 

= 1 - 1 + A . +  l(X) = An+l (x )  < 1 (19) 

2. I f  x-'"+~ A ~ ( x ) =  B . ( x ) + A n + l ( x )  < 1, then / ~ i = 1  

( B ' + ~  + A . +  1)(x) = 1 - min[B.(x)  + A . +  l(x), 1] + A . +  l(x) 

= 1 - Bn(x ) ~ 1 (20) 

We see that  in both  cases ( B ~ + I + A . + 1 ) ( x ) <  1. This means  tha t  
B'n + i n A.  + 1 = ~ ,  so by the condit ions (g.3) and (g.2) o f  Definit ion 3 bo th  
B'.+ ~ wAn+ 1 and (B' .+ 1 u A n +  1)' belong to G(q/). Let  us calculate now 
[(B~ + l w A .  + 1 ) ' +  B~] (x). considering the same two possibilities as before 
and taking into account  that  in bo th  cases 

B ' . + 1 u A . + ,  = B~,+ 1 + A . + I  (21) 

so we can use (19) or (20), respectively. 
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1. I f  ~ " +  l Ai(x) > 1, then / , i = l  

[(B'. + 1 u A . +  l)' + B'~] (x) = A'~+ l(x) + B',,(x) 

= 1 - A.  +,  (x) + 1 - B n(x) 

= 2 - [B.(x) + A.  + 1 (x)] 
n + l  

= 2 -  ~ Ai(x) < 1 (22) 
i = l  

2. I f  ~ 7 + d  Ai(x) < 1, then 

[ (O;  +1 UAn+ 1) ' - ~  O ; ]  (x)  = O : ( x )  --~ Bin(x) = On(X ) "~ Bin(X) = 1 (23) 

Therefore ,  again in bo th  cases [(B'. + 1 u A. + 1)' + B~] (x) < 1, which means  
tha t  (B~+1 ~ A. + 1) 'w  B'n belongs to G(q/). However ,  combining  (18) with 
(22) and  (23), we obta in  for  any n -> 2 and any x ~ q /  

1 n + l  
- ~ 2 - -  ~ [(Bn+ I w A . +  1) 'uB~,](X) < 1 (24) 
2 n 

This means  that  ( B'n + ~ u A.  + ~ )" u B'. is a weak universe, so 
[(B~, + 1 ~ A. + 1)' w B' . ] '  = (B~ + 1 u A. + ~) ~ B.  is a weakly empty  set. Now,  
if we assume that  there exists x s q /  such tha t  ~ n + ~  Ai(x) > 1, we have, 
according to (21) and  (19), 

[(B'. + ,  u A . +  1) c~ B.] (x) = max[(Bn + ~ + A.+ ~)(x) + B.(x) - 1, 0] 

= max[An+ ~(x) + B.(x) - 1, 0] 

1--~+ 1 1 = m a x  / Y, A , (x )  - 1, 0 
L i = l  

n + l  
= ~ A~(x) - 1 r  (26) 

i=1 

so (B~ + ~ w A,  + 1 ) c~ B,  is a nonempty  weakly empty  set, i.e., the condi t ion 
(g.4) o f  Definit ion 3 is not  satisfied and G(~ cannot  be a G F Q L .  

Since for  a countable  sequence ~ A i is a pointwise limit o f  finite sums, 
we infer tha t  for  any sequence o f  pairwise weakly disjoint sets {A~} _ G(q/) 
the assumpt ion  tha t  there exists x ~  such that  ~ A ~ ( x ) >  1 inevitably 
implies that  G ( ~ )  is not  a G F Q L ,  which finishes the proof .  �9 

4. ( F U Z Z Y )  Q U A N T U M  L O G I C S  A N D  I N F I N I T E - V A L U E D  
L U K A S I E W I C Z  L O G I C  

Due  to T h e o r e m  3, Definitions 2 and 3 define the same class of  objects: 
fuzzy q u a n t u m  logics. However ,  Definit ion 3 is fo rmula ted  entirely in terms 
o f  the s tandard  fuzzy set complemen ta t ion  and Giles opera t ions  on fuzzy 
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sets. It was pointed out by Giles (1976) that operations on fuzzy sets arise 
as immediate consequences of  building set theory on the basis of 
Lukasiewicz infinite-valued logic. Indeed, if we denote z(p)~[0, 1] the 
truth-value of  the sentence "p"  and follow Lukasiewicz (1970), who chose 
negation -7 and implication--+ as basic connectives with the following rules 
of  calculating their truth-values: 

z(--np) = 1 - r(p) (26) 

z(p --+ q) = min[ 1 - v(p) + z(q), 1] (27) 

then, defining disjunction p u q and conjunction p c~ q as in classical logic, 

z(p u q) = z( ~ p  --* q) (28) 

~(p nq)  = z[--n (--np u ~q)] (29) 

we obtain 

r(p u q) = min[~(p) + z(q), 1] (30) 

z(p c~ q) = max[z(p) + z(q) - 1, 0] (31) 

Many-valued Lukasiewicz logic is related to the fuzzy set theory 
exactly as classical logic is related to the ordinary set theory (Giles, 1976): 
if we apply two-valued logic to evaluate the truth-value of a sentence "x 
belongs to A," then the set A is crisp, while if we apply in this case 
many-valued logic, the set A is fuzzy with A ( x ) =  z ( "x~A") .  Of course 
disjunction (28), (30), and conjunction (29), (31) generate, respectively, 
Giles union (3) and intersection (2) of  fuzzy sets, exactly as this happens in 
the case of  two-valued classical logic and ordinary set theory. 

In the vast literature on fuzzy sets much more often other operations 
of union and intersection, introduced already by Zadeh (1965), are utilized: 

(A uz B)(x) = max[A(x), B(x)] (32) 

(A n~ B)(x) = min[A(x), B(x)] (33) 

These operations on fuzzy sets can be treated as generated by the other pair 
of multiple-valued disjunction and conjunction (Lukasiewicz, 1970) 

�9 (p or q) = max[T(p), x(q)] (34) 

z(p and q) = min[z(p), z(q)] (35) 

obtained from the negation (26) and imphcation (27) by assuming that 

z(p or q) = T[(p ~ q) --* q] (36) 

�9 (p and q) = z['-n(-lp or -nq)] (37) 
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Remark 2. It is possible to study infinite families of fuzzy set opera- 
tions which give Giles operations (2), (3) or Zadeh operations (32), (33) as 
special cases (Dubois and Prade, 1985). However, recent results of Mesiar 
(1994) strongly indicate that Giles operations together with the standard 
fuzzy set complementation are the only (up to an isomorphism) pointwisely 
generated fuzzy set operations which can endow families of fuzzy sets with 
a structure of an orthocomplemented tr-orthocomplete orthomodular 
poset, i.e., a structure of a quantum logic. 

Actually, Lukasiewicz (1970) in his papers on many-valued logic dealt 
mostly with disjunction (34) and conjunction (35). However, in one of his 
earliest papers (Lukasiewicz, 1913), which contains results of his studies 
undertaken already in 1909, we can find theorems and formulas which, 
after some calculations, yield expressions (30) and (31). Frink (1938) 
studied the algebra of Lukasiewicz logic endowed with both pairs of 
connectives: (30), (31), which he called arithmetic operations, and (34), 
(35) which he called logical operations. In the same paper he studied also 
the algebra of, at that time 2 years old, Birkhoff and von Neumann (1936) 
quantum logic and compared it briefly with the algebra of Lukasiewicz 
logic. Frink's comparison was rather superficial, but it clearly shows that 
quantum logic has more common features with Lukasiewicz logic endowed 
with arithmetic, rather than logical operations. 

The results of the previous sections show that there are deeper links 
between fuzzy quantum logics (therefore, by~ the Moczyfiski Theorem, also 
traditional quantum logics with ordering set~ of states) and infinite-valued 
Lukasiewicz logic endowed with operations (26) - (31): 

With every fuzzy quantum, logic n_(q/) = {~,  q/, A, B, C . . . .  } we can 
associate a family L = {PA.x }, A ~ D_(~'), x Eq/, consisting of propositions of 
the form pA,x="X belongs to A" with z(pA,x)=A(x)~[0, 1]. If ~_(q/) 
describes properties of a physical system Z, in which case q / is  identified 
with the set of all states of Z (Pykacz, 1987a,b, 1988, 1990, 1992), then PA,x 
can be identified with a proposition "the physical system Z has a property 
A when it is in a state x." In such a case, according to the interpretation 
of truth-values in multiple-valued logics considered already by Lukasiewicz 
(1970), the truth-value z(pA,~) is numerically equal to the probability that 
this proposition is true, i.e., to the probability that a test designed to check 
the property A gives the positive result when the system Z is in the state x. 
Alternatively, according to the very idea of the fuzzy set theory, z(pA,~) can 
be interpreted as the degree to which the physical system Z has the 
property A when it is in the state x (Pykacz, 1992). Let us note that in the 
realm of many-valued logics we are always allowed to say: "the physical 
system Z in a state x has a property A," even before this property is 
measured, and that the negation of this proposition is also allowed and true 
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to the degree ~(--lpA,x ) = 1 --z(pA,x). When a dichotomic test designed to 
check the property A is performed we are forced to say that the system Z 
in the state x either had or had not the property A (note the past tense used 
in this proposition!). 

Let us consider a subfamily of propositions {PA.x } x~  c L generated 
by the same element A of a (fuzzy) quantum logic. We shall refer to such 
a subfamily as the general proposition, denote it PA, and, if L describes the 
properties of a physical system Z, read it: "the physical system Z has the 
property A." Actually, a general proposition PA is a propositional function 
since it becomes a proposition PA,x for any x~q/,  and only then can we 
assign to it a truth-value Z(PA,x). It follows from general features of a 
(fuzzy) quantum logic (Pykacz, 1992) that there are only two general 
propositions in L whose truth-value is the same in any state x: the 
always-true proposition p~ [z(p~,z) = 1 for all x~q/] and the always-false 
proposition p~ [-c(p~.~) = 0 for all x ~q/]. In the case of a logic of proposi- 
tions about a physical system Z they can be read, respectively, p~ = "the 
system Z exists" and p~ = "the system Z does not exist." According to the 
results of Pykacz (1992), there is no other general proposition in L whose 
truth-value would be a constant function on q/. 

We say that two propositions p, q are exclusive if 

v(p n q) = max[z(p) + z(q) - 1, 0] = 0 (38) 

and that p surely implies q if 

z(p ~ q) = min[1 - z(p) + z(q), 1] = 1 (39) 

We can generalize these notions, and also notions of negation, implication, 
disjunction, and conjunction, to general propositions pA,pn~L associated 
with a (fuzzy) quantum logic D_(q/) in an obvious way by assuming that 
formulas (26), (27), (30), (31), (38), and (39) are fulfilled for all x ~ q / i n  a 
pointwise manner. 

The conditions (g. 1)-(g.4) of Definition 3 can be now expressed in the 
language of many-valued Lukasiewicz logic pertaining to the family of 
propositions L = {PA,x }, A e D_(ql), x~ql, associated with a fuzzy quantum 
logic D_(q/), and have the following meaning (by a small abuse of notation 
we write "PA belongs to L "  instead of "PA is a subfamily of L "  in the case 
of general propositions): 

(g.l ') The always-true general proposition belongs to L. 
(g.2') If  a proposition belongs to L, its negation also belongs to L. 
(g.3') The disjunction of pairwise exclusive general propositions be- 

longs to L. 
(g.4') The always-false proposition is the only general proposition in L 

which surely implies its own negation. 
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The problem of whether many-valued Lukasiewicz operations (26)-  
(31) have any physical meaning in other cases than allowed by the 
above-mentioned conditions is interesting and worth further studies. 

5. CONCLUSIONS 

In the historical development of the foundations of quantum mechanics 
since Birkhoff and von Neumann (1936) a lot of attention has been paid to 
the order-theoretic structure of the set of elementary propositions about a 
physical system. It is often stressed that meets and joins express connectives 
"and" and "or" and therefore allow the building up of compound proposi- 
tions. However, let us note that in fact in any computation in which there 
appear probability measures on a logic, not joins of arbitrary elements, but 
only joins of pairwise orthogonal elements are utilized. Theorem 1 says that 
in fuzzy quantum logics these joins exist and coincide with Giles unions. This 
suggests that the main interest should be shifted from order-theoretic 
operations of meet, join, and complementation to Giles union, intersection, 
and the standard fuzzy set complementation (if we work with fuzzy sets), 
or to Lukasiewicz disjunction (30), conjunction (31), and negation (26) if 
we prefer to work with infinite-valued Lukasiewicz logic. Therefore, the logic 
of a quantum mechanical system should be seen first of all as a family of 
propositions which belong to the domain of infinite-valued Lukasiewicz 
logic endowed with operations (26)-(31) and which satisfy conditions 
(g.l ')-(g.4'), rather than being treated as a lattice-theoretic model of a 
family of closed subspaces of a Hilbert space. 
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